

Terraprobe

Consulting Geotechnical & Environmental Engineering Construction Materials Inspection & Testing

ADDITIONAL PHASE TWO ENVIRONMENTAL SITE ASSESSMENT TRAILS OF COLLINGWOOD - HIGH STREET AND TELFER ROAD **COLLINGWOOD, ONTARIO**

Prepared for: **Helen Court Homes**

23 Princess Anne Crescent

Toronto, Ontario,

M9A 2N9

Attention: Mr. David Ferracuti

> File No: 1-17-0918-42.1 Date: May 22, 2020

> > ©Terraprobe Inc.

Greater Toronto

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

TABLE OF CONTENTS

SECT	ΓΙΟΝ		PAGE
1.0	EXEC	CUTIVE SUMMARY	1
2.0	INTR	ODUCTION	4
	2.1	Site Description	
	2.2	Property Ownership	
	2.3	Current and Proposed Future Uses	
		2.3.1 Current Property Use	
		2.3.2 Future Property Use	
	2.4	Applicable Site Condition Standards	
	2.5	Objectives of Investigation	
3.0	BACI	KGROUND INFORMATION	
	3.1	Physical Setting	
		3.1.1 Water Bodies, Wetlands and Areas of Natural Significance	
		3.1.2 Topography and Surface Water Drainage	
	3.2	Past Investigations	10
4.0	SCOF	PE OF THE INVESTIGATION	17
7.0	4.1	Overview of Site Investigation.	
	4.2	Media Investigated	
	1.2	4.2.1 Rationale for Inclusion or Exclusion of Media	
		4.2.2 Overview of Field Investigation of Media	
	4.3	Deviations from Sampling and Analysis Plan	
	4.4	Impediments	
5.0	INVE	STIGATION METHOD	20
5.0	5.1	General	
	5.2	Drilling	
	5.3	Soil Sampling	
	5.5	5.3.1 Equipment Used	
		5.3.2 Geological Description of Soil	
	5.4	Field Screening Measurements	
	5.5	Groundwater Monitoring Well Installation	
	5.6	Field Measurement of Water Quality Parameters Groundwater: Sampling	
	5.7	Groundwater Sampling	
	5.8	Sediment Sampling	
	5.9	Analytical Testing	
	5.10	Residue Management Procedures	
	2.10	5.10.1 Soil Cuttings	
		5.10.2 Fluids from Equipment Cleaning	
	5.11	Elevation Surveying	
	5.12	Quality Assurance and Quality Control Measures	
	5.12	5.12.1 Containers, Labelling, Handling and Chain of Custody	
		5.12.2 Equipment Cleaning Procedures	
		5.12.3 Field Quality Control Measures	
		5.12.4 Deviations in the Quality Assurance and Quality Control Measures	
6.0	DEM	EW AND EVALUATION	
U.U			
	6.1	Geology	26

		6.1.1	Geological Unit Thicknesses (Estimated)	26
		6.1.2	Elevations of Geological Units	26
		6.1.3	Material in Geological Units	26
	6.2	Groun	dwater Elevations and Flow Direction	27
		6.2.1	Rationale for Monitoring Well Locations and Screen Intervals	27
		6.2.2	Results of Interface Probe Measurements	
		6.2.3	Thickness of Free Flowing Product	27
		6.2.4	Groundwater Elevations	
		6.2.5	Interpreted Direction of Groundwater Flow	
		6.2.6	Influence of Buried Utilities	
	6.3	Groun	dwater Hydraulic Gradients and Hydraulic Conductivity	28
		6.3.1	Horizontal Hydraulic Gradients	
		6.3.2	Vertical Hydraulic Gradients	29
		6.3.3	Hydraulic Conductivity	29
	6.4	Soil T	exture	30
		6.4.1	Rationale for Use of Coarse Soil Texture	30
	6.5	Soil: F	Field Screening	30
	6.6	Soil Q	uality	31
		6.6.1	Location and Depth of Samples	31
		6.6.2	Comparison to Applicable Standards (Soil)	32
		6.6.3	Contaminants of Concern (Soil)	35
		6.6.4	Contamination Impact on Other Media	35
		6.6.5	Presence of Light or Dense Non-Aqueous Phase Liquids (In Soil)	35
	6.7	Groun	dwater Quality	35
		6.7.1	Location and Depth of Sample Locations	35
		6.7.2	Field Filtering	36
		6.7.3	Comparison to Applicable Standards (Groundwater)	36
		6.7.4	Contaminants of Concern (Groundwater)	37
		6.7.5	Chemical or Biological Transformations	37
		6.7.6	Contamination Impact on Other Media	
		6.7.7	Presence of Light or Dense Non-Aqueous Phase Liquids (Groundwater)	
	6.8		y Assurance and Quality Control Results	
		6.8.1	Types of Quality Control Samples Collected and Results	37
		6.8.2	Sample Handling	
		6.8.3	Subsection 47 (3) of the Regulation	
		6.8.4	Results Qualified by Laboratory	
		6.8.5	Overall Quality of Field Data	39
7.0	CON	CLUSIO	NS	40
	7.1		on and Concentration of Contamination	
		7.1.1	Land	
		7.1.2	Groundwater	
	7.2	Enviro	onmental Conditions	
	7.3	Signat	ures	41
8.0	REFI	•	S	
9.0	LIIVII	TATION	S AND USE OF THE REPORT	43

FIGURES

Figure 1	l Ph	ase Two	Property	y Location

Figure 2 Phase One CSM

Figure 3 Borehole/Monitoring Well Location Plan

Figure 4 Groundwater Elevations

Figure 5 Soil Chemical Analysis – Metals and Other Regulated Parameters – Plan View

Figure 6 Soil Chemical Analysis – Organochlorine Pesticides – Plan View

TABLES

	Table 1	oil Quality – Metals and Other Regulated Para	meters
--	---------	---	--------

Table 2 Soil Quality – Organochlorine Pesticides

Table 3 Groundwater Quality – Metals and Other Regulated Parameters

Table 4 Groundwater Quality – Organochlorine Pesticides

APPENDICES

Appendix A	Phase One	Conceptual	Site Model

Appendix B Site Survey

Appendix C Sampling and Analysis Plan

Appendix D Standard Field Investigation Protocol

Appendix E Borehole Logs Appendix F Grain Size Analyses Appendix G Ground Water Levels

Appendix H Geological Units

Appendix I Monitoring Well Construction Details
Appendix J Laboratory Certificates of Analysis

Appendix K Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario

Appendix L Summary of Site Remediation Plan, Trails of Collingwood, High Street & Telfer Road,

Collingwood, Ontario

Appendix M Terraprobe Response to Draft Comments by GHD Limited Dated July 19, 2019 (Reference No.

11176351)

1.0 EXECUTIVE SUMMARY

Helen Court Homes retained Terraprobe Inc. (Terraprobe), to complete an additional Phase Two Environmental Site Assessment (ESA) of the property located at the northeast corner of High Street and Telfer Road in Collingwood, Ontario, hereafter referred to as 'the Property'.

The Property is irregular in shape, with a total area of approximately 7.6 ha (18.78 acres). The Property is currently vacant with historical agricultural land use as an orchard on the western portion of the Property and is proposed to be developed for residential purposes. The Property is considered to be in Agricultural or Other Land Use by the Ontario Ministry of the Environment, Conservation and Parks (MECP).

According to the Collingwood Zoning By-law Maps (revised on December, 7 2015) and By-Law No. 2010-040, the Property is zoned as Residential Third Density (R3) and the northeast corner of the Property is zoned as Environmental Protection (EP). The Property is also designated as a Holding Zone (H13) with the following conditions:

- No sensitive land use is permitted until the completion and acceptance of a record of site condition confirming that the land is appropriate for such use.
- All other uses permitted by the underlying parent zone, or the exception zone, are lawfully permitted while the H13 symbol is in place.

Sensitive land use in the By-Law refers to "The use of land or building for an agricultural use or other use, an institutional use, a parkland use or a residential use within the meaning of the Environmental Protection Act, R.S.O. 1990, Chapter E. 19, Ontario Regulation 153/04, as amended."

Moreover, due to the unevaluated wetlands (locally significant) and wetland buffer on the Property, part of the Property is regulated under the Nottawasaga Valley Conservation Authority.

Phase One ESA

A Phase One Environmental Site Assessment (Phase One ESA) was conducted for the Property by Terraprobe in May, 2018 to identify any Potentially Contaminating Activities (PCAs) on the Property and in the study area. Based on the findings of the Phase One ESA report, one (1) PCA was noted on the Property, which caused one (1) Area of Potential Environmental Concern (APEC), as follows:

• #40 – Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications

The Phase One ESA indicated that the APEC covers the entire Property.

Phase Two ESA

A Phase Two Environmental Site Assessment was conducted in May, 2018 by Terraprobe to investigate the APEC identified on the Property arising from the historical PCA found at the Property.

The Phase Two ESA included the drilling of three (3) boreholes and the installation of three (3) monitoring wells. The monitoring wells were installed to depths of approximately 5, 4.3 and 3.7 m below ground surface for BH1, BH2 and BH3, respectively. The following are the findings of the Phase Two ESA:

- The applicable Site Condition Standards are the 2011 Ministry of the Environment, Conservation and Parks Table 2 Standards for Residential, Parkland, and Institutional Land Use with coarse textured soils (MECP Table 2 RPI Standards).
- There were exceedances of the applicable Site Condition Standards noted in the earth fill material for DDE (OC Pesticides) on the Property in the Phase Two ESA.
- Applicable Site Condition Standards were met in the native soil located on the Property for the Phase Two ESA in BH1, BH2 and BH3.
- Applicable Site Condition Standards were met for ground water on the Property.

Based on the conclusions of the Phase Two ESA, a Remedial Action Plan was recommended to determine the feasibility of a remediation or a Risk Assessment on the Property. Vertical and horizontal delineation of the impacted material may be recommended as part of the Remedial Action Plan. As a result, a Remedial Plan was developed for the Property.

Additional Phase Two ESA

GHD Limited conducted a Peer Review of Terraprobe's Phase Two ESA and Remedial Action Plan. Based on GHD's Peer Review comments, nine (9) additional monitoring wells are recommended to be installed across the Property to further characterize soil and ground water quality across the Property. The investigation outlined in this report addresses those recommendations.

The conclusions of the Additional Phase Two ESA were:

- The applicable Site Condition Standards for the Property is the 2011 Ministry of Environment, Conservation and Parks (MECP) Table 2 Standards for Residential/Parkland/Institutional Property Use with coarse textured soils.
- Nine (9) boreholes were drilled between March 9 and March 13, 2020 and nine (9) monitoring wells were installed. The monitoring wells were installed at depths ranging from 1.8 to 6.1 m below ground surface (mbgs).
- The ground water depths ranged from 0.70 to 1.51 mbgs.
- The stratigraphy of the site is generally summarized as approximately 100 to 200 mm of topsoil, followed by reworked native soil consisting of silty sand to sandy soil, sandy silt with trace clay and gravel, loose, brown, moist to wet with rootlet. Gravelly sand was noted in BH9. The reworked material was underlain by native soil which consisted of silty sand to sandy silt with trace clay and gravel, some organic, brown and moist. At deeper depth and closer to the bedrock, gravelly sand with trace of silt and clay was noted.

- One (1) surface soil sample collected from BH4 contained Arsenic, Lead, Total DDE and Total DDT in excess of the Table 2 RPI Standards.
- One (1) surface soil sample collected from BH6 contained Arsenic and Total DDE in excess of the Table 2 RPI Standards.
- Five (5) surface soil samples collected from BH5, BH7, BH8, BH11 and BH12 contained Total DDE in excess of the Table 2 RPI Standards.
- All soil samples collected from native soil met the Table 2 RPI Standards.
- In total, twelve (12) groundwater samples were collected from the, previously and newly, installed monitoring wells. The results of the chemical analysis indicated that all groundwater samples submitted for chemical analysis met the Applicable Site Condition Standards. It should be noted that monitoring wells should be decommissioned as per O. Reg. 903 when are no longer in use.

2.0 INTRODUCTION

Helen Court Homes retained Terraprobe Inc. (Terraprobe), to complete an additional Phase Two ESA of the property which is located at the northeast corner of High Street and Telfer Road in Collingwood, Ontario.

It was noted that the conclusions of the Phase One ESA indicated one (1) Areas of Potential Environmental Concern (APECs) at the Property. Previous Phase Two ESA investigations indicated that the sampled fill soil material on the Property is in excess of the Applicable Site Condition Standards. Therefore, it was recommended that an additional Phase Two ESA is required to further investigate the soil and ground water quality on the Property. The Additional Phase Two ESA was completed in compliance with Ontario Regulation 153/04 (O.Reg. 153/04). Since the Property will be changing from Agricultural or Other Land Use to Residential Land Use, the MECP will not require a Record of Site Condition (RSC). However, the Town of Collingwood requires a RSC as part of the development and permitting process.

2.1 Site Description

The Property is irregular in shape, with a total area of approximately 7.6 ha (18.78 acres). The Property is currently vacant with overgrown trees and shrubs with historical agricultural land use as an orchard on the western portion of the Property. It is proposed to develop the Property for residential purposes. The Property is considered to be in Agricultural or Other Land Use by the Ontario Ministry of the Environment, Conservation and Parks (MECP). The general location of the Property is presented on Figure 1. The legal survey is attached in Appendix B.

The Property information is provided below.

Legal Description	Lot P, and Part of Lots N, R, S, T, V, and X and Part of Cameron Street (Closed by By-Law 93-2) and Part of Spruce Street (Closed by By-Law 93-2) Registered Plan 263, Town of Collingwood, County of Simcoe
Roll Number	Not Provided
PIN(s)	58274-0267, 58274-0284, 58274-0276, 58274-0282, 58274-0280, 58274-0277, 58274-0269, 58274-0157
Municipal Address	No Municipal Address, referred to as High Street & Telfer Road
Zoning	The Property is zoned as Residential Third Density (R3) and the northeast corner of the Property is zoned as Environmental Protection (EP). The Property is also designated as a Holding Zone (H13) with the following conditions: No sensitive land use is permitted until the completion and acceptance of a record of site condition confirming that the land is appropriate for such use.

	 All other uses permitted by the underlying parent zone, or the exception zone, are lawfully permitted while the H13 symbol is in place.
Area	7.6 ha (18.78 acres)
Property Owner Information	Helen Court Homes Ltd. 23 Princess Anne Crescent Toronto, Ontario, M9A 2N9
Persons, other than Property Owner, who engaged the Qualified Person to conduct the Phase One ESA	David Ferracuti dferracuti@ambientmechanical.ca T: 416 477 2473

2.2 Property Ownership

The ownership information for the Phase Two Property is as follows:

Legal Description	Lot P, and Part of Lots N, R, S, T, V, and X and Part of Cameron Street (Closed by By-Law 93-2) and Part of Spruce Street (Closed by By-Law 93-2) Registered Plan 263, Town of Collingwood, County of Simcoe
PIN(s)	58274-0267, 58274-0284, 58274-0276, 58274-0282, 58274-0280, 58274-0277, 58274-0269, 58274-0157
Property Owner Information	Helen Court Homes Ltd. 23 Princess Anne Crescent Toronto, Ontario, M9A 2N9

2.3 Current and Proposed Future Uses

2.3.1 Current Property Use

The Property is vacant undeveloped land that was previously used as an apple orchard. Under O.Reg. 153/04, the Current Land Use of the Property would be considered Agricultural or Other Land Use.

2.3.2 Future Property Use

The Property is proposed to be developed for Residential Land Use with the Parkland Block portion of the Property being developed for Parkland Use, a storm water management pond on the northeast corner of the Property, as well as community roads to be conveyed to the Town of Collingwood.

2.4 Applicable Site Condition Standards

The applicable Site Condition Standards are the 2011 Ministry of the Environment, Conservation and Parks (MECP) Table 2 Standards for Residential/Parkland/Institutional Property Use with coarse textured soils in "Soil, Groundwater and Sediment Standards for Use under part XV.1 of the Environmental Protection Act", MECP, July 01, 2011. The MECP Table 2 RPI CT Standards is the applicable Standards based on the following reasons:

- The proposed Property Use is Residential Property Use;
- Soil at the Property was found to be coarse textured based on the results of soil grain size analyses. The results of soil grain size analyses indicated at least 1/3 of the soil at the Property consists of coarse textured soil. Thus, coarse textured soil standards were applied;
- The Property is not located within 30 m of a surface water body;
- The Property is not located in, adjacent to, or within 30 m of an area of natural significance;
- With the exception of the west portion of the Property, where bedrock was found at 1.65 m below ground surface in one borehole location, the bedrock was found at depths greater than 2 m in other parts of the Property;
- The Property is located in the Town of Collingwood and would be considered potable ground water as there are five (5) drinking water wells located within the Study Area.; and,
- The pH value of tested soil samples was between 5 and 9.

2.5 Objectives of Investigation

The general objectives of the investigation include the following:

- To determine the concentration and location of Contaminants of Potential Concern (COPCs) identified in a Phase One ESA for the Property, and found through the course of conducting the Phase Two ESA, in soil, sediment, and ground water, as applicable.
- If a Risk Assessment is being undertaken, to obtain the information required by the regulation to conduct such an assessment, in particular with respect to any COPCs identified.
- To determine if all COPCs identified in the investigation met the generic Site Condition Standard or standard specified in a Risk Assessment, as applicable.

To ensure that the general objectives of the investigation were met, the Qualified Person ensured the following:

- That the investigation provided sufficient information to provide an understanding of the geological and hydrogeological conditions at the Phase Two Property; and
- That one or more rounds of field sampling are conducted for all COPCs identified for the Property, as identified in the Sampling and Analysis Plan (Appendix C) of the Phase Two ESA

and found through the course of conducting the Phase Two ESA, in soil, sediment, and ground water, as applicable.

Due to the current COVID-19 work restrictions that have been imposed by the provincial government, the continued environmental work (i.e. groundwater sampling and water levels) was temporarily placed on-hold. Terraprobe will now continue conducting the environmental work as the provincial emergency orders have been lifted.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

3.1.1 Water Bodies, Wetlands and Areas of Natural Significance

Mapping from the Ontario Ministry of Natural Resources and Forestry (MNRF) was reviewed to determine if water bodies were present on the Property and within 250 m of the Property. The MNRF National Heritage Information Centre database for listings of Areas of Natural or Scientific Interest (ANSIs) was reviewed. The information is summarized below.

Water Bodies (Property)	No water bodies were identified on the Property; however a manmade drainage ditch runs east to west along the north boundary of the Property.
Water Bodies (Study Area)	 Black Ash Creek appears to be approximately 175m west of the Property. A storm water management pond is located 20 m east/ southeast of the Property. The storm water management pond identified during site reconnaissance was not identified on the MNR map, further confirming it as a storm water management pond.
Wetland (Property)	Provincially Significant No Provincially Significant wetlands were present on the Property Non-Provincially Significant No Non-Provincially Significant wetlands were present on the Property Unevaluated No Unevaluated wetlands were present on the Property
Wetland (Study Area)	 Provincially Significant No Provincially Significant wetlands were present in the Study Area. Non-Provincially Significant No Non-Provincially Significant wetlands were present in the Study Area Unevaluated Unevaluated wetlands are present in the Study Area approximately 100 m west of the Property.

ANSIs	Provincially Significant Life Science ANSI
(Property)	No Life Science ANSIs were identified on the Property.
	Provincially Significant Earth Science ANSI
	No Earth Science ANSIs were identified on the Property.
ANSIs	Provincially Significant Life Science ANSI
(Study Area)	No Life Science ANSIs were identified in the Study Area.
	Provincially Significant Earth Science ANSI
	No Earth Science ANSIs were identified in the Study Area.

3.1.2 Topography and Surface Water Drainage

A topographic map from the MNRF and the geological mapping produced by the Ontario Ministry of Northern Development and Mines - Ontario Geological Survey was reviewed. The information gleaned from the mapping is summarized below.

Elevation	The OBM and Topographic Map showed the elevation of the Property was approximately 190 m above sea level (m asl).
Topography	The Property is gently rolling and appears to have a slight slope to the northeast. Thus, surface water is anticipated to flow to the northeast. Ground water is anticipated to be directed towards Georgian Bay to the north.
Hydrogeology	Black Ash Creek appears to be approximately 175m west of the Property. There is a manmade storm water management pond located approximately 20 m to the east /southeast of the Property.
Geology (overburden)	Based on published geology, the overburden material across majority of the Property is generally silt and clay with minor sand and gravel. However, the northeastern corner of the Property is generally stone-poor, sandy silt to silty sand.
Geology (bedrock)	The bedrock on the site is of the Lindsay formation, which is comprised of limestone.
Geology (depth to bedrock)	Based on published geological information in the area, the depth to bedrock depth is approximately 10 m within the vicinity of the Property. Based on MECP Well records in the area, the depth to bedrock is approximately 6.7 m. Previous investigations on the Property identified bedrock ranging from 1.7 to 5.5 mbgs.

3.2 Past Investigations

All available previous environmental reports are summarized below. Additionally, the following geotechnical report was conducted:

• Peto MacCallum Ltd. Consulting Engineers "Geotechnical Investigation, Proposed Residential Development High St, Collingwood Ontario" dated October 5, 2006.

Report Title	Environmental Site Assessment (Phase 1), The Trails at Collingwood Condominium Development (Proposed), High Street, Collingwood, Ontario
Report Date	June 21, 2007
Prepared By	Kodiak Environmental Limited
Prepared For	Helen Court Homes Limited

Scope of Report

• Environmental Site Assessment (Phase 1) reviewed available background/historical data, an inspection of the Property and neighboring properties and individual contact with various government agencies with respect to regulatory compliance.

Results of Report

- The subject site is currently a vacant parcel of land. The site was under private ownership, likely for agricultural purposes until 1917 and then Corporate interests appear to have held ownership since 2007.
- There are no known wells or septic systems, above ground service tanks (ASTs), underground service tanks (USTs) observed at the site during inspection. No designated substances or hazardous materials were observed at the site.
- The Property has historically been used for agricultural operations, including an orchard and it is expected that various pesticides have been used at the Property in the past. Apples are historically the crop most intensively sprayed with pesticides in Canada. Although there was no direct evidence of any negative environmental impact associated with the historical use of pesticides at the site, the possibility is noted.

Report Title	Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario			
Report Date	June 19, 2015			
Prepared By	Terraprobe Inc			
Prepared For	Municipal Property Assessment Corporation			

Scope of Report

• Following an initial investigation, Terraprobe Inc. (Terraprobe) provided a letter to the Municipal Property Assessment Corporation (MPAC) on March 17, 2014, as well as supporting information on April 11, 2014, indicating that a significant portion of the Trails of Collingwood property had shallow soil contamination and provided a cost estimate to conduct remediation of the Property.

Results of Report

- Additional investigation was conducted in December 2014. The letter provides an update of the results and a revised cost estimate to remediate the site, along with supporting details.
- The property was divided up into a grid pattern with seventy-one (71) sampling locations. At least one sample from every sampling location was contaminated by arsenic, DDT, or DDE in excess of the Ontario Ministry of the Environment Standards that are applicable to the Property with the exception of grid location IJ12. A sample was not analyzed from grid location GH89 due to wet site conditions. The pesticide contaminants are typically found in shallow soil, which is in agreement with the results. The soil was generally impacted to depths of 0.3 m or 0.6 m.
- The area impacted is approximately 98% of the total site, or approximately 7.4 hectares. A remediation cost estimate of approximately \$2.8 million was provided in the prior letter on the basis of 5.9 hectares being confirmed or assumed to be impacted. The revised cost estimate to strip, stockpile, and dispose of the soil, including environmental sampling, is approximately \$3.5 million based on the revised area of 7.4 hectares

Report Title	Summary of Site Remediation and Record of Site Condition Process, Trails of Collingwood Development, Collingwood, Ontario
Report Date	October 24, 2016
Prepared By	Terraprobe Inc
Prepared For	WMI & Associates Ltd.

Scope of Report

• Terraprobe has conducted a number of investigations to assess the environmental condition of the Property. In summary, the results of these investigations indicated that the surficial soil over much of the Property has been impacted as a result of pesticide use from the historical orchard operations. The investigations indicate that the surficial soil may be contaminated by DDT, DDE, and/or arsenic in excess of the Ministry of Environment Table 2 standards for residential land uses. The impact typically extends to depth of 0.3 to 0.6 m below grade.

Results of Report

- The former land use of the Property was agricultural, and the proposed land use will be residential. There is not a mandatory requirement to obtain an RSC for the Property under Ontario Regulation 153/04, based on the proposed land use change from agricultural to residential; however, since surface impacted soil is found on the Property, an RSC will be required for the property prior to proposed development.
- The results of the investigation indicate that there are approximately 42,000 cubic meters of marginally impacted soil found on the site and as such off-site disposal of the impacted soils is not appropriate.
- The proposed approach to site remediation consists of conducting a risk assessment, and managing the impacted soils on site.

Report Title	Phase One Environmental Site Assessment, Trails of Collingwood – High Street & Telfer Road, Collingwood, Ontario			
Report Date	May 1, 2018			
File Number	1-17-0918-41			
Prepared By	Terraprobe Inc.			
Prepared For	Trails of Collingwood			

Scope of Report

• The Phase One ESA included a review of available background/historical data, an inspection of the Property and neighboring properties, as well as individual contact with various government agencies with respect to regulatory compliance to identify potential environmental concerns.

Results of Report

- The Property was used for Agricultural and Other Land Uses. It was determined that an apple orchard was located on the western portion of the Property in 1973.
- The study area generally consists of agricultural or other use and residential properties. No Potentially Contaminating Activities (PCAs) leading to an APEC were identified in the study area.
- The Phase One ESA identified the following Area of Potential Environmental Concern on the Property due to the Potentially Contaminating Activities (PCAs) noted:

Location of PCA	PCA	Details	
High Street and Telfer Road Phase One Property	#40 – Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	Based on previous reports and prior agricultural use of the Property as an apple orchard it is likely that herbicides and pesticides were used in the past. With the possibility of Metals and Inorganics contamination from the apple orchards operations	

Based on the findings of the Phase One ESA, a Phase Two ESA is required to assess soil and groundwater chemical quality which may have been adversely impacted by the historical orchard on the Property. The Phase One CSM is attached in Appendix A.

Report Title	Draft Phase Two Environmental Site Assessment, Trails of Collingwood – High Street & Telfer Road, Collingwood, Ontario
Report Date	May 23, 2018
File Number	1-17-0918-42
Prepared By	Terraprobe Inc.
Prepared For	Trails of Collingwood

Scope of Report

• The Phase Two ESA was conducted to investigate the APECs for the Contaminants of Potential Concern (COPCs) that were identified on the Property from the Phase One ESA.

Results of Report

- Three (3) boreholes were drilled on January 29, 2018 and three (3) stick-up monitoring wells were installed. The monitoring wells were installed to depths of approximately 5, 4.3 and 3.7 m below ground surface for BH1, BH2 and BH3 respectively.
- There were exceedances of the applicable Site Condition Standards noted in the earth fill material for DDE (OC Pesticides) on the Property in the Phase Two ESA. There were no exceedances of the applicable Site Condition Standards noted in the native soil.
- Applicable Site Condition Standards were met for ground water on the Property.

Based on the conclusions of the Phase Two ESA, a Remedial Action Plan was recommended to determine the feasibility of a remediation or a Risk Assessment on the Property. Vertical and horizontal delineation of the impacted material may be recommended as part of the Remedial Action Plan.

Report Title	Summary of Site Remediation Plan, Trails of Collingwood, High Street & Telfer Road, Collingwood, Ontario
Report Date	October 10, 2018
File Number	1-17-0918
Prepared By	Terraprobe Inc.
Prepared For	Trails of Collingwood

Scope of Report

• The report outlines the scope of work for the site remediation plan that was developed as a response to the results of the previous investigations, which indicated that there are approximately 48,000 cubic meters of impacted soil found on the Property.

Results of Report

- The proposed approach to site remediation will consist of removing the impacted soil from the
 entire Property with the exception of the Parkland Block, where contaminated soil will be used to
 backfill the area.
- The Parkland Block will be managed with proper risk management measures (RMMs) and a Risk Assessment (RA) would be conducted
- The conceptual approach to remediation and risk management will consist of the following:
 - O Development of a Verification Plan to confirm that all impacted soils are properly identified and removed. This will include a program of detailed sampling and chemical analysis during excavation to ensure that all impacted soil are properly identified and relocated to the risk management area beneath the park. The confirmatory sampling will verify the remediated portion of the Property.
 - O Development of a detailed Soil Management Plan including general operations, traffic control, dust and odour control, spills management, waste management, unknown or unexpected operation conditions, on-site soil management and imported soils requirements for the entire Property.
 - Conduct a RA and develop RMMs on the Parkland Block. Once the Property is remediated and all the impacted soil is placed on the Parkland Block, the Parkland Block will undergo additional investigation to determine the extent of the contamination. A RA will be conducted and proper RMM will be identified and implemented. The RMMs could include a soft or hard cap to properly isolate the impacted soil. Once the RA is acknowledged a Certificate of Property Use (CPU) will be issued by the MECP. The

CPU will summarize the site conditions and outline any potential restrictions to future property use and any requirements for Risk Management Measures (RMMs).

Report Title	Terraprobe Response to Draft Comments by GHD Limited Dated July 19, 2019 (Reference No. 11176351)
Report Date	November 21, 2019
File Number	1-17-0918
Prepared By	Terraprobe Inc.
Prepared For	Mr. Mark Bryan, Community Planner – Town of Collingwood

Scope of Report

• To address the GHD's Environmental Peer Review comments made in their letter entitled "Review of Conference Call Meeting Minutes, Trails of Collingwood," dated July 29, 2019 which was prepared on behalf of the Town of Collingwood. The report also outlines previous correspondence with the GHD regarding comments made in their letter entitled "Environmental Peer Review, Trails of Collingwood Remediation Plan," dated November 20, 2018.

Results of Report

- A table that summarizes the comments made by GHD and Terraprobe's responses is provided in Appendix M.
- Based on the comments and recommendations made, the following actions were (or will be) taken:
 - A leaching analysis was conducted entitled 'Leachate Analysis Study Trails of Collingwood, High Street & Telfer Road, Collingwood, Ontario,' dated May 12, 2020.
 - A groundwater sampling program will be conducted for the groundwater quality prior to possession of the Parkland by the Town.
 - o As part of the Additional Phase Two ESA, a total of nine (9) boreholes were drilled and instrumented with groundwater monitoring wells, as recommended by GHD.
 - O As part of excavating the Parkland area, a hydrogeological study will be conducted to assess the potential volume of groundwater that may enter the excavation. If the volume of water is greater than 50,000 L/day, a Permit-to-Take-Water (PTTW) will be required. The hydrogeological study will also address if short-term dewatering is required.
 - As part of the Parkland excavation, the soil will be properly placed and compacted on the Parkland area and an engineering fill report will be prepared regarding the potential settlement and will include the compaction, density and grain size results.
 - As part of the proposed Risk Assessment that will be conducted for the Parkland area, a
 Methane Management Plan will be issued to ensure that there is no methane generation in
 the area.

- The thickness of the clean soil cap over the Parkland area will be changed from 1.0 meter to 1.5 meter to accommodate any future deep rooted trees that may be planted in the Parkland area.
- Financial assurance will be included in the proposed RA and future Certificate of Property Use (CPU) for future monitoring and maintenance of the parkland. The Financial assurance will be used as part of the transfer agreement.
- A comprehensive verification sampling plan (Remedial Plan) will be submitted to the Town for review.
- Communication with the MECP to ensure regulatory requirements are met will be conducted for the Remedial Plan, Groundwater Sampling Program, Leaching Potential Study, and Plan of placement of impacted soils in the Parkland Area.
- The RSC will be filed for Roadways, Parkland, and the storm water management (SWM) facility prior to severance of these lands. There is to be no movement of soil between properties after the RSC has been filed.
- The municipal roadways, park and storm water management (SWM) facilities will be conveyed to the Town of Collingwood. The proposed RMMs will be sent to the Town for review before the submission to the MECP.
- o The storm water management will be addressed during the remedial activities.

All of the comments made by GHD were acknowledged and addressed, as applicable.

4.0 SCOPE OF THE INVESTIGATION

The scope of work for the Phase Two ESA was determined on the basis of the results of the Phase One ESA which was conducted for the Property and in accordance with the scope of work proposed by Terraprobe.

4.1 Overview of Site Investigation

In March 2020, Terraprobe conducted the following subsurface investigation at the Property for an additional Phase Two ESA:

- A total of nine (9) boreholes were drilled between March 9 and March 13, 2020 (BH4 to BH12).
 All boreholes were drilled to assumed top of bedrock. The borehole depths varied from 1.8 to 6 mbgs;
- All boreholes were instrumented with groundwater monitoring wells;
- Laboratory analysis of selected soil samples for parameters including;
 - Metals;
 - Hydride-Forming Metals (As, Sb, Se);
 - Selected Other Regulated Parameters (ORPs)
 - Boron Hot Water Soluble (B-HWS)
 - Hexavalent Chromium (CrVI)
 - Mercury (Hg)
 - pH
 - Organochlorine Pesticides (OCs).
- Survey of all boreholes and monitoring wells to a geodetic benchmark;
- Measurement of groundwater elevations to determine groundwater flow direction;
- Development and sampling of all previously and newly installed monitoring wells.
- Laboratory analyses of groundwater samples for:
 - Metals;
 - Hydride-Forming Metals (As, Sb, Se);
 - Selected Other Regulated Parameters (ORPs)
 - Sodium (Na)
 - Hexavalent Chromium (CrVI)
 - Mercury (Hg)
 - Organochlorine Pesticides (OCs).

The table below summarizes the scope of work conducted by Terraprobe. The number of samples conducted includes duplicate analyses, but do not include the trip blanks and field blanks that were collected. Water level measurements are provided in Appendix G. Field protocols are provided in Appendix D.

Date	Scope of Investigation	Scope of Soil Analysis	Scope of Ground Water Analysis
March 9 – March 13, 2020	 Drilled 9 boreholes (BH4 to BH12) Installed 9 monitoring wells (BH4 to BH12) 		
March 17, 2020	Submitted soil samples to ALS Environmental Laboratory	 18 Metals analyses 18 H-F Metals analyses 18 ORP analyses 19 OCs analyses 9 TCLP (Metals) 9 TCLP (H-F Metals) 9 TCLP (ORP Metals) 9 TCLP (OCs) 1 TCLP (PCB) 1 TCLP (PHCs/VOCs) 1 TCLP (PAHs) 	
March 24 – March 26, 2020	Took water levels, developed, stabilized and sampled monitoring wells BH1 to BH12.		14 Metals analyses14 H-F Metals analyses14 ORP analyses14 OCs analyses

Notes:

- ORPs (if any) for soil include B-HWS, CrVI, Hg, pH
- ORPs (if any) for ground water include Na, CrVI, Hg

Due to the current COVID-19 work restrictions that have been imposed by the provincial government, the continued environmental work (i.e. groundwater sampling and water levels) was temporarily placed on-hold. Terraprobe will now continue conducting the environmental work as the provincial emergency orders have been lifted.

4.2 Media Investigated

4.2.1 Rationale for Inclusion or Exclusion of Media

Media	Included or Excluded	Rationale	
Soil	Included	Based upon the Phase One ESA, soil sampling was required on the Property for the select contaminants of concern (COCs). Sample locations were selected based on the findings of the Phase One ESA to characterize soil across the Property.	
Sediment	Excluded	Sediment sampling was not conducted on the Phase Two Property because there are no water bodies on-site.	
Groundwater	Included	Based upon the Phase One ESA, groundwater sampling was required on the Property for the COCs. Monitoring wells were installed to characterize groundwater quality across the Property.	
Surface Water	Excluded	Surface water sampling was not conducted on the Phase Two Property because there are no water bodies on-site.	

4.2.2 Overview of Field Investigation of Media

Soil sampling was conducted during the drilling program by use of a split spoon sampler. Groundwater sampling was conducted from monitoring wells installed in the boreholes.

4.3 Deviations from Sampling and Analysis Plan

Since previous investigations did not indicate any exceedances in the selected Other Regulated Parameters (ORPs), only the following ORPs were selected for this investigation:

Selected Other Regulated Parameters (ORPs) for soil include: Sodium (Na), Hexavalent Chromium (CrVI), and Mercury (Hg)

Selected Other Regulated Parameters (ORPs) for ground water include: Boron - Hot Water Soluble (B-HWS), Hexavalent Chromium (CrVI), Mercury (Hg), and pH.

The sampling and analysis plan is provided in Appendix C.

4.4 Impediments

There were no impediments encountered during the investigation.

5.0 INVESTIGATION METHOD

5.1 General

Public and private utility clearances were undertaken prior to commencing the subsurface investigation.

Sampling methodology was consistent with the requirement of the MECP's "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", December 1996 (the "1996 Guideline"), "Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04", May 2019 (the "Phase Two Guide") and "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 09, 2004, amended July 01, 2011 (the "Analytical Protocol"), as applicable.

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures. The Standard Field Investigation Protocol is presented in Appendix D.

5.2 Drilling

The drilling information for the Phase Two ESA is provided below:

Borehole	BH4 to BH12
Date of Work March 9 to 13, 2020	
Name of Contractor	Strata Drilling and Pontil Drilling
Equipment Used Geoprobe 323 and Track-mounted drill rig 75, hollow and solid stem augus split spoon sampling device	
DecontaminationThe split spoon sampling device was washed between each sample to minMeasurespotential for cross-contamination.	
Sampling Frequency	Please refer to the borehole logs in Appendix E for the sampling frequency.

5.3 Soil Sampling

5.3.1 Equipment Used

- Laboratory-supplied sampling containers;
- Nitrile gloves;
- Cooler with loose ice; and,
- RKI Instruments EAGLE 2 Monitor.

5.3.2 Geological Description of Soil

Please refer to the borehole logs in Appendix E for the geological description of each soil sample collected.

5.4 Field Screening Measurements

Soil samples were screened in the field using portable hydrocarbon vapour testing equipment and following the procedure outlined in the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" published by the Ministry of the Environment, Conservation and Parks.

Samples were screened using an RKI Instruments EAGLE 2 Monitor. The monitor has a range of 0 parts per million (ppm) to 50,000 ppm and an accuracy of +/- 5%. The monitor was calibrated with hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in "Instruction Manual Eagle Series Portable Multi-Gas Detector 71-0028RK" released August 8, 2010.

Field screening measurements were used to help select samples for petroleum hydrocarbon and volatile organic compounds laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix E.

5.5 Groundwater Monitoring Well Installation

Monitoring wells were installed in all nine (9) boreholes. The monitoring wells were drilled by drilling sub-contractors between March 9 and 13, 2020, under the supervision of an experienced Terraprobe technician. All monitoring wells were constructed of 50-mm (2-in) PVC screens and risers. Filter sand pack was placed around the well screen to approximately 0.6 m above the top of the screen. All monitoring wells were then backfilled with bentonite to approximately 0.3 m below ground surface. The monitoring wells were finished with stick-up casings.

As per Ontario Regulation 903, the monitoring wells were tagged with water well records. The monitoring well locations are provided on Figure 3 and 4. The borehole and monitoring well installation details are provided on the borehole logs in Appendix E. All monitoring well should be decommissioned when they are no longer in use.

5.6 Field Measurement of Water Quality Parameters Groundwater: Sampling

Field measurement of water quality parameters was completed using a YSI 63 Handheld System.

YSI 63 Hand-held System

Range

- pH 0.00 to 14.00 pH
- EC 0.0 to 200.0 mS/cm
- Salinity 0.0 to 80.0 ppt
- Temperature -5.0 to 75.0°C

Resolution

- pH 0.01 pH
- EC 0.1 mS/cm
- Salinity 0.1 ppt
- Temperature 0.1°C

Accuracy

- pH ± 0.1 pH within 10°C of calibration, pH ± 0.2 pH within 20°C
- EC $\pm 0.5\%$ F.S.
- Salinity $\pm 2\%$ or ± 0.1 ppt
- Temperature ±0.1°C

5.7 Groundwater Sampling

The monitoring wells were purged using a standard flow Waterra inertial pump system. Groundwater was sampled using a dedicated bailer. Stabilization of parameters (pH, conductivity, temperature, etc.) of the purged water had been monitored before a sample was taken.

Stabilization was considered to occur when consecutive readings were within the following:

- <u>Conductivity</u> ± 3%
- Temperature $\pm 3\%$
- $pH \pm 0.1$ unit

The use of a dedicated bailer helps prevent cross contamination and mitigate disturbances to the sample collected. Sampling methodology from the MECP's "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", December 1996 (the "1996 Guideline"), "Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04", May 2019 and "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 09, 2004, amended July 01, 2011 (the "Analytical Protocol").

5.8 Sediment Sampling

No sediment sampling was conducted as part of this investigation because there are no water bodies onsite.

5.9 Analytical Testing

Analytical testing of all soil and ground water samples was conducted by ALS Environmental, a laboratory accredited by the Canadian Association for Laboratory Accreditation.

5.10 Residue Management Procedures

5.10.1 Soil Cuttings

Soil cuttings generated during the drilling activities were left on site.

5.10.2 Fluids from Equipment Cleaning

The fluids from cleaning were removed from the Property and disposed of by the driller.

5.11 Elevation Surveying

The elevations of the boreholes on the Property were surveyed by Terraprobe using a Trimble R10 Global Navigation Satellite System (GNSS). The Trimble R10 system is a differential global positioning system (GPS) which involves the cooperation of two receivers, one that is stationary and another that is roving around making position measurements. The elevation of each borehole on the Property is presented on the borehole logs in Appendix E.

5.12 Quality Assurance and Quality Control Measures

5.12.1 Containers, Labelling, Handling and Chain of Custody

Containers

The following laboratory-supplied sample containers were used for all sampling conducted on the Property (where applicable).

Soil Parameters	Container	
PHC (F1, BTEX), VOCs, 1,4-Dioxane	2 x 40mL glass vial (methanol preservative)	
Metals, Mercury, Boron-HWS, Chromium Hexavalent, EC, SAR, pH, Chloride, Cyanide	250 mL glass jar, Teflon lined lid	
PHCs (F2-F4), VOC moisture, PAHs, OCs, PCBs, CPs, ABNs, Methyl mercury, FOCs, Dioxins & Furans	125 mL glass jar, Teflon lined lid	
Ground Water Parameters	Container	
Chloride, electrical conductivity, pH	125 mL HDPE	
Cyanide (CN-)	60 mL HDPE (sodium hydroxide preservative)	
Hexavalent chromium	60 mL HDPE (0.45um field filter followed by ammonium buffer solution)	
Metals (includes hydride-forming metals, calcium, magnesium, sodium)	60 mL HDPE (0.45um field filter nitric acid preservative)	
Mercury	40 mL clear glass bottle (0.45um field filter hydrochloric acid preservative)	
Methyl mercury	125 mL Teflon (FLPE) (hydrochloric acid preservative)	
BTEX, PHCs (F1),THMs, VOCs;	2 x 40 mL glass VOA vials (sodium bisulfate preservative, no headspace)	
PHCs (F2–F4), PAHs	2 x 100 mL amber glass bottle, (sodium bisulfate preservative, 1 cm headspace)	
PCBs	2 x 250 mL amber glass bottle, Teflon lined lid	
Benzo(a)pyrene (Lab Filtered)	2 x 100 mL amber glass bottle, Teflon lined lid (sodium bisulfate preservative, 1 cm headspace)	
OCs	2 x 500 mL amber glass bottle, Teflon lined lid	
CPs, ABNs,	500 mL amber glass bottle, Teflon lined lid	
Dioxins and furans	2 x 1 L amber glass bottle, Teflon lined lid	

Labelling

All sampling containers were identified with laboratory-supplied labels. The labels included the following information:

- Unique Sample ID;
- Company Name;
- Date and Time; and,
- Project Number

Handling

Samples were placed in coolers with loose ice after collection for transportation to the laboratory. Sample hold times were met for all submitted soil and groundwater samples.

Chain of Custody

Laboratory-supplied Chain of Custody forms were completed for all samples submitted for analysis.

5.12.2 Equipment Cleaning Procedures

All non-dedicated sampling and monitoring equipment was cleaned following each use. During soil sampling the split spoon sampling device was washed between samples to minimize cross-contamination. During groundwater sampling any part of the interface meter which came into contact with the ground water was cleaned between monitoring wells.

Dedicated equipment (nitrile gloves, terra core samplers, bladders, tubing) was changed between each sample to avoid cross contamination.

5.12.3 Field Quality Control Measures

- All non-dedicated sampling and monitoring equipment was cleaned following each use.
- Where groundwater samples are to be analyzed for volatile organic compounds, one trip blank sample was submitted for laboratory analysis with each laboratory submission.
- Sufficient field duplicate samples were collected in each medium being sampled, so that at least one (1) field duplicate sample can be submitted for laboratory analysis for every ten (10) samples submitted for laboratory analysis.
- Calibration checks on field instruments occurred daily prior to the commencement of sampling.

5.12.4 Deviations in the Quality Assurance and Quality Control Measures

There were no deviations in the quality assurance and quality control measures.

6.0 REVIEW AND EVALUATION

6.1 Geology

Detailed geological information for the Property is presented on the borehole logs in Appendix E. The geology at the Property is summarized below.

6.1.1 Geological Unit Thicknesses (Estimated)

The topsoil material, where encountered, ranged in thickness from approximately 0.1 m to 0.2 m in BH1 to BH6. The reworked native material thickness ranged from approximately 0.2 m to 0.6 m and was encountered in all boreholes, except BH9. The native soil thickness ranged from approximately 1.5 m to 5.5 m and was encountered in all boreholes. Assumed bedrock was encountered in all of the boreholes during the investigation. The top of assumed bedrock material ranged from approximately 1.8 mbgs in BH6 to 6.1 mbgs in BH11 and BH12. The geological unit thicknesses are presented in Appendix H.

6.1.2 Elevations of Geological Units

The elevation of the topsoil material started at approximately 188.9 masl (ranging from 189.3 masl to 188.6 masl) and extended to an elevation depth of approximately 188.7 masl (ranging from 189.1 masl to 188.5 masl). The elevation of the reworked native material started at approximately 188.5 masl (ranging from 189.1 masl to 188.2 masl) and extended to an elevation depth of approximately 188.0 masl (ranging from 188.7 masl to 187.6 masl). The native soil elevation started at approximately 188.0 masl (ranging from 188.7 masl to 187.6 masl) and extended to the top of bedrock elevation of approximately 184.4 masl (ranging from 186.8 masl to 182.2 masl). The geological unit elevations are presented in Appendix H.

6.1.3 Material in Geological Units

Surficial Layers

A topsoil layer of 100 to 200 mm thickness was encountered at the ground surface of BH1 to BH6.

The above topsoil structure thicknesses were measured from the borehole drilling and are approximate. We recommend that a shallow test pit investigation be carried out to determine a precise topsoil structure thickness present across the site for quantity estimation and costing purposes.

Reworked Native

Reworked native materials, consisting of sandy silt and silty sand, with trace to some clay and some rootlets and organics were encountered beneath the topsoil layer in all boreholes except for BH9. The reworked native material extended to a maximum depth of 0.8 mbgs.

Gravelly sand with some silt, clay, and organics were encountered in BH9.

Standard Penetration Test results (N-values) obtained from the cohesionless reworked native zones ranged from 0 to 7 blows per 300 mm of penetration, indicating a very loose to loose density.

Native

Sandy silt and silty sand was encountered beneath the reworked native zone in BH4, BH5, BH6, BH7, BH8, BH10, and BH11.

Gravelly sand, with some silt and trace to some clay was encountered beneath the reworked native zone in BH4, BH7 and BH8.

Clayey silt, with trace to some sand and trace to some gravel was encountered in BH9, BH11 and BH12.

The results of the Standard Penetration Test (N-values) obtained from the cohesionless native zones ranged from 1 to 53 blows per 300 mm of penetration, indicating a very loose to very dense density. Standard Penetration Test results (N-values) obtained from the cohesive native zones ranged from 1 to 18 blows per 300 mm of penetration, indicating a very soft to very stiff consistency.

Bedrock (Assumed)

Assumed bedrock was encountered at the full depth of each borehole in this investigation.

6.2 Groundwater Elevations and Flow Direction

6.2.1 Rationale for Monitoring Well Locations and Screen Intervals

Monitoring wells were located across the Property in order to provide full site coverage. The monitoring wells were screened within the native soil across the Property to allow for the collection of groundwater samples within the strata of interest.

6.2.2 Results of Interface Probe Measurements

Interface probe measurements indicated that only water was present on the Property. No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected.

6.2.3 Thickness of Free Flowing Product

No free flowing product was encountered on the Property.

6.2.4 Groundwater Elevations

Groundwater levels were measured in each borehole and presented in Appendix G. Groundwater levels were measured on March 24, 2020 in all of the installed monitoring wells, including BH1 to BH12, using an interface probe. The measurements varied between 0.70 to 1.51 mbgs. Groundwater elevation in the monitoring wells ranged between 186.80 and 188.0 masl.

Due to the current COVID-19 work restrictions that have been imposed by the provincial government, the continued environmental work (i.e. groundwater sampling and water levels) was temporarily placed onhold. Terraprobe will now continue conducting the environmental work as the provincial emergency orders have been lifted.

6.2.5 Interpreted Direction of Groundwater Flow

The interpreted direction of groundwater flow will be determined based on the second round of water levels that will be taken.

6.2.6 Influence of Buried Utilities

No buried utilities appear to be located on the Property. As such, there is no effect from buried utilities to influence the ground water flow.

6.3 Groundwater Hydraulic Gradients and Hydraulic Conductivity

6.3.1 Horizontal Hydraulic Gradients

The horizontal hydraulic gradient is calculated using the following equation:

 $I = \Delta h/\Delta s$

where: I = horizontal hydraulic gradient,

 Δh (m) = ground water elevation difference; and,

 Δs (m) = separation distance

The horizontal hydraulic gradient will be calculated once the interpreted direction of groundwater flow and the contour lines are determined, which will be based on the second round of water levels.

6.3.2 Vertical Hydraulic Gradients

The vertical hydraulic gradient cannot be accurately determined at this time since there are no nested wells installed on the Property. The vertical hydraulic gradient needs to be measured between two neighboring monitoring wells installed between two different stratums (shallow and deep).

6.3.3 Hydraulic Conductivity

The hydraulic conductivities from Terraprobe's monitoring wells BH1 to BH3 were determined based on the grain size distribution graphs and Hazen Equation. The Hazen Equation method relies on the interrelationship between hydraulic conductivity and effective grain size, d_{10} , in the soil media. This empirical relation predicts a power-law relation with K, as follow:

$$K = Ad_{10}^{2}$$

where;

 d_{10} : Value of the soil grain size gradation curve as determined by sieve analysis, whereby 10% by weight of the soil particles are finer and 90% by weight of the soil particles are coarser.

A: Coefficient; it is equal to 1 when K in cm/sec and d_{10} is in mm

The Hazen Equation estimation provides an indication of the groundwater yield capacity for saturated soil strata at the depths where soils samples were selected for grain size analysis. The hydraulic conductivities of the strata applicable to the Property are as follows:

Monitoring Well	Soil Sample Depth (mbgs)	Sample Elevation (masl)	Classified Soil	Hydraulic Conductivity (Hazen Equation, m/s)
ВН1	2.3 (AS4)	186.4	Silty Sandy Gravel (Till)	4.00 x 10 ⁻⁸
BH2	3.4 (SS6)	185.2	Sandy Gravelly Silt (Till)	6.25 x 10 ⁻⁸
ВН3	1.5 (SS3)	187.1	Sandy Silt	2.25 x 10 ⁻⁸

It should be noted that the above hydraulic conductivities were estimated based on grain size analysis of the disturbed collected sample and does not consider compaction or saturation of the soils. Generally the in situ hydraulic conductivity test produces more accurate results, and the grain size analysis is used for discussion and comparison purposes. The grain size analysis can be found in Appendix F.

According to Freeze and Cherry (1979), the typical hydraulic conductivities of the strata investigated at the Property are:

- Silty Sand 10^{-3} m/s to 10^{-7}
- Silt 10^{-5} m/s to 10^{-9} m/s
- Clayey Silt 10⁻⁸ m/s to 10⁻¹⁰ m/s
- Glacial Till 10⁻⁶ m/s to 10⁻¹² m/s

The hydraulic conductivity field results are relatively consistent with the published values associated with the geological materials which were tested.

6.4 Soil Texture

6.4.1 Rationale for Use of Coarse Soil Texture

A total of three (3) soil samples from native soil were submitted for grain size analysis, as follows (Appendix F):

- BH1-AS4 (Clay = 10.0%, Silt = 26.0%, Sand = 30.0%, Gravel = 34.0%)
- BH2-SS5 (Clay = 10.0%, Silt = 35.0%, Sand = 26.0%, Gravel = 29.0%)
- BH3-SS3 (Clay = 12.0%, Silt = 56.0%, Sand = 22.0%, Gravel = 10%)

Two (2) out of the three soil samples collected from native soil contained more than 50% by weight of particles greater than 75 micrometres in size, which meets the following definition of coarse textured soil from subsection 42(1) of O.Reg. 153/04:

'If the qualified person determines that at least 1/3 of the soil at the property, measured by volume, consists of coarse textured soil, the qualified person shall apply the standard for coarse textured soil.'

Three (3) soil samples of the native soil were selected for grain size analysis. Given the consistency of the soil across the Property, it was determined by the Qualified Person that the total of three (3) samples provided adequate representative samples to determine soil texture for the Property.

6.5 Soil: Field Screening

All recovered soil samples were screened in the field using a portable hydrocarbon vapour testing equipment and following the procedure outlined in the 1996 Guideline.

Field screening measurements were used to help select samples for petroleum hydrocarbon and volatile organic compounds laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix E.

6.6 Soil Quality

6.6.1 Location and Depth of Samples

The soil samples submitted for chemical analysis (excluding duplicates) are summarized in the table below. Borehole samples (depth measured from original ground surface):

	Depth/ Elev. (m)/(masl)	Strata	Date Sampled	Soil											
Sample ID				Metals	H-F Metals	ORPs	OCs	TCLP							
								Metals	H-F Metals	ORPs	0Cs	PHCs	VOCs	PAHs	PCBs
BH4-SS1	0.0-0.6/ 189.3-188.7	Reworked Native	Mar 10, 2020	√	✓	√	✓	✓	✓	✓	✓				
BH4-SS2	0.8-1.4/ 188.5-187.9	Native	Mar 10, 2020	✓	✓	√	✓								
BH5-SS1	0.0-0.6/ 188.7-188.1	Reworked Native	Mar 9, 2020	✓	✓	✓	✓	✓	✓	✓	✓				
BH5-SS2	0.8-1.4/ 187.9-187.3	Native	Mar 9, 2020	✓	✓	✓	✓								
BH6-SS1	0.0-0.6/ 188.6-188.0	Reworked Native	Mar 9, 2020	✓	✓	✓	✓	✓	✓	✓	✓				
BH6-SS2	0.8-1.4/ 187.8-187.2	Native	Mar 9, 2020	✓	✓	✓	✓								
BH7-SS1	0.0-0.6/ 188.4-187.8	Reworked Native	Mar 10, 2020	✓	✓	✓	✓	✓	✓	√	✓				
BH8-SS1	0.0-0.6/ 188.6-188.0	Reworked Native	Mar 12, 2020	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓
BH8-SS2	0.8-1.4/ 187.8-187.2	Native	Mar 12, 2020	✓	✓	✓	✓								
BH8-SS3	1.6-2.1/ 187.0-186.5	Native	Mar 12, 2020				✓								
BH9-SS1	0.0-0.6/ 188.3-187.7	Native	Mar 12, 2020	✓	✓	✓	✓	✓	✓	✓	✓				
BH9-SS2	0.8-1.4/ 187.5-186.9	Native	Mar 12, 2020	✓	✓	✓	✓								
BH10-SS1	0.0-0.6/ 188.2-187.6	Reworked Native	Mar 12, 2020	✓	✓	✓	✓	✓	✓	>	✓				
BH10-SS2	0.8-1.4/ 187.4-186.8	Native	Mar 12, 2020	√	✓	✓	✓								
BH11-SS1	0.0-0.6/ 188.3-187.7	Reworked Native	Mar 13, 2020	√	✓	√	✓	√	√	√	✓				
BH11-SS2	0.8-1.4/ 187.5-186.9	Native	Mar 13, 2020	✓	✓	✓	✓								

	Depth/ Elev. (m)/(masl)	Strata	Date Sampled	Soil											
Sample ID				Metals	H-F Metals	ORPs	OCs	TCLP							
								Metals	H-F Metals	ORPs	0Cs	PHCs	VOCs	PAHs	PCBs
BH12-SS1	0.0-0.6/ 188.5-187.9	Reworked Native	Mar 13, 2020	✓	✓	✓	✓	✓	√	✓	√				
BH12-SS2	0.8-1.4/ 187.7-187.1	Native	Mar 13, 2020	√	✓	>	✓								

Notes: ORPs analyzed (if any) include Boron (HWS), Chromium VI, Mercury, and pH.

Note that the abovementioned soil samples submitted for the Toxicity Characteristic Leaching Procedure (TCLP) are discussed in a separate report titled 'Leachate Analysis Study – Trails of Collingwood, High Street & Telfer Road, Collingwood, Ontario,' dated May 12, 2020.

6.6.2 Comparison to Applicable Standards (Soil)

Select soil samples were analysed for the following Contaminants of Potential Concern (COPCs):

- Metals;
- Hydride-Forming Metals (As, Sb, Se);
- Selected Other Regulated Parameters (ORPs)
 - Boron Hot Water Soluble (B-HWS)
 - Hexavalent Chromium (CrVI)
 - Mercury (Hg)
 - pH
- Organochlorine Pesticides (OCs)

The results of the analysis were compared to the applicable MECP site condition standards for the Property (MECP Table 2 RPI Coarse Standards). The laboratory certificates of analysis are provided in Appendix J, and the results of the soil chemical analysis are provided in Tables 1 and 2.

Metals in Soil

The following exceedances for metals of the MECP Table 2 RPI Coarse Standards were noted in the samples analyzed:

Contaminants of Concern	Units	MECP Table 2 RPI CT	BH4 SS1 Reworked Native (0.0-0.6 mbgs)
Lead (Pb)	μg/g	120	<u>133</u>

Notes: RED values exceed the applicable MECP Table 2 RPI Coarse Standards
BLUE values meet the applicable MECP Table 2 RPI Coarse Standards

All other samples analyzed met the MECP Table 2 RPI Coarse Standards for metals. The results are summarized in Table 1 and the laboratory certificates of analysis are provided in Appendix J. The samples exceeding for metals as noted above are shown on Figure 5. The assumed extent of contamination due to exceedances in metals and hydride-forming metals are illustrated in the shaded area with diagonal lines of Figure 5. The assumed extent of contamination due to exceedances in metals from Terraprobe's past investigation entitled "Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario," dated June 19, 2015 is also shown by the shaded light orange area of Figure 5.

Hydride-Forming Metals in Soil

The following exceedances for hydride-forming metals of the MECP Table 2 RPI Coarse Standards were noted in the samples analyzed:

Contaminants of Concern	Units	MECP Table 2 RPI CT	BH4 SS1 Reworked Native (0.0-0.6 mbgs)	BH6 SS1 Reworked Native (0.0-0.6 mbgs)
Arsenic (As)	μg/g	18	79.7	<u>18.9</u>

Notes: RED values exceed the applicable MECP Table 2 RPI Coarse Standards BLUE values meet the applicable MECP Table 2 RPI Coarse Standards

All other samples analyzed met the MECP Table 2 RPI Coarse Standards for hydride-forming metals. The results are summarized in Table 1 and the laboratory certificates of analysis are provided in Appendix J. The samples exceeding for hydride-forming metals, as noted above, are shown on Figure 5. The assumed extent of contamination due to exceedances in metals and hydride-forming metals are illustrated in the shaded area with diagonal lines of Figure 5. The assumed extent of contamination due to exceedances in metals from Terraprobe's past investigation entitled "Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario," dated June 19, 2015 is also shown by the shaded light orange area of Figure 5.

Other Regulated Parameters in Soil

No ORPs exceedances of the MECP Table 2 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 1 and the laboratory certificates of analysis are provided in Appendix J.

Organochlorine Pesticides in Soil

The following exceedances for Organochlorine Pesticides of the MECP Table 2 RPI Coarse Standards were noted in the samples analyzed:

Contaminants of Concern	Units	MECP Table 2 RPI CT	Previous Investigation (2018) BH3 SS1 Fill (0.0-0.6 mbgs)	BH4 SS1 Reworked Native (0.0-0.6 mbgs)	BH5 SS1 Reworked Native (0.0-0.6 mbgs)	BH6 SS1 Reworked Native (0.0-0.6 mbgs)
Total DDE	μg/g	0.26	<u>0.446</u>	<u>4.29</u>	<u>3.48</u>	<u>4.05</u>
Total DDT	μg/g	1.40	0.301	<u>1.78</u>	1.10	0.924

Notes: $\underline{\textbf{RED}}$ values exceed the applicable MECP Table 2 RPI Coarse Standards

BLUE values meet the applicable MECP Table 2 RPI Coarse Standards

Contaminants of Concern	Units	MECP Table 2 RPI CT	BH7 SS1 Reworked Native (0.0-0.6 mbgs)	BH8 SS1 Reworked Native (0.0-0.6 mbgs)	BH11 SS1 Reworked Native (0.0-0.6 mbgs)	BH12 SS1 Reworked Native (0.0-0.6 mbgs)
Total DDE	μg/g	0.26	<u>0.699</u>	<u>0.478</u>	<u>0.283</u>	<u>0.752</u>
Total DDT	μg/g	1.40	0.405	0.285	0.110	0.369

Notes: RED values exceed the applicable MECP Table 2 RPI Coarse Standards BLUE values meet the applicable MECP Table 2 RPI Coarse Standards

All other samples analyzed met the MECP Table 2 RPI Coarse Standards for Organochlorine Pesticides. The results are summarized in Table 2 and the laboratory certificates of analysis are provided in Appendix J. The samples exceeding for OCs, as noted above, are shown on Figure 6. The assumed extent of contamination due to exceedances in OC Pesticides is illustrated in the shaded area with diagonal lines of Figure 6. The assumed extent of contamination due to exceedances in OC Pesticides from Terraprobe's past investigation entitled "Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario," dated June 19, 2015 is also shown by the shaded light green area of Figure 6.

6.6.3 Contaminants of Concern (Soil)

The Contaminants of Concern associated with the earth fill or reworked native (as applicable) on the Property are:

- Metals
 - o Lead (Pb).
- Hydride-Forming Metals
 - o Arsenic (As).
- Organochlorine Pesticides
 - o Total DDE; and
 - o Total DDT.

There are no Contaminants of Concern associated with the native soil on the Property. The native soil samples taken from the Property meet the applicable Site Condition Standards.

6.6.4 Contamination Impact on Other Media

The Contaminants of Concern identified within the shallow soil, which exceeded the applicable Site Condition Standards, are unlikely to impact ground water.

6.6.5 Presence of Light or Dense Non-Aqueous Phase Liquids (In Soil)

Light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL) were not detected in the earth fill or native soil on the Property.

6.7 Groundwater Quality

6.7.1 Location and Depth of Sample Locations

Groundwater samples were collected from the previously and newly installed monitoring wells on the Property. Groundwater samples were analysed for parameters including Metals, Hydride-Forming Metals (H-F Metals), ORPs and OCs. The laboratory certificates of analysis are provided in Appendix J.

			Ground	l Water	
Monitoring Well	Screen/Sample Elevation (masl)	Metals	H-F Metals	ORPs	OCs
BH1	186.74-183.69	✓	✓	✓	✓
BH2	187.35-184.3	✓	✓	✓	✓
ВН3	187.39-184.95	✓	✓	✓	✓
BH4	186.90-185.50	✓	✓	✓	✓
BH5	187.60-186.40	✓	✓	✓	✓

			Ground	l Water	
Monitoring Well	Screen/Sample Elevation (masl)	Metals	H-F Metals	ORPs	OCs
BH6	187.40-186.80	✓	✓	✓	✓
BH7	186.80-185.20	✓	✓	✓	✓
BH8	186.35-184.80	✓	✓	✓	✓
BH9	186.20-183.10	✓	✓	✓	✓
BH10	185.80-182.80	✓	✓	✓	✓
BH11	185.25-182.20	✓	✓	✓	✓
BH12	185.45-182.40	✓	✓	✓	✓

Notes: ORPs analyzed (if any) include Sodium, Chromium VI, and Mercury

6.7.2 Field Filtering

Field filtering occurred for all metal samples analyses that require field filtering as per the requirements of the Ministry of the Environment, Conservation and Parks "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 09, 2004, amended July 01, 2011. Field filtration utilized a 0.45 micron filter.

6.7.3 Comparison to Applicable Standards (Groundwater)

Select groundwater samples were analysed for the following COPCs:

- Metals;
- Hydride-Forming Metals (As, Sb, Se);
- Selected Other Regulated Parameters (ORPs)
 - Sodium (Na)
 - Hexavalent Chromium (CrVI)
 - Mercury (Hg)
- Organochlorine Pesticides (OCs).

The results of the analysis were compared to the applicable MECP site condition standard for the Property (MECP Table 2 RPI Standards). The laboratory certificates of analysis are provided in Appendix J, and the results of the groundwater chemical analysis are provided in Tables 3 and 4.

Metals in Groundwater

No metal exceedances of the MECP Table 2 All Property Use Standards were noted in the samples analyzed. The results are summarized in Table 3 and the laboratory certificates of analysis are provided in Appendix J.

Hydride-Forming Metals in Groundwater

No hydride-forming metal exceedances of the MECP Table 2 All Property Use Standards were noted in the samples analyzed. All samples are summarized in Table 3 and the laboratory certificates of analysis are provided in Appendix J.

Other Regulated Parameters in Ground Water

No ORPs exceedances of the MECP Table 2 All Property Use Standards were noted in the samples analyzed. All samples are summarized in Table 3 and the laboratory certificates of analysis are provided in Appendix J.

Organochlorine Pesticides in Groundwater

No OCs exceedances of the MECP Table 2 All Property Use Standards were noted in the samples analyzed. All samples are summarized in Table 4 and the laboratory certificates of analysis are provided in Appendix J.

6.7.4 Contaminants of Concern (Groundwater)

There were no Contaminants of Concern associated with the ground water quality on the Property. All of the samples analyzed met the MECP Table 2 Standards. The results are summarized in Tables 3 and 4 and the laboratory certificates of analysis are provided in Appendix J.

6.7.5 Chemical or Biological Transformations

There was no indication of chemical or biological transformations.

6.7.6 Contamination Impact on Other Media

There were no Contaminations of Concern identified within the ground water media.

6.7.7 Presence of Light or Dense Non-Aqueous Phase Liquids (Groundwater)

Light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL) were not detected in the groundwater on the Property.

6.8 Quality Assurance and Quality Control Results

6.8.1 Types of Quality Control Samples Collected and Results

In general, samples were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement and sample container type. Laboratory results were compared to MECP

standards for quality control under Ontario Regulation 153/04 which require laboratory results to meet performance criteria such as specific method detection limits (MDLs). The sampling and analyses performed conformed with the following:

- "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario",
 MECP, December 1996; and
- "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.I of the Environmental Protection Act of Ontario", MECP, March 09, 2004, amended July 01, 2011.

Duplicate samples were submitted at a rate of approximately 10% and trip blanks were used with ground water samples to be analyzed for VOCs.

6.8.2 Sample Handling

Holding Time

All samples met the holding time as specified in "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", MECP, March 09, 2004, amended July 01, 2011.

Preservation Method

All samples met the preservation methods as specified in "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", MECP, March 09, 2004, amended July 01, 2011.

Storage Requirement

All samples met the storage requirements as specified in "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", MECP, March 09, 2004, amended July 01, 2011.

Container Type

All samples were collected in the container type as specified in "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", MECP, March 09, 2004, amended July 01, 2011.

6.8.3 Subsection 47 (3) of the Regulation

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been included in full in Appendix J of the Phase Two ESA report.

6.8.4 Results Qualified by Laboratory

The Laboratory did not make any significant comments that changed the outcome of the analytical results regarding the soil and groundwater samples.

6.8.5 Overall Quality of Field Data

Decision making regarding the environmental condition of the Property was not affected by the overall quality of the field data. The overall quality of the field data was considered by the Qualified Person to meet the objectives of the investigation and assessment.

7.0 CONCLUSIONS

7.1 Location and Concentration of Contamination

7.1.1 Land

There were exceedances of the applicable Site Condition Standards noted in the fill and reworked native materials consisting of Lead (Metals), Arsenic (Hydride-Forming Metals), Total DDE (OCs), and Total DDT (OCs). There were no Contaminants of Concern associated with the native soil on the Property. The native soil samples taken from the Property met the applicable Site Condition Standards.

The soil exceedances in the fill and reworked native, as noted above, for metals and H-F metals are outlined in Table 1. The soil exceedances in the OCs are outlined in Table 2. The locations of the exceedances are noted on Figures 5 and 6.

7.1.2 Groundwater

There were no Contaminants of Concern associated with the ground water quality on the Property. All of the samples analyzed met the MECP Table 2 Standards. The results are summarized in Tables 3 and 4 and the laboratory certificates of analysis are provided in Appendix J.

7.2 Environmental Conditions

Exceedances of the applicable Site Condition Standards were noted in the fill and shallow reworked native layers on the Property. If a Record of Site Condition is required, a Risk Assessment or remediation will need to be conducted for the Property. Terraprobe understands that majority of the Property is to undergo remediation and the Parkland Block area, as can be seen in the Site Survey in Appendix B, will be utilized to stockpile the impacted soil from the Property. The Parkland Block is to then undergo additional soil and groundwater investigation. A Risk Assessment will then be conducted on the Parkland Block. After the Risk Assessment has been acknowledged and the Certificate of Property Use (CPU) has been approved, a Record of Site Condition (RSC) can be filed.

7.3 Signatures

The Phase Two Environmental Site Assessment report was completed under the direction and supervision of R. Baker Wohayeb, M.A.Sc., P.Eng, QP_{RA}. The findings and conclusions presented in this report have been determined on the basis of the information that was obtained and reviewed from review of previous investigations provided and on the current investigation for the Phase Two Property.

The Phase Two Environmental Site Assessment was completed in accordance with Ontario Regulation 153/04 (Records of Site Condition–Part XV.1 of the Environmental Protection Act). The Phase Two Environmental Site Assessment met the objectives and requirements set out in that Ontario Regulation 153/04 for a Phase Two Environmental Site Assessment were applied in carrying out the environmental site assessment and preparation of the report.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

Terraprobe Inc.

Yousr Hiweish, B. Eng., E.I.T

Project Manager

R. B. WOHAYEB 100051508

June 30, 2020

ROMNICE OF ONT ARC

R. Baker Wohayeb, M.A.Sc., P.Eng, QP_{RA} Principal

Brampton Office

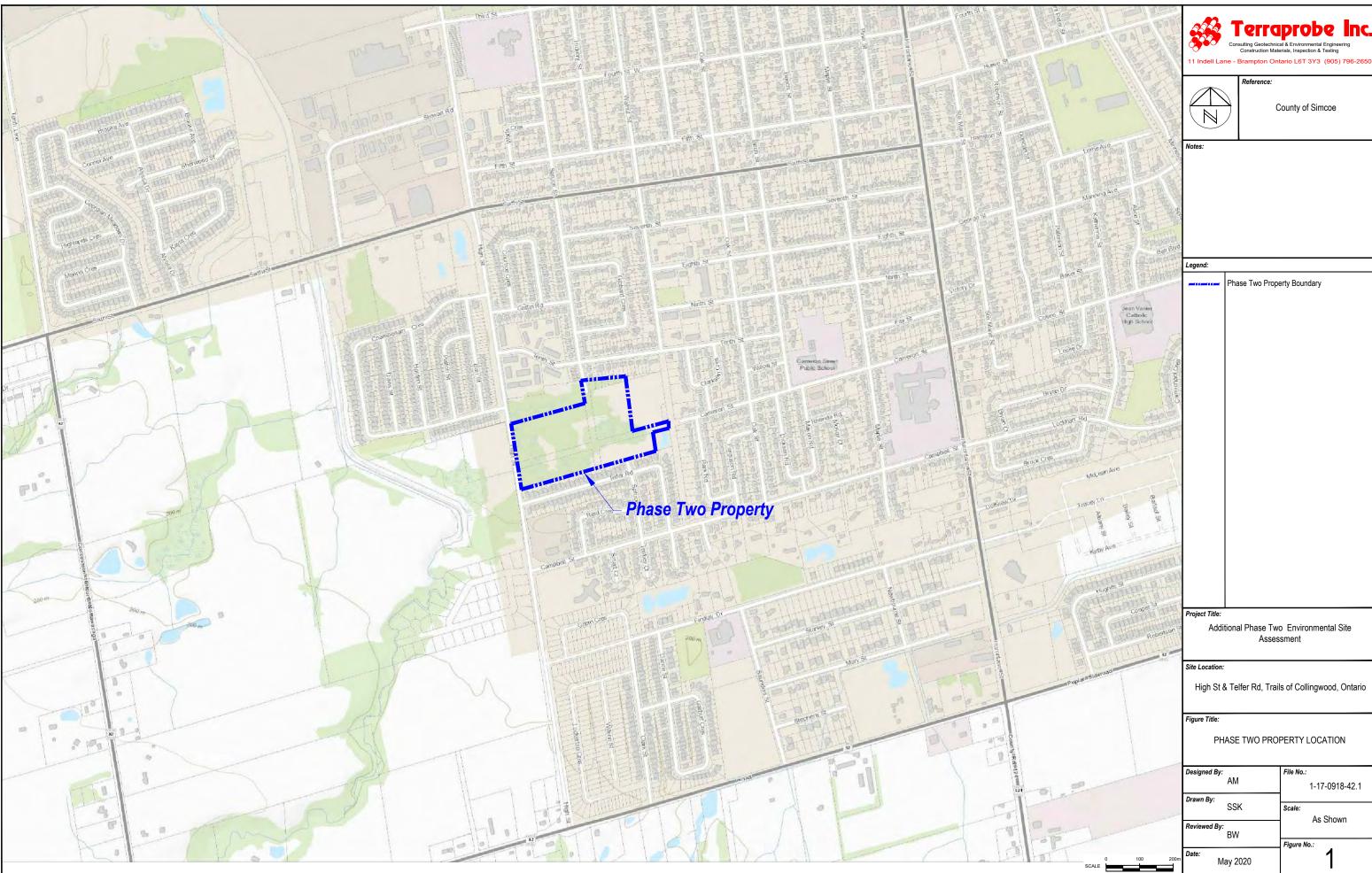
8.0 REFERENCES

- 1. Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- 2. Chapman, L.J. and Putnam, D.F. 2007. *The Physiography of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 228.
- 3. Freeze, R. Allen and Cherry, John A., 1979. *Groundwater*. Page 29.
- 4. Ministry of the Environment, Conservation and Parks, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*.
- 5. Ministry of Environment, Conservation and Parks, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.1of the Environmental Protection Act.
- 6. Ministry of the Environment, Conservation and Parks, June 2011. *Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.*
- 7. Ministry of the Environment, Conservation and Parks, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- 8. Peto MacCallum Ltd. Consulting Engineers. "Geotechnical Investigation, Proposed Residential Development High St, Collingwood Ontario," dated October 5, 2006.
- 9. Kodiak Environmental Limited. "Environmental Site Assessment (Phase 1), The Trails at Collingwood Condominium Development (Proposed), High Street, Collingwood, Ontario," dated June 21, 2007.
- 10. Terraprobe Inc. "Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario," dated June 19, 2015. File Number 13-11-6138.
- 11. Terraprobe Inc. "Summary of Site Remediation and Record of Site Condition Process, Trails of Collingwood Development, Collingwood, Ontario," dated October 24, 2016. File Number 13-11-6138.
- 12. Terraprobe Inc. "Phase One Environmental Site Assessment, Trails of Collingwood High Street and Telfer Road, Collingwood, Ontario," dated May 1, 2018. File Number 1-17-0918-41.
- 13. Terraprobe Inc. "Draft Phase Two Environmental Site Assessment, Trails of Collingwood High Street and Telfer Road, Collingwood, Ontario," dated May 23, 2018. File Number 1-17-0918-42.
- 14. Terraprobe Inc. "Summary of Site Remediation Plan, Trails of Collingwood, High Street & Telfer Road, Collingwood, Ontario," dated October 10, 2018.
- 15. Terraprobe Inc. "Terraprobe Response to Draft Comments by GHD Limited, dated July 19, 2019 (Reference No. 11176351)," dated November 21, 2019.

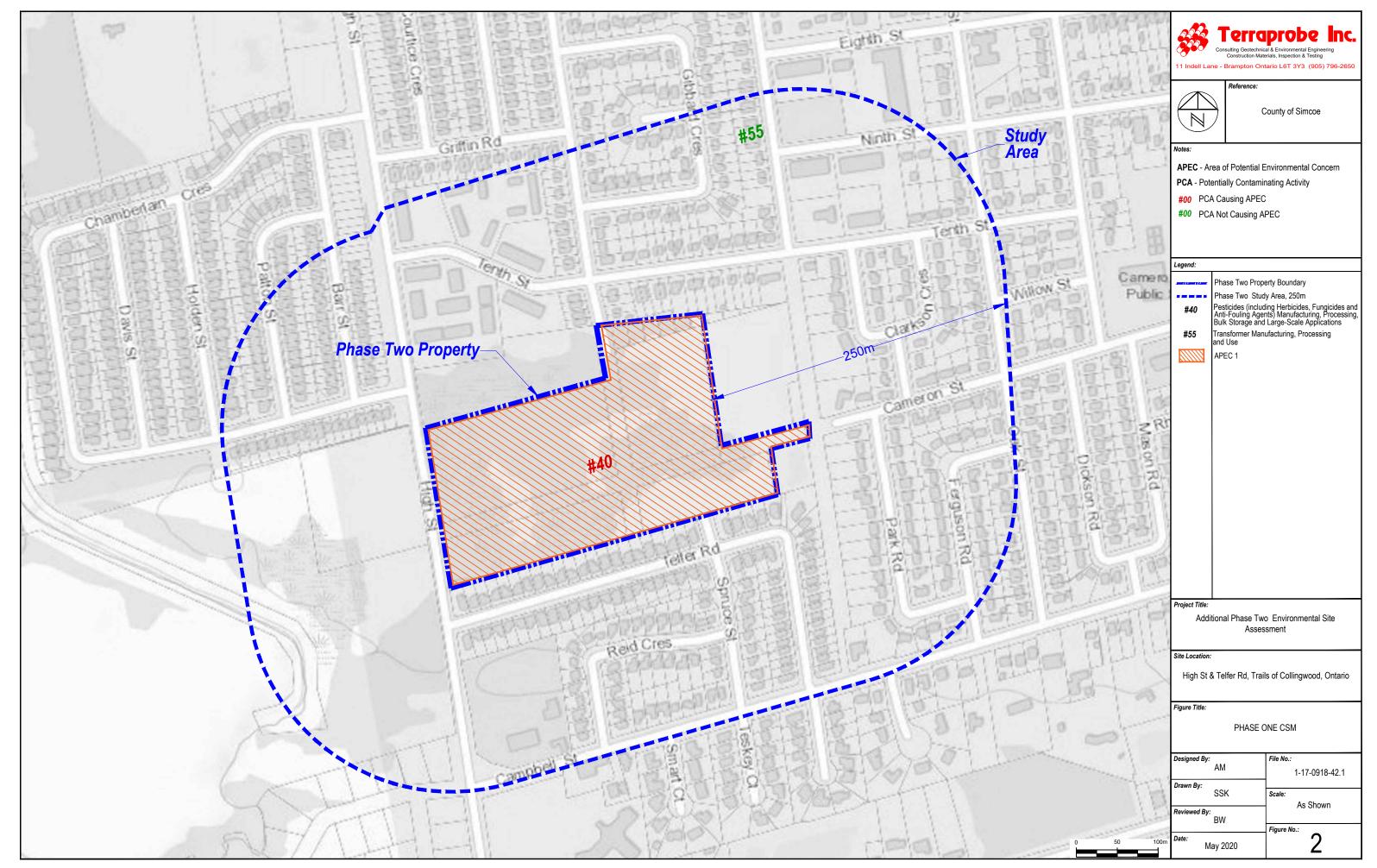
9.0 LIMITATIONS AND USE OF THE REPORT

This report was prepared for the exclusive use of Helen Court Homes (Client) and is intended to provide an assessment of the environmental condition on the property located at the northeast corner of High Street and Telfer Road intersection in Collingwood, Ontario.

The report was prepared for the purpose of identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and ground water at the Property may have been adversely affected by past and present practices at the Property, and/or those of the surrounding properties prior to development of the Property. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Terraprobe accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

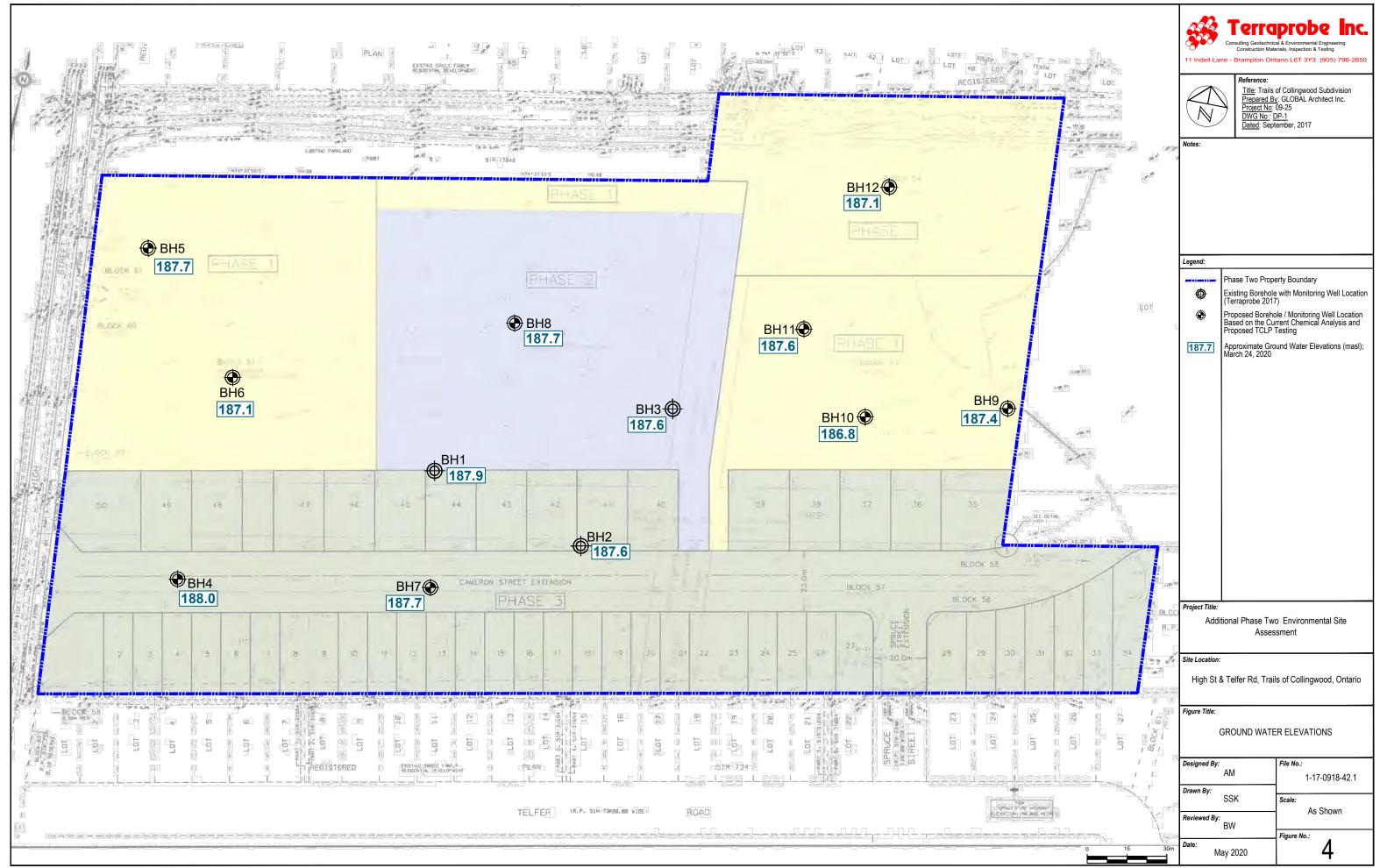

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering environmental problems. The information presented in this report is based on information collected during the completion of the subsurface investigation conducted by Terraprobe Inc. It is based on conditions at the Property at the time of the site inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between the sampling points may vary.

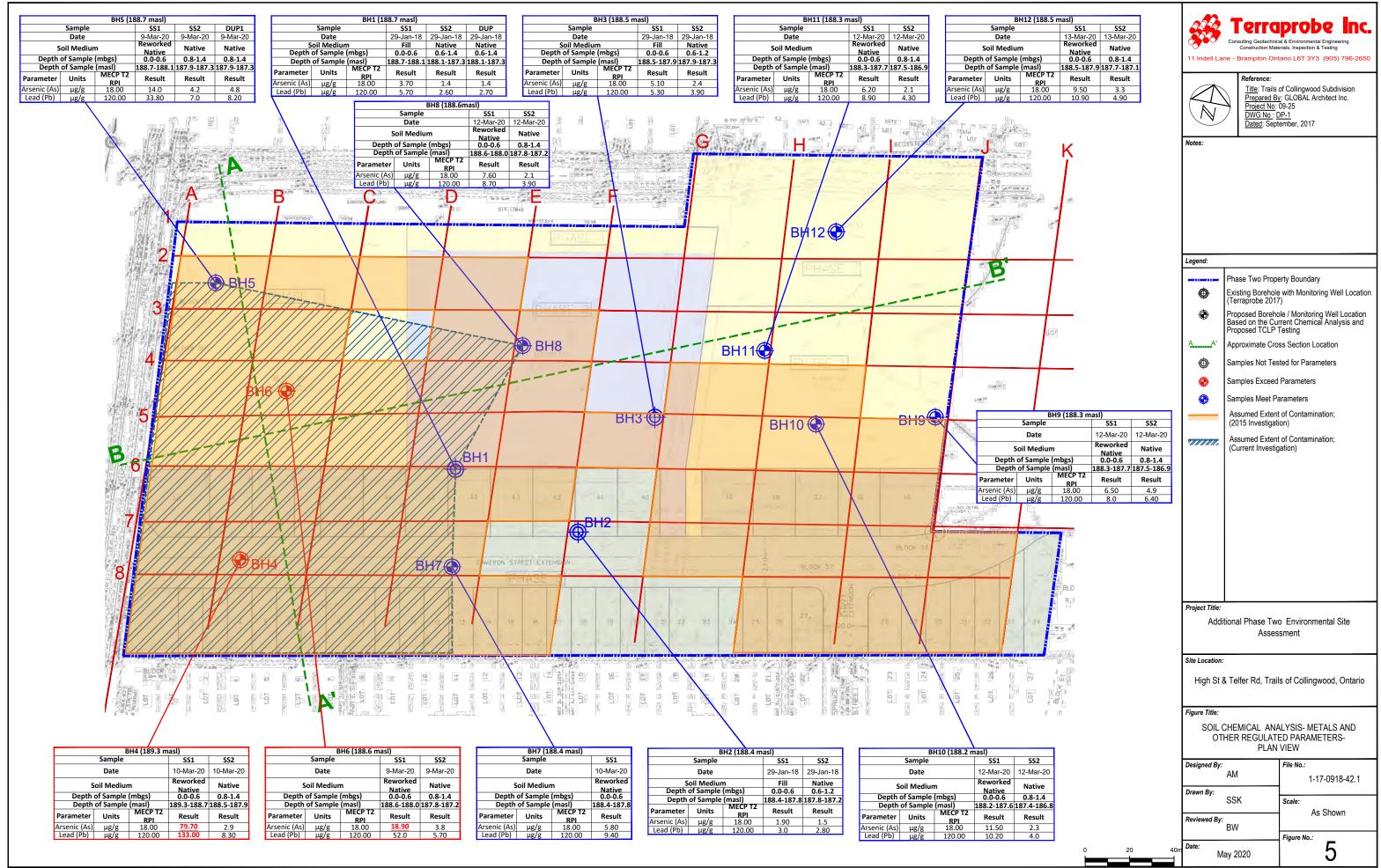
There is no warranty expressed or implied by this report regarding the environmental status of the Property. Professional judgment was exercised in gathering and analyzing information collected by our staff, as well as that submitted by others. The conclusions presented are the product of professional care and competence, and cannot be construed as an absolute guarantee.

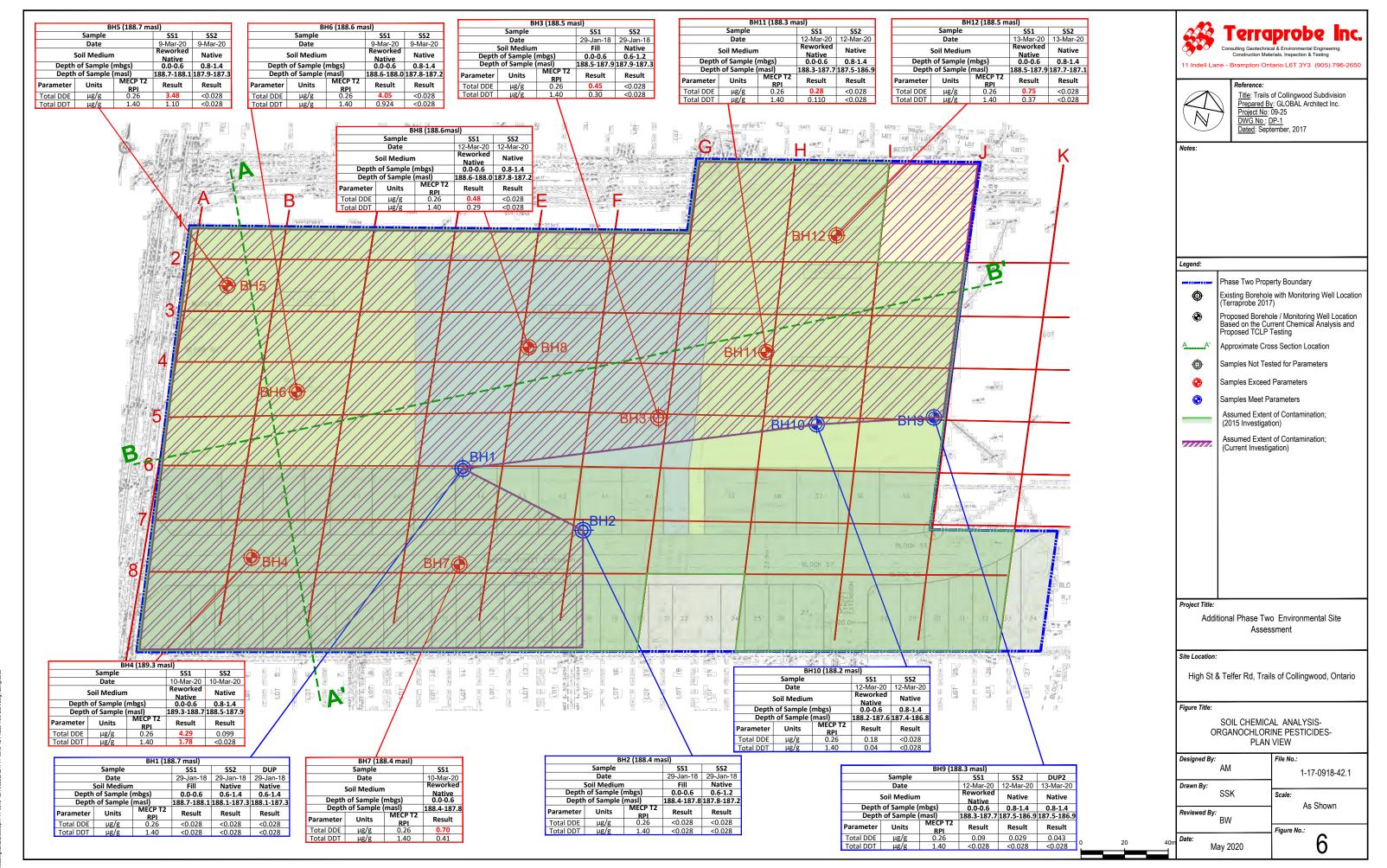

In the event that during future work new information regarding the environmental condition of the Property is encountered, or in the event that the outstanding responses from the regulatory agencies indicate outstanding issues on file with respect to the Property, Terraprobe should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.

FIGURES

TERRAPROBE INC.


	AM	1-17-0918-42.1
n By:	SSK	Scale: As Shown
ewed B	y: BW	Figure No.:
	May 2020	1




irs\ssinghania\Desktop\1-17-0918-42.1\AutoCAD\1-17-0918-42 Phase Two ESA.dwg, ssingha

\Users\ssinghania\Desktop\1-17-0918-42.1\AutoCAD\1-17-0918-42 Phase Two ESA.dwg, ssinghania

stesinghania\Deskton\\1-17-0918-42-1\AutoCAD\\1-17-0918-42-Phase Two ESA dwg_ssingl

TABLES

TERRAPROBE INC.

TABLE 1
SOIL QUALITY ANALYSIS
METALS & INORGANIC
Trails of Collingwood
COLLINGWOOD, ONTARIO

Sample Name	MECP			BH4 SS1	BH4 SS2	BH5 SS1	BH5 SS2	DUP1	BH6 SS1	BH6 SS2	BH7 SS1	BH8 SS1	BH8 SS2	BH8 SS3	BH9 SS1	BH9 SS2	DUP2	BH10 SS1	BH10 SS2	BH11 SS1	BH11 SS2	BH12 SS1	BH12 SS2
ALS Lab ID#	Table 2			L2428783-1	L2428783-2	L2428783-3	L2428783-4	L2428783-20	L2428783-5	L2428783-6	L2428783-7	L2428783-9	L2428783-10	L2428783-11	L2428783-12	L2428783-13	L2428783-21	L2428783-14	L2428783-15	L2428783-16	L2428783-17	L2428783-18	L2428783-19
Date	Criteria			10-Mar-20	10-Mar-20	09-Mar-20	09-Mar-20	09-Mar-20	09-Mar-20	09-Mar-20	10-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	13-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	13-Mar-20	13-Mar-20
Depth of Sample (mbgl)	Coarse	Maximum	Units	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.0-0.6	0.8-1.4	1.6-2.1	0.0-0.6	0.8-1.4	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4
Sample Medium				Reworked Native	Native	Reworked Native	Native	Native	Reworked Native	Native	Reworked Native	Reworked Native	Native	Native	Reworked Native	Native	Native	Reworked Native	Native	Reworked Native	Native	Reworked Native	Native
Parameter	R/P/I			Ivalive		Native		(BH5 SS2)	Native		Ivalive				Nauve		(BH9 SS2)	Native		Native		Native	
Metals								,									,						
Barium	390	60.5	ua/a	56.5	27.8	60.5	34.9	30.5	55.4	26.4	44.0	26.3	6.0	NA	23.1	21.7	NA	27.5	7.8	23.6	7.6	25.1	23.9
Beryllium	4	0.63	µg/g	< 0.50	< 0.50	0.63	< 0.50	< 0.50	0.54	< 0.50	0.52	< 0.50	< 0.50	NA	< 0.50	< 0.50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Boron	120	15.1	µg/g	8.2	5.3	13.3	14.9	12.5	15.1	13.2	11	7.1	<5.0	NA	8.7	8.4	NA	9.4	< 5.0	8.7	< 5.0	7.2	10.6
Cadmium	1.2	< 0.5	μg/g	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	< 0.50	< 0.50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Chromium	160	20.6	µg/g	15.4	10.9	20.6	16.6	15.8	19.4	13.5	18.0	12.1	8.8	NA	11.5	11.2	NA	11.6	8.6	10.8	9.0	11.5	11.7
Cobalt	22	8.4	μg/g	5.5	4.7	7.0	7.4	8.4	6.1	6.5	6.6	4.6	2.7	NA	3.8	4.2	NA	4.8	3.1	4.7	3.0	4.3	4.8
Copper	140	73.1	µg/g	73.1	7.3	31.2	17.8	20.1	33.8	18.4	20.2	16.8	11.6	NA	16.2	14.2	NA	20.5	9.6	19.5	10.9	17.4	13.2
Lead	120	133	μg/g	133	8.3	33.8	7.0	8.2	52.0	5.7	9.4	8.7	3.9	NA	8.0	6.4	NA	10.2	4.0	8.9	4.3	10.9	4.9
Molybdenum	6.9	< 1	μg/g	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nickel	100	19.4	μg/g	12.8	9.1	16	17.7	19.4	14.7	15.3	14.1	9.200	4.3	NA	8.7	9.6	NA	10.4	4.6	10.1	4.8	9.5	10.9
Silver	20	< 0.2	μg/g	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	NA	< 0.20	< 0.20	NA	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Thallium	1	0.5	μg/g	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	< 0.50	< 0.50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Uranium	23	< 1	μg/g	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium	86	29.3	μg/g	22.9	15.1	29.3	21.6	20.7	25.3	19	22.5	19.4	20.4	NA	15.6	16.5	NA	17.8	18.4	16.1	19.3	18.8	16
Zinc	340	65.1	μg/g	56.2	32.3	63	29.9	32.8	65.1	25.5	58.3	29.4	17.6	NA	25.1	25.5	NA	28.4	16	25	19.2	27.3	20.3
Hydride Metals																							
Antimony	7.5	< 1.3	μg/g	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Arsenic	18	79.7	μg/g	79.7	2.9	14.0	4.2	4.8	18.9	3.8	5.8	7.6	2.1	NA	6.5	4.9	NA	11.5	2.3	6.2	2.1	9.5	3.3
Selenium	2.4	< 1	μg/g	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Other Regulated Parameters																							
Boron (Hot Water Soluble)	1.5	1.2	μg/g	1.20	0.33	0.77	0.17	0.22	0.57	0.12	0.67	0.48	< 0.10	NA	0.46	0.20	NA	1.00	0.14	0.67	0.12	0.31	0.14
Chromium, Hexavalent	8	0.2	μg/g	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	NA	< 0.20	< 0.20	NA	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Mercury	0.27	0.125	μg/g	0.125	0.0319	0.0943	0.0114	0.0175	0.114	0.0121	0.0778	0.0319	< 0.005	NA	0.0204	0.0131	NA	0.0327	< 0.005	0.0282	< 0.005	0.0208	0.0083
pH	-	7.82	pН	6.93	7.45	7.23	7.73	7.78	7.31	7.63	7.46	7.36	7.70	7.74	7.18	7.75	7.76	7.50	7.82	7.39	7.81	7.38	7.65

Notes

Value highlighted in red indicate exceedances above the applicable criteria

Values highlighted in yellow indicate the parameter was not detected, but the Reporting Limit exceeded the applicable standard ND = Not detected

NV = No value

NA = Not assessed

TABLE 2
SOIL QUALITY ANALYSIS
ORGANOCHLORINE PESTICIDES
Trails of Collingwood
COLLINGWOOD, ONTARIO

ALS Lab ID# Ta	MECP Table 2 Criteria Coarse			BH4 SS1 L2428783-1	BH4 SS2	BH5 SS1	BH5 SS2	BH6 SS1	BH6 SS2						BH9 SS2	DUP2	BH10 SS1	BH10 SS2	BH11 SS1	BH11 SS2	BH12 SS1	
Date C	Criteria			L2428783-1						BH7 SS1	BH8 SS1	BH8 SS2	BH8 SS3	BH9 SS1		-						BH12 SS2
					L2428783-2	L2428783-3	L2428783-4	L2428783-5	L2428783-6	L2428783-7	L2428783-9	L2428783-10	L2428783-11	L2428783-12	L2428783-13	L2428783-21	L2428783-14	L2428783-15	L2428783-16	L2428783-17	L2428783-18	L2428783-19
Depth of Sample (mbgl) C	Coarse			10-Mar-20	10-Mar-20	09-Mar-20	09-Mar-20	09-Mar-20	09-Mar-20	10-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	13-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	12-Mar-20	13-Mar-20	13-Mar-20
		Maximum	Units	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.0-0.6	0.8-1.4	1.6-2.1	0.0-0.6	0.8-1.4	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4	0.0-0.6	0.8-1.4
Sample Medium				Reworked Native	Native	Reworked Native	Native	Reworked Native	Native	Reworked Native	Reworked Native	Native	Native	Reworked Native	Native	Native	Reworked Native	Native	Reworked Native	Native	Reworked Native	Native
Parameter	R/P/I															(BH9 SS2)						
Aldrin	0.05	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
gamma-hexachlorocyclohexane (0.056	< 0.01	μg/g	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
a-chlordane	NV	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Chlordane (Total)	0.05	< 0.028	μg/g	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028
g-chlordane	NV	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
op-DDD	NV	< 0.166	μg/g	< 0.020	< 0.020	0.157	< 0.020	0.166	< 0.020	0.042	0.029	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.091	< 0.020
pp-DDD	NV	< 0.58	μg/g	0.133	< 0.020	0.421	< 0.020	0.58	< 0.020	0.126	0.108	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.027	< 0.020	0.062	< 0.020	0.335	< 0.020
Total DDD	3.3	< 0.746	μg/g	0.133	< 0.028	0.578	< 0.028	0.746	< 0.028	0.168	0.138	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	0.062	< 0.028	0.426	< 0.028
o,p-DDE	NV	< 0.058	μg/g	< 0.020	< 0.020	0.038	< 0.020	0.058	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
pp-DDE	NV	< 4.29	μg/g	4.29	0.099	3.44	0.023	3.99	< 0.020	0.699	0.478	< 0.020	< 0.020	0.085	0.029	0.043	0.181	< 0.020	0.283	< 0.020	0.752	< 0.020
Total DDE	0.26	< 4.29	μg/g	4.29	0.099	3.48	< 0.028	4.05	< 0.028	0.699	0.478	< 0.028	< 0.028	0.085	0.029	0.043	0.181	< 0.028	0.283	< 0.028	0.752	< 0.028
op-DDT	NV	< 0.171	μg/g	0.171	< 0.020	0.139	< 0.020	0.134	< 0.020	0.073	0.053	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.023	< 0.020	0.092	< 0.020
pp-DDT	NV	< 1.61	μg/g	1.61	0.023	0.963	< 0.020	0.79	< 0.020	0.332	0.231	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.036	< 0.020	0.088	< 0.020	0.277	< 0.020
Total DDT	1.4	< 1.78	μg/g	1.78	<0.028	1.1	< 0.028	0.924	<0.028	0.405	0.285	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	0.036	< 0.028	0.110	< 0.028	0.369	< 0.028
Dieldrin	0.05	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Endosulfan I	NV	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Endosulfan II	NV	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Endosulfan (Total)	0.04	< 0.028	μg/g	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028	< 0.028
Endrin	0.04	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Heptachlor	0.15	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Heptachlor Epoxide	0.05	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Hexachlorobenzene	0.52	< 0.01	μg/g	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Hexachlorobutadiene (0.012	< 0.01	μg/g	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Hexachloroethane (0.089	< 0.01	μg/g	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Methoxychlor	0.13	< 0.02	μg/g	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
2-Fluorobiphenyl	NV	NV	%	89.1	86.5	83.6	79.3	88.8	88.5	90	83.5	91.2	81.7	67.2	84.4	90.4	75.9	87.5	85.6	83.3	84.7	91.9
d14-Terphenyl	NV	NV	%	86.5	82.3	81.9	81	91.9	97.9	86.5	87.8	83.3	69.8	53.9	73.9	84.4	77.7	85.8	67.1	70.8	82.7	90.4

Notes

Value highlighted in red indicate exceedances above the applicable criteria

Values highlighted in yellow indicate the parameter was not detected, but the Reporting Limit exceeded the applicable standard

NV = No value

TABLE 3
GROUND WATER QUALITY ANALYSIS
METALS AND INORGANICS
Trails of Collingwood
COLLINGWOOD, ONTARIO

Sample Name	MECP			BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8	BH9	DUP2	BH10	BH11	BH12	DUP1
ALS Lab ID#				L2432036-10	L2432036-9	L2432036-6	L2432036-7	L2432036-11	L2432036-12	L2432036-8	L2432036-5	L2432036-2	L2432036-14	L2432036-4	L2432036-3	L2432036-1	L2432036-13
Date	Table 2			26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20
Screened (mbgs)	2011 Criteria	Maximum	Units	186.74-183.69	187.35-184.3	187.39-184.95	186.90-185.50	187.60-186.40	187.40-186.80	186.80-185.20	186.35-184.40	186.20-183.10	186.20-183.10	185.80-182.80	185.25-182.20	185.45-182.40	185.45-182.40
	Coarse																
Parameter													(BH9)				(BH12)
Metals													, ,				
Barium	1000	131	μg/L	87.9	50.9	62.70	131.00	59.5	49.5	60.80	92.70	46.80	50.30	85.20	66.50	77.40	81.1
Beryllium	4	< 1	μg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Boron	5000	377	μg/L	199	377	351	96	< 100	< 100	237	196	336	372	350	375	137	151
Cadmium	2.7	< 0.05	μg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chromium	50	< 5	μg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 5.0	< 0.50	0.83	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cobalt	3.8	1.45	μg/L	0.13	< 0.10	< 0.10	0.13	< 1.0	< 1.0	1.45	0.89	< 0.10	< 0.10	0.27	0.13	0.25	0.25
Copper	87	5.5	μg/L	1.31	1.32	0.48	2.66	5.5	5.5	2.41	1.7	0.69	1.62	1.12	1.62	2.43	1.89
Lead	10	0.607	μg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.50	< 0.50	< 0.050	0.607	< 0.050	0.061	< 0.050	< 0.050	< 0.050	< 0.050
Molybdenum	70	6.16	μg/L	0.181	0.169	0.162	0.444	0.5	1.58	1.66	0.6	1.13	1.18	5.11	3.52	5.81	6.16
Nickel	100	5	μg/L	0.84	0.55	< 0.50	0.55	< 5.0	< 5.0	2.16	1.66	< 0.50	< 0.50	0.99	0.98	0.71	0.77
Silver	1.5	< 0.5	μg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.50	< 0.50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Thallium	2	< 0.1	μg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.10	< 0.10	< 0.010	< 0.010	< 0.010	< 0.010	0.022	< 0.010	0.021	0.022
Uranium	20	5.18	μg/L	0.048	0.042	0.049	0.31	2.97	5.18	1.42	0.333	0.102	0.103	0.931	0.65	1.18	1.24
Vanadium	6.2	< 5	μg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 5.0	< 0.50	1.13	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Zinc	1100	< 10	μg/L	2.8	2.7	< 1.0	4.2	< 10	< 10	3.2	5.5	1.8	3.4	1.1	2.2	3	2.5
Metal Hydrides																	
Antimony	6	< 1	μg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	0.22	0.2	0.21	0.22
Arsenic	25	1.44	μg/L	0.34	0.16	0.58	0.76	1.0	< 1.0	1.44	0.79	0.36	0.43	0.59	1.0	0.41	0.39
Selenium	10	< 0.5	μg/L	0.055	< 0.050	< 0.050	< 0.050	< 0.50	< 0.50	0.076	0.051	< 0.050	< 0.050	0.121	0.054	0.139	0.107
Other Regulated Parameters																	
Sodium	490000	457000	μg/L	59700	47800	42000	175000	418000	457000	60400	52900	17400	19400	21300	26800	13200	14700
Mercury	0.29	0.005	μg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium, Hexavalent	140	0.5	µg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Notes

Value highlighted in red indicate exceedances above the applicable criteria

Values highlighted in yellow indicate the parameter was not detected,

but, the Reporting Limit exceeded the applicable standard

ND = Not detected

NV = No value

NA = Not assessed

Table 4
GROUND WATER QUALITY ANALYSIS
ORGANOCHLORINE PESTICIDES
Trails of Collingwood
COLLINGWOOD, ONTARIO

-																	
Sample Name	MECP			BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8	BH9	DUP2	BH10	BH11	BH12	DUP1
ALS Lab ID#				L2432036-10	L2432036-9	L2432036-6	L2432036-7	L2432036-11	L2432036-12	L2432036-8	L2432036-5	L2432036-2	L2432036-14	L2432036-4	L2432036-3	L2432036-1	L2432036-13
Date	Table 2	Maximum	Units	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20
Screened (mbgs)	2011 Criteria	waximum	Units	186.74-183.69	187.35-184.3	187.39-184.95	186.90-185.50	187.60-186.40	187.40-186.80	186.80-185.20	186.35-184.40	186.20-183.10	186.20-183.10	185.80-182.80	185.25-182.20	185.45-182.40	185.45-182.40
	Coarse																
Parameter													(BH9)				(BH12)
Aldrin	0.35	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
gamma-hexachlorocyclohexane	1.2	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
a-chlordane	NV	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Chlordane (Total)	7	< 0.011	μg/L	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011
g-chlordane	NV	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
op-DDD	NV	< 0.004	μg/L	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
pp-DDD	NV	< 0.004	μg/L	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Total DDD	10	< 0.0057	μg/L	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057
o,p-DDE	NV	< 0.004	μg/L	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
pp-DDE	NV	< 0.004	μg/L	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Total DDE	10	< 0.0057	μg/L	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057
op-DDT	NV	< 0.004	μg/L	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
pp-DDT	NV	< 0.005	μg/L	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0050	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Total DDT	2.8	< 0.0064	μg/L	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0064	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057	< 0.0057
Dieldrin	0.35	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Endosulfan I	NV	< 0.007	μg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Endosulfan II	NV	< 0.007	μg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Endosulfan (Total)	1.5	< 0.0099	μg/L	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099
Endrin	0.48	< 0.01	μg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Heptachlor	1.5	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Heptachlor Epoxide	0.048	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Hexachlorobenzene	1	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Hexachlorobutadiene	0.44	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Hexachloroethane	2.1	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080
Methoxychlor	6.5	< 0.008	μg/L	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080

Notes
Value highlighted in red indicate exceedances above the

value ingrigined in the indicate exceedances above the applicable criteria
Values highlighted in yellow indicate the parameter was not detected, but
the Reporting Limit exceeded the applicable standard
NV = No value

APPENDIX A

Phase One Conceptual Site Model

TERRAPROBE INC.

$\textbf{RJ} \ \textbf{CUG'QPG'EQPEGRVWCN'UNG'OQFGN''}$

$\label{thm:continuity} Vt\,ckm'qh'E\,qmk\!pi\;y\;qqf\;'\delta'J\;ki\;j\;'Uvt\,ggv'cpf\;'Vgrlgt\;'T\,qcf\;.'E\,qmk\!pi\;y\;qqf\;''$

'Rj cug'Qp	og'EUO ''	Kphqtocvkqp'Rgtvckpkpi '\q'Rtqrgtv{''
Hki wt gu'qh	'ij g'Rj cug'Qpg'Uwf{'Ctgc'ctg'+tqx	dfgf'ij c√'
Ю	Uj qy "cp{ "gzkunkpi "dwkrf kpi u" cpf "untwewntgu.""	Vj gtg"ctg"pq"gzkukpi "dwkrf kpi u"cpf "untwewtgu"qp"\j g"Rtqr gtv\{ ."cm" Rtqr gtv\{ "f gvcku"ctg"uj qy p"qp"Hki wtg"40"
kkO	Kf gpvkh{ "cpf "iqecvg"y cvgt "dqf kgu" qecvgf "kp"y j qng"qt"kp"r ctv"qp" y g"Rj cug"Qpg"Uwf { "Ctgc"	DrceniCuj "Etggmicrrgctu"\q"dg"crrtqzko cvgn("397o "y guv'qhi'vj g" Rtqrgtv(0Cffkkqpcm(."c"o cpo cfg"uvqto "y cvgt"o cpci go gpv'rqpf" ku"nqecvgf"42"o "gcuvi"uqwj gcuv'qhi'vj g"Rtqrgtv(0"
		Cm'y cvgt "dqf kgu"qp"vj g"Rj cug"Qpg"Rtqr gtv{ "cpf "kp"vj g"Rj cug"Qpg" Uwxf { "Ctgc"ctg"vj qy p"qp"Hki wtg"30'
МЮ	Kf gpvkh{ "cpf "inqecvg"cp{ "Ctgcu"qh" P cwtcn"Uki pkhecpeg"inqecvgf "kp" y j qng"qt"kp"r ctv"qp"vj g"Rj cug" Qpg"Uwf { "Ctgc"	Vgttcrtqdg'tgxlgy gf ''yj g''Qpvctkq''O kpkint { ''qh'P cwitcriT guqwtegu''cpf '' Hqtgunt { 'PJKE''f cvcdcug''hqt''pcwitcri'ctgc''rkinkpi u0'Pq''Ctgcu''qh'' Pcwitcri'Uki pkhecpeg''y gtg''nqecvgf ''kp''yj g''Rj cug''Qpg''Uwf { ''Ctgc0'
kx0	Nqecvg"cp{ "f tkpmkpi "y cvgt"y gmu" cv'vj g"Rj cug"Qpg"Rtqr gtv{ "	Pq"ftkpmkpi "y cvgt"y gmu"y gtg"kfgpvkhkgf "qp"vjg"Rtqrgtv("fwtkpi "vjg" uksg"kpurgevkqp"qt"htqo "y gmtgeqtfu0""
x0	Uj qy 'tqcf u.'lpenwf kpi 'pco gu." y ky kp'vj g'Rj cug'Qpg'Uwf {" Ctgc"	Vj g'Rtqr gtv('ku'dqwpf gf ''vq''y g''pqtyj ."gcuv'cpf ''uqwyj ''d { 'tgukf gpvkcn' ncpf ''wug."cpf 'y guv'd { ''J ki j ''Uttggv'cpf ''ci tkewnwtcn'qt''qvj gt''rcpf ''wug0' Qvj gt''tqcf u''cpf 'r tqr gtvkgu''y kyj kp''yj g''Uwf { ''Ctgc''ctg''r tgugpvgf ''qp'' Hki wtg''50'
xkO	Uj qy ''wug''qhi'r tqr gt vkgu''cf lcegpv'' vq''yj g''Rj cug''Qpg''Rtqr gt v{ ''	Vj g'Ncpf 'Wugu'qh'vj g'cf lcegpv'r tqr gtvkgu'ctg'uj qy p'qp'Hki wtg'60'
xllO	Kf gpvkh{ "cpf "mqecvg"ctgc"y j gtg" cp{ "r qvgpvkcm{ "eqpvco kpcvkpi " cevkxkx{ "j cu"qeewttgf ."cpf "uj qy " vcpmı"kp"uwej "ctgcu"	Rqvgpvkcm("Eqpvco kpcvkpi "Cevkxkkgu"*RECu+"nqecvgf "qp"\j g" Rtqrgtv("cpf"y kij kp"\j g"Uwf {"Ctgc"ctg"uj qy p"qp"Hki wtg"70"
xkkO	Kf gpvkh{ "cpf "iqecvg"cp{ "ctgcu"qh" r qvgpvkciigpxktqpo gpvciieqpegtp"	Qpg'*3+"Ctgcu''qh'Rqvgpvkcn'Gpxktqpo gpvcn'Eqpegtp'*CRGEu+"eqxgtu" yj g"gpvktg'Rtqrgtv{"cpf 'ku'f guetkdgf ''qp''yj g''Vcdng''qh'Ctgcu''qh'' Rqvgpvkcn'Gpxktqpo gpvcn'Eqpegtp0'
		Vj g'nqecvlqp"qh'vj g'CRGEu"qp"vj g"Rj cug"Qpg"Rtqr gtv{ "ctg"uj qy p"qp" Hki wtg"80'
Vj g'hqnqy	kpi 'ku'&'f guet krykqp'&pf'&uuguuo gpv	<u>'</u> '¢lK''
Ю	Cp{ "ctgcu"y j gtg"r qvgpvlcm{ " eqpvco kpcvlpi "cevlxkv{ "qp"qt" r qvgpvlcm{ "chhgevlpi "j g"Rj cug" Qpg"Rtqr gtv{ "j cu"qeewttgf ."	Rj cug"Qpg"Rtqr gtv{" • %62"6'Rguvkekf gu™kpenvf kpi "J gtdkekf gu."Hvpi kekf gu."cpf " Cpvk/Hqwrkpi "Ci gpvu+"O cpwhcewtkpi ."Rtqeguukpi ."Dwml' Uqtci g"cpf "Ncti g/Uecng"Crrnkecvkqpu"

'Rj cug'Qpg'EUO''		Kohqt o cvkqp'Rgt vckpkpi 'vq'Rt qr gt v{ ''
IAO	Cp{"eqpwo kpcpwi'qhi'r qvgpvkcri" eqpegtp" "	Eqpvco kpcpwi'qhi'RqvgpvkcnEqpegtp'*EqREu+'lsf gpvklkgf ''vj g''Rtqr gtv('' kpenvsf g<'' O gvcnu'kp''uqkn'cpf ''i tqwpf ''y cvgt'' J {ftkf g'O gvcnu'kp''uqkn'cpf ''i tqwpf 'y cvgt'' D/J Y U'kp''uqkn'cpf ''i tqwpf y cvgt'' EP 'kp''uqkn'cpf ''i tqwpf y cvgt'' Et*XKst'kp''uqkn'cpf ''i tqwpf y cvgt'' J i 'kp''uqkn'cpf ''i tqwpf y cvgt'' En'kp''i tqwpf y cvgt'' P c''kp''i tqwpf y cvgt'' GE 'kp''uqkn' UCT''kp''uqkn' QE''Rguvkekf gu'kp''uqkn'cpf ''i tqwpf y cvgt''
kkO	Vj g'r qvgpvkcnhqt"wpf gti tqwpf " wkrkkgu 'kh'cp{'r tgugpv."vq"chhgev" eqpvco kpcpv"f kntkdwkqp"cpf " vtcpur qtv"	Vj gtg"ctg"pq"npqy p"wpf gti tqwpf "wwkkygu"vj cv'eqwrf "chhgev'vj g" eqpvco kpcpvl"f kuvkdwkqp"cpf "vtcpur qtv'kh'eqpvco kpcpvu"ctg"r tgugpv' cpf "o qdkg"qp"vj g"Rtqr gtv{0'
kx0	Cxckredrg'tgi kqpen'qt'ukvg" ur gekhle'i gqrqi kecn'epf" j {ftqi gqrqi kecn'lphqto cvkqp."	Vqrqitcrj {" " Vj g'crrtqzko cvg'grgxcvkqp'qh'vj g'Rtqrgtv('ku'3; 2'o curd)' J {ftqi gqrqi {" " Drcem'Cuj 'Etggmiku'crrtqzko cvgn("3970 'y guv'qh'vj g'' Rtqrgtv(0'Cff kklqpcm(.'c'o cpo cfg'uvqto 'y cvgt'' o cpci go gpv'rqpf 'ku'nqecvgf '42'o 'gcuvl'uqwi gcuv'qh'vj g'' Rtqrgtv(0'I tqwpf 'y cvgt ''cpf 'uwthceg'y cvgt 'ku'gzrgevgf 'vq'' hrqy 'vq'vj g'pqtvj gcuv0' I gqrqi {"*qxgtdwtfgp+" " Vj g'qxgtdwtfgp+" " Vj g'qxgtdwtfgp+" " Vj g'qxgtdwtfgpt' 'ku'i gpgtcm('ukn'cpf 'erc { 'y kj '' o kpqt 'ucpf ''cpf 'i tcxgr0'J qy gxgt.'vj g'pqtvj gcuvgtp'eqtpgt'' qh'vj g''Rtqrgtv('ku'i gpgtcm('uvqpg/rqqt.'ucpf { 'ukn'vq'uknv("ucpf 0') } I gqrqi {"*dgf tqem#" " Vj g'dgf tqemiqp'vj g'uksg'ku'qh'vj g'Nkpf uc { 'hqto cvkqp.'y j kej '' ku'eqo rtkugf 'qh'ho guvqpg0'} I gqrqi {"*fgry ''vq'dgf tqem#" " Dcugf 'qp'r wdrkuj gf 'i gqrqi kecn'kphqto cvkqp'kp'vj g''ctgc.'vj g'' fgry j''vq'dgf tqemifgry j 'ku'crrtqzko cvgn("32'o 'y kyj kp'vj g'' xkekpkv{ 'qh'vj g''Rtqrgtv(0'Dcugf ''qp''O GER'Y gmitgeqtf u'Np'' y g''ctgc.''yj g''f gry j''vq''dgf tqemiku'crrtqzko cvgn('80''o 0' Rtgxkqwu'kpxguvki cvkqpu'qp''yj g''Rtqrgtv('kfgpvkhkgf''dgf tqemi' tcpi kpi 'htqo ''30''q''0''o di u''

'Rj cug'Qpg'EUO ''		Kphqt o cvkqp'Rgt vckpkpi 'kq'Rt qr gt v{ ''
	J qy "cp{ 'wpegtvckpv{ "qt"cdugpeg" qh'kphqto cvkqp"qdvckpgf "kp"gcej " qh'vj g"eqo r qpgpvu"qh'vj g"Rj cug" Qpg"GUC"eqwf "chhgev'vj g" xcnkfkv{ "qh'vj g"o qf gn0'	P q"wpegt wkpv{ "y cu"gpeqwpvgtgf "y j krg"eqpf wevkpi "vj g"Rj cug"Qpg" GUC "vj cv"eqwrf "chhgev"vj g"xcnkf kv{ "qh"vj g"o qf gnf)"

•

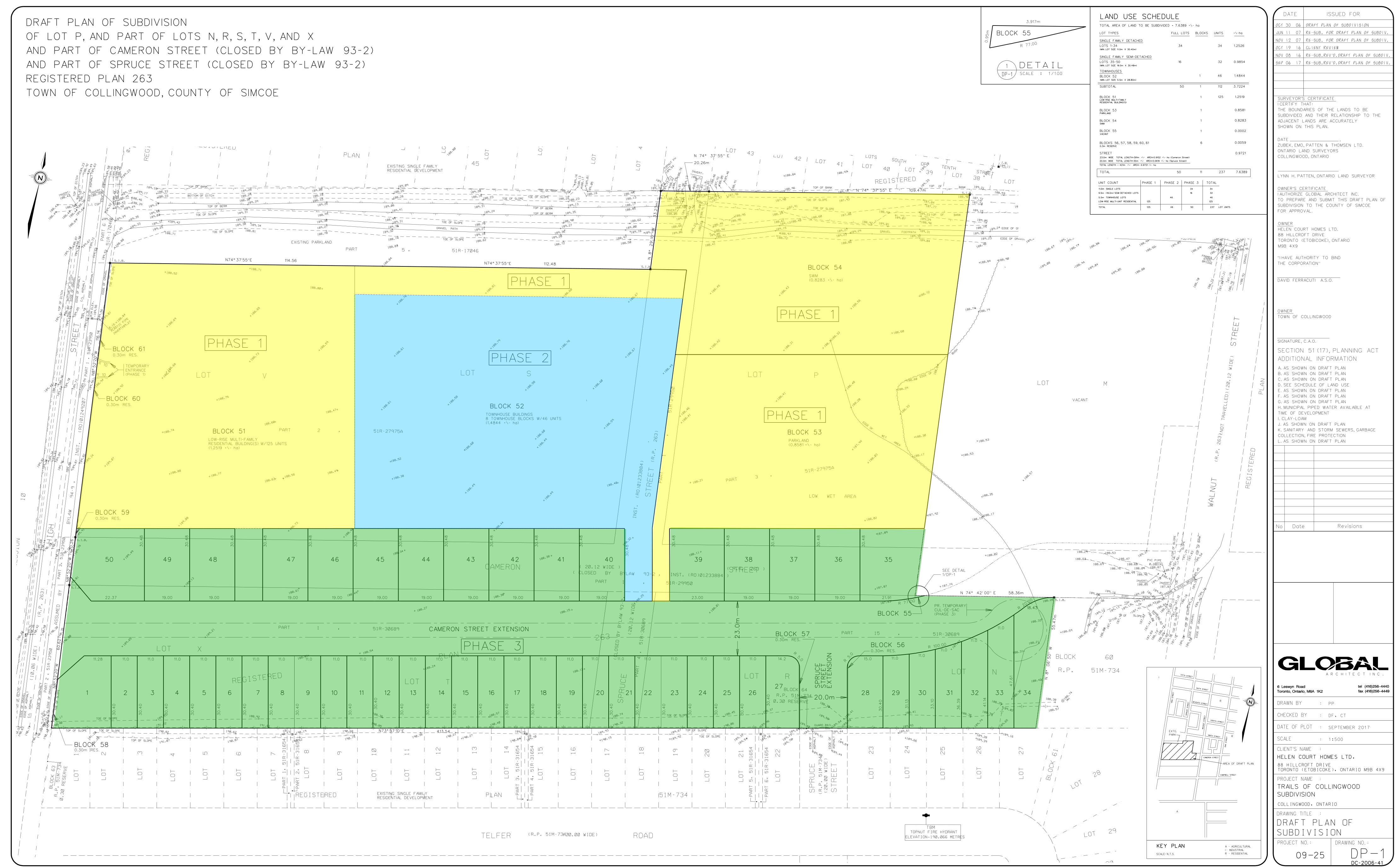
Hhi wtgu≺'

Hki wtg'3"6'Rj cug'Qpg'Rtqrgtv{ 'Nqecvkqp'''

Hki wtg"4"6"Rj cug"Qpg"Rtqrgtv{ ""

Hki wtg'5''6''Rj cug''Qpg''Uwf {'Ctgc'''

Hki wtg'6''ó''Cf lcegpv'Rtqr gtv{ 'Ncpf ''Wugu'''


Hki wtg'7"ó'REC'Nqeckqpu"

Hki wtg'8'ó'CRGE'Nqecvkqpu''

APPENDIX B

Site Survey

TERRAPROBE INC.

PATH NO.

APPENDIX C

Sampling and Analysis Plan

TERRAPROBE INC.

File No. 1-17-0918-42.1

Brampton Office

RE: SAMPLING AND ANALYSIS PLAN (SAP)
TRAILS OF COLLINGWOOD – HIGHT STREET AND TELFER ROAD
TORONTO, ONTARIO

1. INTRODUCTION

This appendix presents the Sampling and Analysis Plan (SAP) that was developed in support of the additional Phase Two Environmental Site Assessment (ESA) for the property located at the northeast corner of High Street and Telfer Road, in Collingwood, Ontario. (hereinafter referred to as the 'Property'). The additional Phase Two ESA is conducted to provide characterization of the Property subsurface conditions, identify the extent of soil and ground water impacts, if any, and to assess remedial options such that, upon completion of remedial actions, if required, a Record of Site Condition (RSC) can be filed on the Ontario Ministry of the Environment, Conservation and Parks (MECP). The SAP presents the procedures and approach to the field investigative activities to characterize the Property site conditions and meet the data quality objectives of the Phase Two ESA.

The SAP presents the sampling program for the Property, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control (QA/QC) measures for the collection of accurate, reproducible and representative data. These components are described in further detail below.

2. QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM

The data quality objectives of the quality assurance/quality control (QA/QC) program is to obtain soil and ground water samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program are achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy.

The field QA/QC program includes the following components:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC components are provided below.

2.1 Decontamination Protocols

Decontamination protocols are followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split soil sampling devices are cleaned and decontaminated between sampling intervals and auger flights between borehole locations in accordance with Standard Operating Procedure (SOP) requirements as indicated in Appendix E. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters are decontaminated between monitoring well locations during well development and purging activities. All decontamination fluids are collected and stored in sealed, labelled containers.

2.2 Equipment Calibration

All equipment requiring calibration are calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments are checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration is checked prior to the beginning of sampling activities. All calibration data are documented in a bound hard cover notebook.

2.3 Sample Preservation

Laboratory supplied sample containers are used for all sampling conducted on the Property. All samples are preserved using appropriate analytical test group specific reagents, as required and as provided by the laboratory, and upon collection placed in ice-filled insulated coolers for storage and transport.

2.4 Sample Documentation

All samples are assigned a unique identification number, which is recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples are handled and transported following Chain of Custody protocols.

2.5 Field Quality Control Samples

Field quality controls samples are collected to evaluate the accuracy and reproducibility of the field sampling procedures. For soil sampling, one (1) field duplicate sample is collected for every ten (10) samples of a specific geologic unit submitted for analysis. For ground water sampling, one (1) field duplicate is collected for every ten (10) samples submitted for chemical analysis. The field duplicate samples are assessed by calculating the relative percent difference (RPD) and comparing to the analytical test group specific acceptance criteria.

3. DATA QUALITY OBJECTIVES

The data quality objectives of the quality assurance/quality control (QA/QC) program are as follows:

- To obtain soil and ground water samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA.
- To collect samples of unbiased (i.e. non-contaminated) samples, document sampling procedures, and to collect appropriate QC samples to provide a measure of sample reproducibility and accuracy.
- To collect field quality control samples at a rate that meets or exceeds those specified in Section 2.5, and to ensure that the results of those QC samples are satisfactory.

The data quality objectives for all types of field data collected during the Phase Two ESA field investigation that set the level of uncertainty in environmental data were set such that:

- Decision-making is not affected; and,
- The general objectives of the investigation are met.

The data quality objectives are met through implementation of the QA/QC program and in the use of the Standard Operating Procedures identified below.

4. STANDARD OPERATION PROCEDURES FOR FIELD INVESTIGATION METHODS

To meet the requirements of the field sampling program, the following field investigative methods are undertaken:

- Borehole Drilling;
- Field Screening Measurements, including Calibration Procedures;
- Monitoring Well Installation;
- Monitoring Well Development;
- Field Measurement of Water Quality Indicators, including Calibration Procedures;
- Residue Management Procedures;

- Ground water Level Measurements;
- Elevation Survey; and,
- Ground water Sampling.

The following procedures are not required for this investigation:

- Excavating; and,
- Sediment Sampling.

The field investigative methods required for this investigation are described in the following sections.

4.1 Borehole Drilling

Boreholes are advanced at the Property to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of ground water monitoring wells. Multiple boreholes are required at the Property and would require depths to investigate the surficial fill and native till overburden materials to provide for the collection of samples of the surficial and subsurface materials beneath the Property. Additional boreholes may be drilled for delineation of any soil and ground water impacts identified during the investigation. The borehole locations are selected to assess the soil and ground water quality in the areas of potential environmental concern (APECs) identified at the Property as below:

1. APEC 1 is the result of previous agricultural land use of a historical orchard operating on the Property. The APEC includes the entire Property. Contaminants of Potential Concern (COPCs) are Metals, Hydride-Forming Metals, Other Regulated Parameters (including boron-hot water soluble, mercury, hexavalent chromium, pH, sodium) (ORPs) and Organochloride Pesticides (OCPs).

Prior to borehole drilling, utility clearances are obtained from public and private locators, as required. If any uncertainty regarding the location of a buried utility at a borehole location is encountered or if a borehole location is within 1 m of a buried utility, the borehole is initiated by daylighting or hand augering to a sufficient depth to be clear of any utilities. Boreholes are required to be advanced into the surficial fill and overburden soils by a drilling company under the full-time supervision of Terraprobe staff. An appropriate drill rig equipped with sampling arrangement is utilized to advance the boreholes through the overburden materials.

4.2 Soil Sampling

Soil samples for geologic characterization and chemical analysis are required to be collected on a continuous basis in the overburden materials using 5 cm diameter and 60 cm long tube samplers advanced into the subsurface using a portable direct push drill rig or a truck mounted drill rig equipped with hollow or solid stem augers and split spoon sampler. The soil cores are extruded from the plastic lined inner

tubes/split spoon samplers. Geologic and sampling details of the recovered cores are logged and the samples are assessed for the potential presence of non-aqueous phase liquids.

Samples for chemical analysis are selected on the basis of information from previous investigations, visual, and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of known impacts.

Recommended volumes of soil samples selected for chemical analysis are collected into pre-cleaned, laboratory supplied, analytical test group specific containers. The samples are placed into clean insulated coolers chilled with ice for storage and transport. The samples are assigned unique identification numbers, and the date, time, location, and requested analyses for each sample are documented in a bound field note book. The samples are submitted to the contractual laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves are used during the handling and sample collection for each soil core to prevent sample cross-contamination.

4.3 Field Screening Measurements, including Calibration Procedures

A portion of each soil core is placed in a re-sealable plastic bag and allowed to reach ambient temperature prior to field screening with a combustible gas detector or photo-ionization detector (PID) that is calibrated with an appropriate reference gas prior to use. The vapour measurements are made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of volatile organic vapours encountered in the subsurface during drilling.

4.4 Monitoring Well Installation

Select boreholes are required to be instrumented as ground water monitoring wells installed with 3 m long screens intercepting the ground water table in the overburden within the aquifers of interest. Additional monitoring wells may be installed for delineation of any ground water impacts identified during investigation, or to confirm ground water quality after remediation, if conducted. The monitoring wells are installed in general accordance with the Ontario Water Resources Act- R.R.O. 1990, Regulation 903 – Amended to O. Reg. 128/03 and are installed by a licensed well contractor.

The monitoring wells are constructed using 50 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The bases of the well screens are sealed with PVC end caps. All well pipe connections are factory machined threaded flush couplings. The pipe components are pre-wrapped in plastic, which are removed prior to insertion in the borehole to minimize the potential for contamination. No lubricants or adhesives are used in the construction of the monitoring well. The annular space around the well screens is backfilled with silica sand to an average height of 0.3 m above the top of the screen. Granular bentonite is placed in the borehole annulus from the top of the sand pack to approximately 0.3 m

below grade. The monitoring wells are completed with a flush mount or stick-up protective steel casing cemented into place.

4.5 Monitoring Well Development

The monitoring wells are developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters. The monitoring wells will be developed using a WaterraTM sample tubing and surge block SBD-25. Monitoring well development is monitored by visual observations of turbidity, and by taking field measurements of pH, specific conductance and temperature for every standing well (i.e. wetted casing) volume removed. Standing water volumes are determined by means of an electronic water level meter. Approximately three to five (3 to 5) wetted well volumes are removed; and, well development continues until the purged water has chemically stabilized as indicated by visual observations and field parameters measurements.

Well development details are documented on a well development log sheet or in a bound hard cover notebook. All development waters are collected and stored in labelled, sealed containers.

4.6 Field Measurement of Water Quality Indicators, including Calibration Procedures

Water quality parameter measurements are recorded using a multi meter instrument. The instrument probes are calibrated prior to use, following manufacturer's procedures using analytical grade reagents, or if obtained from a field equipment supplier, the calibration checked. Approximately three to five (3 to 5) wetted well volumes are removed; and, well development continues until the purged water has chemically stabilized as indicated by visual observations and field parameters measurements.

Details of field measurement of water quality indicators are documented on a log sheet or in a bound hard cover notebook, indicating the values of the parameters, the volumes of water purged, the date of purging, and additional information. A YSI 63 Hand-held System was used.

4.7 Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of soil cuttings from drilling activities, decontamination fluids from equipment cleaning, and waters from well development and purging are placed in labeled, sealed drums for off-Site disposal, or are disposed of by the licensed well contractor.

4.8 Ground Water Level Measurements

Ground water level measurements are recorded for monitoring wells to determine ground water flow and direction in the overburden aquifers beneath the Property. Water levels are measured with respect to the top of the casing by means of a Solinst interface probe, an electronic water level meter. The water levels are recorded on water level log sheets or in a bound field notebook. The water level meter probe is decontaminated between each monitoring well location.

4.9 Elevation Survey

An elevation survey is conducted to obtain vertical control of the monitoring well locations at the Property. The elevations of the boreholes on the Property will be surveyed using a Trimble R10 survey system. The Trimble R10 is a differential global positioning system (GPS) which involves the cooperation of two receivers, one that's stationary and another that's roving around making position measurements. Elevations measured against a geodetic benchmark are recorded as meters above mean sea level (m asl). The elevation survey is accurate to within \pm 1.0 cm in vertical elevation.

4.10 Ground Water Sampling

Ground water samples are collected from monitoring wells for chemical analysis. The monitoring wells are purged first of three to five wetted well volumes of water to remove standing water and draw in fresh formation water. Wells, which are purged dry, are to recover to 75% of static levels before sampling.

Recommended ground water sample volumes are collected into pre-cleaned, laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples are placed in an insulated cooler chilled with ice for storage and transport.

All ground water samples are assigned unique identification numbers, and the date, time, project number, company name, location and requested analyses for each sample are documented in a bound hard cover notebook. The samples are submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves are used for each sampling location to prevent sample cross-contamination.

5. PHYSICAL IMPEDIMENTS

No physical impediments are expected to be encountered that interfere with or limit the ability to conduct sampling and analysis of the required parameters and media at the Phase Two Property.

6. SAMPLING AND ANALYSIS PLAN RATIONALE AND PROCEDURES

The SAP has identified rationale and procedures for the following items:

- Choice of Sampling System;
- Sampling Media;
- Number of Samples;
- Sampling Frequency;
- Sampling Points;
- Sampling Depth Intervals;
- Other Field Information; and,
- Samples to be Submitted for Laboratory Analysis.

These sampling and analysis plan rationale and procedures are listed in further details in the following sections.

6.1 Choice of Sampling System

A judgemental sampling system has been selected for the purposes of this investigation. Random sampling and grid sampling systems have not been chosen as the primary sampling system in this investigation as APECs have been identified and there is an understanding as to where potential contaminants may be found. Investigation of the APECs is considered sufficient and more effective in locating contaminants within the Property.

6.2 Sampling Media

The soil sampling media consists of the reworked native underneath the surficial materials, and the underlying native silty sand to sandy silt. There are no APECs identified for the sediment at the Property and thus sediment is not included in the soil sampling media.

The ground water samples are collected from the aquifers of interest contained within the native soil. The ground water sampling is location-specific to assess for the potential presence of chemical constituents based on previous observations, or the identification of potential areas of concern.

6.3 Number of Samples

At least one sample is required to be taken for each contaminant of concern in each medium for which that contaminant was identified for each APEC. Where exceedances are found, additional samples may be required to delineate the impact.

6.4 Sampling Frequency

Soil sampling is completed at the Property at 0.6 m (2 ft.) for every 0.76 m (2.5 ft.) drilled for the first 3.0 m (10 ft.), then at 0.6 m (2 ft.) for every 1.52 m (5 ft.) drilled. However, if fill material is present then

soil sampling proceeds at 0.6 m (2 ft.) for every 0.76 m (2.5 ft.) drilled until the samples no longer indicate the presence of fill material or until the depth of the investigation.

Ground water sampling and analysis is completed at the Property for each monitoring well at least once after the development of the well is complete and water quality parameters indicate the formation water is stable.

6.5 Sampling Points

Sampling points do not apply to Metals, Hydride-forming metals, Other Regulated Parameters and OC Pesticides soil sampling as a composite sample is taken over a sampling depth interval. However, for reference, the mid-depth of the interval is used as the sampling point. Further details are indicated in Section 6.6. These details identify the specific locations of potential exceedances and assist in the analysis of migration and source of the contaminant of concern.

Sampling points for ground water samples are identified at the mid-point of the well screen elevation when the low flow sampling rate is equal to or lower than the recharge rate at the monitoring well of interest. However, if the sampling rate exceeds the recharge rate or if the water table is present below the mid-point of the well screen, the sampling point does not apply to ground water sampling. Instead a sampling depth interval is recorded using the top of the water table to the bottom of the well screen in the aquifer of interest. Further details are indicated in Section 6.6.

6.6 Sampling Depth Intervals

Sampling depth intervals for soil sampling are identified as the full split spoon sampler (or equivalent) depth with respect to the geodetic elevation. The sampling depth intervals typically correspond with the sampling frequency as mentioned in Section 6.4.

Sampling depth intervals for ground water sampling when non-low flow sampling is utilized is identified as the top of the well screen to the bottom of the well screen when the water table is above the top of the well screen. In the event the water table is below the top of the well screen, the top of the water table to the bottom of the well screen will be used as the sampling depth interval for ground water sampling.

6.7 Other Field Information

Vertical control of the boreholes and monitoring wells will ultimately be obtained through the completion of an elevation survey with reference to a geodetic benchmark. Ground water flow and direction in the water table aquifer are determined through ground water level measurements and the relative ground water elevations established in the Property elevation survey.

Wells are required with screens within the native soil and glacial till, which are the aquifers of interest. This provides data regarding ground water quality in the aquifers of interest. The water table aquifers are the zones that are expected to be impacted in the APECs identified in the Phase One studies.

6.8 Samples to be Submitted for Laboratory Analysis

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials and ground water for chemical analysis of one or more of the following parameters: Metals, Hydride Forming Metals, ORPs and OC Pesticides

7. SAMPLING AND ANALYSIS PLAN CRITERIA

The QP considered the PCAs, all COPCs, and appropriate subsets of such contaminants and any other information and matters relating to the environmental condition of the property which are relevant to an informed professional judgment.

Based on the consideration of all matters and items above, the QP determined the sampling and analysis of COPCs and appropriate sampling and analysis for any other relevant contaminants that may be of concern at the Property.

The Phase Two ESA investigations, rationale for sampling locations with respect to APECs is summarised in the following table:

Area of Potential Environmental Concern	Potentially Contaminating Activity	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)	Borehole/ Monitoring Well for Sampling
APEC 1: (On-Site) Entire Phase One Property	#40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage, and Large-Scale Applications	Metals Hydride Metals B-HWS CN Cr(VI) Hg Cl Na EC SAR OC Pesticides	Soil and ground water Ground water Ground water Ground Water Ground Water Soil Soil	BH1 to BH12
			Soil and ground water	

7.1 Plan of Implementation

Dowahala	Detienels	APEC	Chemical Analyses		
Borehole	Rationale	APEC	Soil	GW	
ВН1	Monitoring well to determine possible contaminants and ground water flow direction.	APEC 1		2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
ВН2	Monitoring well to determine possible contaminants and ground water flow direction.	APEC 1		2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
ВН3	Monitoring well to determine possible contaminants and ground water flow direction.	APEC 1		2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
BH4	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil quality. Monitoring well to determine possible contaminants and ground water flow direction.	APEC 1	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
BH5	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil quality. Monitoring well to determine possible contaminants and ground water flow direction.	APEC 1	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
ВН6	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil quality. Monitoring well to determine possible contaminants and ground water flow direction and elevation.	APEC 1	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
ВН7	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil quality. Monitoring well to determine possible contaminants and ground water flow direction and elevation.	APEC 1	1 Metals 1 Hydride Forming Metals 1 ORPs 1 OC Pesticides	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	
ВН8	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil quality. Monitoring well to determine possible contaminants and ground water flow direction and elevation.	APEC 1	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	2 Metals 2 Hydride Forming Metals 2 ORPs 2 OC Pesticides	

Borehole	Rationale	APEC	Chemical Analyses			
Dorenoie	Kationale	APEC	Soil	GW		
	D 11 (14 ' ' ' ' 1 (1 ' ')		2 Metals	2 Metals		
	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil		2 Hydride	2 Hydride		
ВН9	quality. Monitoring well to determine	APEC 1	Forming Metals	Forming Metals		
	possible contaminants and ground water flow		2 ORPs	2 ORPs 2 OC Pesticides		
	direction and elevation.		2 OC Pesticides			
	D 11 (1 () 1 () 1			2 Metals		
	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil		2 Hydride	2 Hydride		
BH10	quality. Monitoring well to determine	APEC 1	Forming Metals	Forming Metals		
	possible contaminants and ground water flow		2 ORPs	2 ORPs		
	direction and elevation.		2 OC Pesticides 2 OC Pesticides			
	D 11 (14) 1 (14)		2 Metals	2 Metals		
	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil		2 Hydride	2 Hydride		
BH11	quality. Monitoring well to determine	APEC 1	Forming Metals	Forming Metals 2 ORPs 2 OC Pesticides		
	possible contaminants and ground water flow		2 ORPs			
	direction and elevation.		2 OC Pesticides			
	D 11 (1 () 1 () 1		2 Metals	2 Metals		
	Borehole to determine soil stratigraphy. Sample fill and native soil to determine soil		2 Hydride	2 Hydride		
BH12	quality. Monitoring well to determine	APEC 1	Forming Metals	Forming Metals		
	possible contaminants and ground water flow		2 ORPs	2 ORPs		
	direction and elevation.		2 OC Pesticides	2 OC Pesticides		

Note that due to the current COVID-19 work restrictions that have been imposed by the provincial government, the continued environmental work (i.e. groundwater sampling and water levels) was temporarily placed on-hold. Terraprobe will now continue conducting the environmental work as the provincial emergency orders have been lifted.

APPENDIX D

Standard Field Investigation Protocol

TERRAPROBE INC.

STANDARD OPERATING PROCEDURE - SOIL SAMPLING

General Procedures

Introduction

Subsurface investigations typically involve sampling of subsurface soils at various depths at locations of interest. Several soil sampling methods can be implemented depending on the nature of the investigations. Field screening of soil samples may be performed when potential contaminants of concern include VOC and PHC F1.

Equipment Required

- Nitrile Gloves
- Field Parameter Measurement Device (Gastech, PID)
- Laboratory Sample Bottles
- Terracores or sampling syringes (sampler)
- Field Notebook and/or Field Sheets
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Ice and cooler

- 1. Review sampling plan and sampling locations with project manager
- 2. Determine what equipment and supplies are required.
- 3. Obtain necessary sampling and monitoring equipment.
- 4. Coordinate with project manager and clients, as required, for site access.
- 5. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 6. Identify and mark all sampling locations.
- 7. Assemble the appropriate laboratory supplied jars/vials.
- 8. Collect the samples to be analyzed
 - Borehole split spoon, sample from spoon
 - i. Split spoon sampling methods are primarily used to collect shallow and deep subsurface soils.
 - ii. Gravel, concrete, asphalt and etc. present at or near the surface of the sampling location should be removed prior to split spoon sampling.

- iii. Split spoons used for soil sampling must be constructed with stainless steel and are 2 inches in diameter and 18 to 24 inches in length.
- iv. The top several inches of the material in the spoon must be discarded before remove any portion of the spoon for sampling.
- b. Test pit (backhoe), bag from excavator bucket, then sample.
 - i. Usually used in the collection of surface and shallow soil samples. Allow soil samples to be collected from very specific intervals.
 - ii. The bucket must be decontaminated prior to sample collection.
 - iii. Ensure to scrap off any smeared material on the surface of the bucket that may cross-contaminate the sample prior to jarring the soil sample.
 - iv. Make sure to not physically enter backhoe excavations to collect a sample for safety issue.
- c. Hand-dig (hang augers), sample.
 - i. Hand augers are typically used to advanced boreholes and collect surficial soils and shallow subsurface soils. A 4 inch stainless steel auger buckets with cutting heads are usually used. The bucket is advanced by simultaneously pushing and turning using an attached handle with extension.
 - ii. The top several inches of the soil collected by the auger bucket should be discarded and not be placed in the laboratory supplied container for sample submission.
 - iii. VOC samples need to be collected directly from the auger bucket, if possible.
 - iv. The entire hand auger assembly must be decontaminated before sampling at a new location. This is to minimize cross-contamination of soil samples.
- 9. Fill the appropriate jars, making sure to label properly; include the date, company name, parameter to be analyzed, and project number.
- 10. Change Nitrile gloves between samples.
- 11. Clean off loose soil that may be on the outside of the jar.
- 12. Place in a cooler with ice.
- 13. Log samples in field book.
- 14. Complete a Chain of Custody for all samples.
- 15. Package samples and complete necessary paperwork.
- 16. Transport samples (that have been kept cool) to laboratory or transport to office and call for pick up.

- SESD Operating Procedure Soil Sampling U.S EPA, December 2011
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011

STANDARD OPERATING PROCEDURE - BOREHOLE DRILLING

Solid and Hollow Stem Augers

Introduction

Soil drilling, using a drill rig or other equipment based on site accessibility is a common way to obtain soil samples on a site. Soil drilling is typically completed with a truck or bombardier-mounted drill rig, or Pionjar (or other portable drilling equipment) depending on the site accessibility. The driller operator will handle all equipment, including opening the split spoon.

Hollow stem augers are typically used when wet or loose cohesionless materials are encountered to permit sampling without removing the augers. Alternatively, solid stem augers are advanced and removed at each sampling depth. Samples and in-situ Standard Penetration Testing (STP) are conducted by driving a standard 2" diameter split spoon (hollow sampling tube) through a process of continuous or intermittent sampling. If monitoring wells are to be installed in the boreholes, hollow stem augers are to be used.

Equipment Required

- Personal Protective Equipment (PPE)
 - Hard hat, safety vest, protective eyewear, steel toed boots
- Nitrile Gloves
- Slider Bags
- Borehole logs & Clipboard
- Portable Soil Vapour Measurement Device (Gastech/PID)
- Laboratory Sample Bottles
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Drums for Soil Storage

- 1. Prior to drilling, boreholes will be numbered and marked and the site cleared for utilities.
- Downhole equipment is cleaned/decontaminated by the contractor.

- 3. All drill cuttings are to be placed in labeled drums or other container and moved to a designated location.
- 4. Review sampling plan and borehole locations with project manager
- 5. Determine what equipment and supplies are required.
- 6. Obtain necessary sampling and monitoring equipment.
- 7. Coordinate with project manager and clients and drilling crew, as required, for site access.
- 8. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 9. Perform health and safety meeting, discuss safety around rig and muster points should there be an emergency.
- 10. The technician will direct the drill crew where to set up the rig to begin drilling.
- 11. A borehole log must be prepared for every borehole drilled. Include: elevation, GPS coordinates, depth, soil classification, drilling details, sampling, water levels, free product (if any).
- 12. Record the type of equipment used (solid stem or hollow, type of rig) and the start time when drilling begins.
- 13. Sampling will be at pre-specified intervals; typically every 2 ½" to 10-15 feet then once every 5 feet from then on. Between samples, split spoons will be cleaned (if an environmental sampling is being conducted).
- 14. At each sampling interval record; interval number (or sample ID), blow counts, soil description, PPM reading
- 15. Record depth of borehole, caving (if any) and water level when borehole is complete.
- 16. Upon completion of drilling in an open borehole that will not be converted to a well the borehole is to be properly filled and abandoned. There are two methods depending on whether the static water level is above or below the bottom of the borehole.
 - a. Above and less than 20 feet deep: Abandon borehole by mixing cement or cement/bentonite grout and pouring the mixture into the borehole until it is filled to ground surface.
 - b. Below and more than 20 feet deep: Mix and pump cement/bentonite mixture to the bottom of the hole until filled to ground surface.

- Standard Operating Procedure No. 6. Drilling, Logging, and Sampling of Subsurface Materials.
- Geotechnical Field Investigations, Terraprobe Limited, July 1990.

STANDARD OPERATING PROCEDURE – GROUND WATER SAMPLING

Non-Gas Contact Positive Displacement Pump (Bladder Pump)

Introduction

Low flow purging and sampling involves extracting groundwater at rates comparable to ambient groundwater flow (typically less than 500 ml/min), so that the drawdown of the water level is minimized, and the mixing of stagnant water with water from the screened intake area in a well is reduced.

Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken, thus low flow methods facilitate equilibrium with the surrounding formation water and produces samples that are representative of the formation water.

Non-gas contact positive displacement pumps cause the least amount of alteration in sample integrity as compared to other sample retrieval methods. Water comes into contact with the inside of the bladder (Teflon) and the sample tubing, also Teflon which may be dedicated to each well.

Equipment Required

- Interface or Water Level Meter
- Bladder Pump (appropriate size for monitoring wells)
- Controler Unit and Batteries
- Required Replacement Bladders
- Required Teflon Tubing
- Required String/Rope
- Nitrile Gloves
- Bucket
- Graduated Cylinder
- Stop Watch
- Field Parameter Measurement Device (Horiba Flow Cell, YSI Meter, Hanna Meter, etc.)
- Laboratory Sample Bottles
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Ice

- 1. Review sampling plan and monitoring well locations with project manager
- 2. Review borehole logs and determine monitoring well depths and well screen locations.
- 3. Determine what equipment and supplies are required.
- 4. Obtain necessary sampling and monitoring equipment.
- 5. Decontaminate or pre-clean equipment, and ensure that it is in working order.
- 6. Coordinate with project manager and clients, as required, for site access.
- 7. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 8. Identify and mark all sampling locations.
- 9. Start sampling at the least contaminated monitoring well.
- 10. Remove locking well cap, note location time of day, and date in your notebook
- 11. Remove well casing cap.
- 12. Lower water level measuring device or equivalent into well until water surface is encountered.
- 13. Measure distance from water surface to reference measuring point on well casing and in field notebook. Alternatively, if there is no reference point, note that water level measurement is from top of steel casing, top of PVC riser pipe, from ground surface.
- 14. Measure total depth of well. Repeat at least twice to confirm measurement and record in field notebook
- 15. Calculate the volume of water in the well and record in field notebook.
- 16. Select the appropriate purging and sampling equipment.
- 17. Assemble Teflon tubing, pump and charged control box.
- 18. Assemble pump, hoses and safety cable, and lower the pump into the well to the. Make sure the pump is deep enough so that purging does not evacuate all the water and that the pump is located at the depth of the well screen NOTE: Running the pump without water may cause damage to the bladder.
- 19. Attach power supply, and purge well until field parameters (such as temperature, pH, conductivity, etc.) have stabilized. Field parameters are measured either by a flow through cell (HORIBA) or hand held device (YSI). When field parameters are measured record the measurements, the elapsed time, the flow rate and the water level in the monitoring well. Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, lower the pump further into the well, and continue pumping.
 - a. If the calculated purge volume is small, the measurements should be taken frequently to provide a sufficient number of measurements to evaluate stability (every 15 to 30 seconds). If the purge volume is large, measurements taken every 5 to 10 minutes may be sufficient.
 - b. Stabilization occurs when:
 - i. <u>Turbidity</u> (10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized),
 - ii. <u>Dissolved Oxygen</u> (10% for values greater than 0.5 mg/L, if three Dissolved Oxygen values are less than 0.5 mg/L, consider the values as stabilized),
 - iii. Conductivity (3%),

- iv. Temperature (3%),
- v. \underline{pH} (± 0.1 unit),
- vi. Oxidation/Reduction Potential (± 10 millivolts).
- c. If after three well volumes have been removed, the chemical parameters have not stabilized according to the above criteria, additional well volumes should be removed.
- d. If the field parameters have not stabilized within five volumes, contact the project manager to determine whether or not to collect a sample or to continue purging.
- 20. Collect and dispose of purge waters as specified in the site-specific sampling plan.
- 21. Assemble the appropriate laboratory supplied bottles.
- 22. Turn pump on, increase the cycle time and reduce the pressure to the minimum that will allow the sample to come to the surface and not induce significant drawdown.
- 23. Collect samples in the laboratory supplied bottle
 - a. For non-filtered samples collect directly from the outlet tubing into the sample bottle.
 - b. For filtered samples, connect the pump outlet tubing directly to the filter unit. The pump pressure should remain decreased so that the pressure build-up on the filter does not blow out the pump bladder or displace the filter.
- 24. Cap the sample bottle tightly and place relabeled sample container in a carrier
- 25. Replace the well cap.
- 26. Log all samples in the site logbook and label all samples.
- 27. Package samples and complete necessary paperwork.
- 28. Transport sample to staging area for preparation for transport to analytical laboratory.
- 29. On completion, remove the tubing from the well and either replace the Teflon tubing and bladder with new dedicated tubing and bladder or rigorously decontaminate the existing materials.

NOTE: Purging should be completed immediately prior to sample collection although it is acceptable to purge and then collect samples within 24 hours. During purging, water level measurements may be taken regularly at 15- to 30-second intervals. This data may be used to compute aquifer transmissivity and other hydraulic characteristics.

- Low Stress (low flow) purging and Sampling Procedure for the Collecting of Groundwater Samples From Monitoring Wells, U.S.EPA, September 2010
- Field Sampling guidance Document # 1220 Groundwater Well Sampling, U.S.EPA, September 2004
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011

STANDARD OPERATING PROCEDURE -FIELD SCREENING **AND CALIBRATION**

RKI Eagle Gastech and Mini Rae Photo-Ionization Detector

Introduction

Field screening is an important tool in that it provides data for onsite, real time total vapor measurements, evaluation of existing conditions, sample location optimization, extent of contamination, and health and safety evaluations.

RKI Eagle

Portable Multi-Gas Detector

The gastech can be used for reading headspace values in soil and water (wells). There are two types of 'Gastechs' in the Terraprobe office, the RKI Eagle 1 and Eagle 2. These portable gas detectors assist in screening field samples on many projects.

Portable VOC Monitor (Mini Rae 2000)

Portable VOC Monitors or PIDs (photo-ionization detector) monitors VOCs using the photo-ionization detector. If screening is required for VOCs, then this machine can be used. The PIDs are also used for health and safety for workers in enclosed spaces (such as trenches) in a known contaminated area.

Equipment Required

For Cailbration

- Canister of gas (Hexane at 400ppm for Eagle 1, Hexane at 1650ppm for Eagle 2, Isobutylene at 100ppm for PID)
- Regulator.
- Tubing to attach probe to canister.

Field Screening

- Eagle or Mini Rae
- Nitrile Gloves
- Slider Bags
- Sampling Plan (from project manager)

- Access Agreements (if required)
- Field Notebook and/or Field Sheets Appropriate Sampling Jars

Procedure (Calibration)

In order to ensure accuracy in the field, Terraprobe calibrates its Gastechs and PIDs each time they will be in the field.

There are three different gas canisters – one for the Eagle 1, the other for the Eagle 2 and a third for the MiniRae. The Eagle 1 is calibrated using the concentration of 400ppm while the Eagle 2 is calibrated with the concentration of 1650ppm. The PID is calibrated with Isobutylene at a concentration of 100ppm. Calibrating each machine is similar in principle but there are differences due to the different models we are using.

Eagle 1:

- 1. Take the Eagle to a fresh-air location
- 2. Turn the Eagle on and allow one minute for warm up
- 3. Hold the AIR button until a tone sounds
- 4. Press and hold SHIFT/▼ and then press the DISP/ADJ button. This will display the Calibration menu.
- 5. Select Single Calibration, press Enter
- 6. Press Enter to select HEX
- 7. The screen displays the channel selected, and the gas reading will flash
- 8. Connect the tubing from the regulator to the Eagle's probe.
- 9. If needed, use the AIR /▲ and SHIFT/▼ buttons to adjust the reading to match the concentration on the cylinder.
- 10. Press the ENTER button to set the value. Single Calibration will end and the menu will display.
- 11. Disconnect the tubing from the probe.
- 12. With the single calibration menu still displayed, use the SHIFT/▼ button until the ESC message displays, then press the ENTER button to return to the Calibration menu.
- 13. Press the SHIFT/▼ button to place the arrow next to Normal Operation and then press ENTER to return to the normal screen.

Eagle 2:

- 1. Take the Eagle to a fresh-air environment.
- 2. Turn the Eagle on and allow one minute for warm up.
- 3. Press and hold the RANGE/SHIFT button, when press the DISPLAY/ADJUST/NO button and release both buttons.
- 4. The Calibration Mode Screen displays with the cursor beside Auto Calibration.
- 5. Set the fresh air reading by: Moving the cursor to the Perform Air Adjust menu item by using the RANGE/SHIFT button. Press and release the POWER/ENTER/RESET button. The screen will say "Perform Air Adjust?" Press the AIR/YES button to continue. The Eagle 2 will indicate it is adjusting the zero reading before it returns to the Calibration Mode Screen.
- 6. Move the cursor to Single Calibration menu item by using the AIR/YES button.
- 7. Press and release the POWER/ENTER/RESET button. The "Select Sensor Screen" appears with the cursor flashing.
- 8. Move the cursor next to the sensor you want to calibrate with the AIR/YES and RANGE/SHIFT buttons.
- 9. Press and release the power enter reset button to proceed to the Single Calibration Gas Value screen. The calibration gas value is flashing
- 10. If necessary, adjust the calibration gas value to match the cylinder concentration with the air/yes and range/shift buttons.
- 11. Press and release the power/enter/reset button to proceed to the single calibration apply gas screen. Cal in Process is flashing.
- 12. Connect the tubing from the demand flow regulator to the probe. Allow the Eagle 2 to draw gas for one minute.

Mini Rae PID Calibration

- 1. Bring the Mini Rae to a fresh air environment.
- 2. Push the MODE and N/- buttons together to access a sub menu.
- 3. "Fresh Air Cal?" will appear.
- 4. Press the Y/+ key, the display shows "zero in progress" followed by "wait" and a countdown timer.
- 5. After about 15 seconds, the display shows the message "zeroed... reading = X.Xppm..." Press any key or wait, the monitor will return to "Fresh Air Calibration?" menu.
- 6. Connect the tubing to the regulator on the gas cylinder.
- 7. Press the Y/+ key at the "Span Cal?" to start calibration. The display shows the gas name and the span value of the corresponding gas.
- 8. The display shows "Apply gas now!" Turn on the valve of the span gas supply.

- 9. Display shows "wait... 30" with a countdown timer showing the number of remaining seconds while the monitor performs the calibration.
- 10. When the countdown timer reaches 0, the display gas shows the calibrated value.
- 11. After a span calibration is completed, the display will show the message "Span Cal Done! Turn Off Gas!"
- 12. Turn off the flow of gas and disconnect the calibration tubing from the Mini Rae.
- 13. Press any key to return to the sub menu. Press MENU to return to main menu and being operations.

Procedure (Field Screening)

- 1. Place soil sample in a slider bag and gently break up the pieces.
- 2. Using the Eagle, insert the probe into the bag and hold it above the soil. Do NOT put the probe in the soil. Wait 30 seconds for the probe to read the soil vapour.
- 3. Record the value and remove the probe from the slider bag.
- 4. PIDs can be used the same way HOWEVER, it must be noted that if sampling for VOCs, the sample must be preserved within 10-12 seconds of sampling. This means that any sample that is potentially going to be jarred must have a methanol vial stored immediately.
- 5. Using the probes to measure headspace readings in a well follows the same basic principles. Open the j-plug or slip cap and quickly insert the probe into the top of the well taking extreme caution not to allow the probe to touch any water, and cover the top of the well with your hand.
- 6. Wait 30 seconds for the probe to establish a reading.
- 7. Remove the probe and record the value.

- US EPA Field Sampling Guidance Document #1210 "Soil Sampling for Volatile Compounds"
- MiniRae 2000 Portable VOC Monitor Operation and Maintenance Manual, Rev. C
- US EPA Field Screening Methods Catalog User's Guide
- Instruction Manual Eagle Series Portable Multi Gas Detector. Rev.H.
- RKI Eagle 2 Operator's Manual. Rev. Q.

STANDARD OPERATING PROCEDURE - FIELD MEASUREMENT OF WATER QUALITY INDICATORS

YSI 63 Hand-held System

Introduction

Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken. The YSI 63 Hand-held system can be used with all ground water sampling methods (manual or low-flow).

YSI 63's micro-processor allows the system to be easily calibrated with the press of a few keys. Additionally, the micro-processor performs a self-diagnostic routine each time the instrument is turned on. The self-diagnostic routine provides useful information about the function of the instrument and probe.

Equipment Required

- Interface or Water Level Meter
- Water pump or bailer
- Nitrile Gloves
- Bucket and/or Graduated Cylinder
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)

- 1. Review sampling plan and monitoring well locations with project manager
- Review borehole logs and determine monitoring well depths and well screen locations.
- 3. Determine what equipment and supplies are required.
- 4. Obtain necessary sampling and monitoring equipment.
- 5. Decontaminate or pre-clean equipment, and ensure that it is in working order.
- 6. Calibrate pH and Conductivity on the YSI 63 Hand-held System as follow:
 - a. Prior to Calibration
 - i. Ensure all sensors are immersed in calibration solutions. The top vent hole of the conductivity sensor must be immersed.

- ii. Fill a bucket with ambient temperature water to rinse the probe module between calibration solutions. Prepare clean, absorbent paper towels or cotton cloth available to dry probe module between rinses. This reduces carry-over contamination and increase accuracy of the calibration.
- b. pH Calibration (pH calibration on YSI 63 <u>MUST</u> be performed before taking pH measurements)
 - i. Accessing the calibration screen from the main menu by pressing <u>up arrow and down</u> arrow at the same time.
 - ii. Calibration may be performed at 1, 2 or 3-points (at pH 7, 4 and 10, or at pH 6.86, 4.01 and 9.18). Perform a 1-point calibration (at pH 7 or at pH 6.86) ONLY if a previous 2 or 3-point calibration has been performed recently. In most cases, a 2-point pH calibration will be sufficient for accurate pH measurements, but if the general range of pH in the sample is not known, a 3-point calibration may be necessary. Enter the calibration standard of choice.
 - iii. First calibration must be either pH 7 or pH 6.86.
 - iv. Place 30 to 35 mL of the pH buffer you have chosen to calibrate the system with (pH 7 or 6.86) in the 100 mL graduated cylinder. The graduated cylinder minimizes the amount of solution needed.
 - v. Exit the calibrate menu and rinse the probe module and sensors in tap or purified water and dry. Repeat step ii to iv for 2- and 3-point buffers using the corresponding pH buffer solutions.
- c. Conductivity Calibration (system calibration is rarely required because of the factory calibration of YSI 63)
 - i. Accessing the calibration screen from the main menu.
 - ii. It is recommended that the conductivity standard chosen should be within the same conductivity range as the samples to be measured (fresh water = 1 mS/cm; brackish water = 10 mS/cm; seawater = 50 mS/cm).
 - iii. Carefully immerse the sensor end of probe module into the solution. Do not use 100 mL graduated cylinder because the diameter of the cylinder is too small for accurate conductivity measurements.
 - iv. Move the probe vigorously from side to side to dislodge any air bubbles from the electrodes.
 - v. Be sure to enter the value in mS/cm at 25°C and allow at least one minute for temperature equilibration before proceeding.
 - vi. It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
 - vii. Press the <u>up arrow and down arrow</u> and the same time to record calibration and rinse the probe module and sensors in tap or purified water and dry.
- 7. Coordinate with project manager and clients, as required, for site access.
- 8. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 9. Identify and mark all sampling locations.
- 10. Start sampling at the least contaminated monitoring well.
- 11. Remove locking well cap, note location time of day, and date in your notebook

- 12. Remove well casing cap.
- 13. Lower water level measuring device or equivalent into well until water surface is encountered.
- 14. Measure distance from water surface to reference measuring point on well casing and in field notebook. Alternatively, if there is no reference point, note that water level measurement is from top of steel casing, top of PVC riser pipe, from ground surface.
- 15. Measure total depth of well. Repeat at least twice to confirm measurement and record in field notebook.
- 16. Calculate the volume of water in the well and record in field notebook.
- 17. Select the appropriate purging and sampling equipment.
- 18. Lower the pump into the well. Make sure the pump is deep enough so that purging does not evacuate all the water and that the pump is located at the depth of the well screen
- 19. Attach power supply, and purge well until field parameters (such as temperature, pH, conductivity, etc.) have stabilized. Field parameters are measured by placing the YSI 63 Hand-held system in a measuring container (bucket or 100 ml cylinder). When field parameters are measured record the measurements, the elapsed time, the flow rate and the water level in the monitoring well. Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, lower the pump further into the well, and continue pumping.
 - a. If the calculated purge volume is small, the measurements should be taken frequently to provide a sufficient number of measurements to evaluate stability (every ½ casing volume). If the purge volume is large, measurements taken every ½ to 1 casing volume may be sufficient.
 - b. Stabilization occurs when:
 - i. Conductivity (± 3%),
 - ii. Temperature (\pm 3%),
 - iii. pH (\pm 0.1 unit),
 - iv. Salinity (determined automatically from conductivity and temperature readings).
 - c. If after three well volumes have been removed, the chemical parameters have not stabilized according to the above criteria, additional well volumes should be removed.
 - d. If the field parameters have not stabilized within five volumes, contact the project manager to determine whether or not to collect a sample or to continue purging.
- **20.** Collect and dispose of purge waters as specified in the site-specific sampling plan.

- Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, U.S.EPA, April 1996
- Field Sampling guidance Document # 1220 Groundwater Well Sampling, U.S.EPA, September 2004
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011
- YSI 63 MPS Operations Manual, YSI Environmental, January 2007

STANDARD OPERATING PROCEDURE - FIELD MEASUREMENT OF WATER QUALITY INDICATORS

YSI 556 Flow-through System

Introduction

Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken. It is recommended to use the YSI 556 Flow-through system with low flow sampling methods in order to facilitate equilibrium with the surrounding formation water and produces samples that are representative of the formation water.

YSI 556 Flow-through system can simultaneously measure water quality parameters while utilizing a flow cell to give continuous data.

Equipment Required

- Interface or Water Level Meter
- Water pump (Bladder Pump or Peristaltic Pump)
- Controller Unit and Batteries
- Required Replacement Bladders (if Bladder Pump is used)
- Required Teflon Tubing
- Required String/Rope (if Bladder Pump is used)
- Nitrile Gloves
- Bucket
- Graduated Cylinder
- Stop Watch
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)

- 1. Review sampling plan and monitoring well locations with project manager
- Review borehole logs and determine monitoring well depths and well screen locations.
- Determine what equipment and supplies are required.
- Obtain necessary sampling and monitoring equipment.

- 5. Decontaminate or pre-clean equipment, and ensure that it is in working order.
- 6. Calibrate all the sensors (with the exception of temperature) on the YSI 556 Flow-through System as follow:

a. Prior to Calibration

- i. The transport/calibration cup comes with the probe module serves as a calibration chamber; however, laboratory glassware may be used.
- ii. Ensure all sensors are immersed in calibration solutions. The top vent hole of the conductivity sensor must be immersed.
- iii. Fill a bucket with ambient temperature water to rinse the probe module between calibration solutions. Prepare clean, absorbent paper towels or cotton cloth available to dry probe module between rinse ands and calibration solutions. This reduces carry-over contamination and increase accuracy of the calibration.

b. Conductivity Calibration

- i. Accessing the calibration screen from the main menu.
- ii. Choose conductivity calibration, then *specific conductance*. The recommended calibration solution volume is 55 ml for both upright and upside down orientation.
- iii. It is recommended that the conductivity standard chosen should be within the same conductivity range as the samples to be measured (fresh water = 1 mS/cm; brackish water = 10 mS/cm; seawater = 50 mS/cm).
- iv. Carefully immerse the sensor end of probe module into the solution and rotate or move up and down to remove any bubbles from the conductivity cell.
- v. Secured transport/calibration cup on the threaded end of the probe module and prevent over tighten.
- vi. Enter the calibration standard of choice. Be sure to enter the value in mS/cm at 25°C and allow at least one minute for temperature equilibration before proceeding.
- vii. Observe reading under *specific conductance*. It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
- viii. Escape the calibrate menu and rinse the probe module and sensors in tap or purified water and dry.

c. Dissolved Oxygen Calibration

- i. Accessing the calibration screen from the main menu and choose DO calibration.
- ii. Calibrate either % or mg/L automatically calibrates the other.
- iii. **For %:** Place 3mm (1/8 inch) of water in the bottom of the transport/calibration cup and place the probe module in the transport/calibration cup (ensure DO and temperature sensors are not immersed in the water).
- iv. Engaged only 1 or 2 threads of the transport/calibration cup to ensure the DO sensor is vented to the atmosphere. Enter the current local barometric pressure (no entry is required if *optional barometer* unit is present).
- v. Allow approximately <u>ten minutes</u> for the air in the calibration cup to become water saturated and for the temperature to equilibrate before proceeding. Start calibrating.

- vi. **For mg/L:** Place the probe module in water with a known DO concentration (immerse all the sensors). Proceed to enter the known DO concentration of the water.
- vii. Stir the water with a stir bar or rapidly move the probe module to provide fresh sample to the DO sensor. Allow at least <u>one minute</u> for temperature equilibration before proceeding.
- viii. For % and mg/L: It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
- ix. Escape the calibrate menu and rinse the probe module and sensors in tap or purified water and dry.

d. pH Calibration

- i. Accessing the calibration screen from the main menu
- ii. Choose **1-point** if you are adjusting previous calibration; **2-point** if the media being monitor is known to be either basic or acidic (use two calibration standards); **3-point** assures maximum accuracy when the pH of the media cannot be anticipated. Always calibrate with buffer 7 first regardless of calibration options.
- iii. Recommended calibration solution volume is <u>30 ml</u> for upright orientation and <u>60 ml</u> for upside down orientation.
- iv. Immerse the sensor end of the probe module into the solution and gently rotate the probe to remove any bubbles from the pH sensor. Secure the calibration cup to the probe module.
- v. Enter the calibration value of the buffer for current temperature. Allow at least <u>one minute</u> for temperature equilibration before proceeding.
- vi. It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
- vii. Escape the calibrate menu and rinse the probe module and sensors in tap or purified water and dry.
- viii. Repeat step d-iii to d-vii using a second pH buffer (for 2-point/3-point options)

e. ORP Calibration

- i. Accessing the calibration screen from the main menu and choose ORP calibration.
- ii. Placed either 30 ml (upright) or 60 ml (upside down) of known ORP solution into a calibration cup.
- iii. Rotate probe module up and down to remove any bubbles from the OPR sensor.
- iv. Secured transport/calibration cup on the threaded end of the probe module and prevent over tighten.
- v. Enter correct calibration solution value at the current temperature as shown below:

Temperature °C	Zobell Solution Value, mV
-5	270.0
0	263.5
5	257.0

Temperature °C	Zobell Solution Value, mV
10	250.5
15	244.0
20	237.5
25	231.0
30	224.5
35	218.0
40	211.5
45	205.0

- vi. Allow at least <u>one minute</u> for temperature equilibration before proceeding. It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
- vii. Escape the calibrate menu and rinse the probe module and sensors in tap or purified water and dry.
- 7. Coordinate with project manager and clients, as required, for site access.
- 8. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 9. Identify and mark all sampling locations.
- 10. Start sampling at the least contaminated monitoring well.
- 11. Remove locking well cap, note location time of day, and date in your notebook
- 12. Remove well casing cap.
- 13. Lower water level measuring device or equivalent into well until water surface is encountered.
- 14. Measure distance from water surface to reference measuring point on well casing and in field notebook. Alternatively, if there is no reference point, note that water level measurement is from top of steel casing, top of PVC riser pipe, from ground surface.
- 15. Measure total depth of well. Repeat at least twice to confirm measurement and record in field notebook
- 16. Calculate the volume of water in the well and record in field notebook.
- 17. Select the appropriate purging and sampling equipment.
- 18. Lower the pump into the well to the. Make sure the pump is deep enough so that purging does not evacuate all the water and that the pump is located at the depth of the well screen
- 19. Purge well until field parameters (such as temperature, pH, conductivity, etc.) have stabilized. Field parameters are measured by attaching the YSI 556 multi probe system to a flow through cell. When field parameters are measured record the measurements, the elapsed time, the flow rate and the water level in the monitoring well. Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, lower the pump further into the well, and continue pumping.
 - a. If the calculated purge volume is small, the measurements should be taken frequently to provide a sufficient number of measurements to evaluate stability (every 15 to 30 seconds). If the purge volume is large, measurements taken every 5 to 10 minutes may be sufficient.
 - b. Stabilization occurs when:

- i. <u>Turbidity</u> (± 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized),
- ii. <u>Dissolved Oxygen</u> (± 10% for values greater than 0.5 mg/L, if three Dissolved Oxygen values are less than 0.5 mg/L, consider the values as stabilized),
- iii. Conductivity (± 3%),
- iv. Temperature $(\pm 3\%)$,
- v. \underline{pH} (± 0.1 unit),
- vi. Oxidation/Reduction Potential (± 10 millivolts).
- c. If after three well volumes have been removed, the chemical parameters have not stabilized according to the above criteria, additional well volumes should be removed.
- d. If the field parameters have not stabilized within five volumes, contact the project manager to determine whether or not to collect a sample or to continue purging.
- 20. Collect and dispose of purge waters as specified in the site-specific sampling plan.

- Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, U.S.EPA, April 1996
- Low-Flow Sampling of Water Quality Parameters Used in Determining Groundwater Stability, YSI Environmental, 2005
- Field Sampling guidance Document # 1220 Groundwater Well Sampling, U.S.EPA, September 2004
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011
- YSI 556 MPS Operations Manual, YSI Environmental, August 2009

STANDARD OPERATING PROCEDURE – WELL INSTALLATION

Introduction

All wells are to be constructed with flush-thread joints and factory-slotted screen. Terraprobe monitoring wells are 2-inch (50 mm) inside diameter PVC unless otherwise stipulated or required by site specific standards or sampling requirements. Other possible well diameters and materials include:

- 1-inch (25 mm) PVC,
- 1.5 -inch (37 mm) PVC,
- 4-inch (100mm) steel,
- 6 inch (150 mm) steel,
- 10 inch (255 mm) steel and;
- 3 foot (915 mm) concrete.

Water washed silica sand is used for the filter pack, bentonite is used to create a seal above the screen to just below the surface and sand is added to ground level. Well casings are installed using cement to secure them.

Notes:

- Monitoring wells are to be installed by a licenced well driller only.
- The installation procedures outlined in this document are for reference only to insure familiarization with the process.
- The installation procedures outlined in this document are for the installation of a typical 2-inch PVC monitoring well.
- Maximum length of well screen allowed under O.Reg. 153/04 is 3 m (10 feet)
- A MOE Well Record is required under O.Reg. 903 if:
 - The monitoring well is greater than 3 m (10 feet) and/or
 - The monitoring well will be in place longer than 30 days
- Well Records can be either for a single well or a group of wells (cluster).
- A well cluster record can be written only if all the wells are within the same property, or adjacent properties owned by the same owner.

Equipment Required

- Interface or Water Level Meter
- Field Notebook and/or Field Sheets
- Well Keys/Locks or Tools Required
- PVC Pipe (risers/casing)
- PVC Screen
- J-Plugs
- Flush Mount Casing or Above Grade Casing
- Bentonite
- Silica Sand
- Sampling Plan (from project manager)
- Access Agreements (if required)

- 1. After borehole completion, measure total depth before riser casing and screen are installed and before the augers are removed. This confirms drilling depths are accurate.
- 2. Decontaminate screen and casing (typically done off-site by water well driller), check that casing sections are straight and not cracked or damaged.
- 3. Verify and record diameter and lengths of casings and screen.
- 4. The casing/screen will be installed by:
 - a. Placing an end cap on the screen section
 - b. Attaching a section of riser to the screen and lowering into the borehole
 - c. Additional sections of riser will be added and lowered into the borehole until the desired screened interval is reached
- 5. Record the length of screen and riser pipe used for the monitoring well.
- 6. Verify and record that the proper filter (sand) pack has been selected.
- 7. The sand is poured into the space around the screen. Ensure it fills the hole to at least two feet above the screen.
 - a. In hollow stem auger wells, the sand pack must be poured down the hollow stem of the augers. Augers are then pulled out of the borehole in 2-1/2 to 5 feet increments, sand is poured and level measured with a weighted tape.
- 8. Use a weighted tape and take continuous measurements while the sand is being poured to ensure proper installation. Pack the sand down to verify.
- 9. Record how much sand is used.
- 10. A bentonite seal is placed directly above the sand pack, minimum two feet thick, and should extend into the next soil strata.
- 11. Record how much bentonite is used.
- 12. A grout seal is then placed above the bentonite and can be a mixture of cement, bentonite, sand and water.

- 13. Surface completion is to be completed one of two ways.
 - a. Above grade: Locking well cover sticking above grade, secured by lock and key.
 - b. At grade: Flush mount casing, lock with ratchet bolts or allen key.
- 14. Each casing is installed over the PVC pipe and cemented into place.
- 15. Record GPS coordinates and measure stick up (if above grade).
- 16. Confirm that a well record will be completed for the monitoring well. Confirm the information to be submitted on the well record or the cluster of wells.
- 17. Survey the completed monitoring well to a geodetic or recoverable benchmark

- Geotechnical Field Investigations, Terraprobe Ltd, July 26, 1990
- Ontario Water Resources Act R.R.O. 1990 Regulation 903 Wells
- Environmental Protection Act Ontario Regulation 153/04

STANDARD OPERATING PROCEDURE - SOIL SAMPLING

VOC

Introduction

To properly screen for VOC and PHC F1 that may be present in the soil, it is necessary to preserve ALL samples. Upon retrieval of soil samples from borehole and test pit investigations, soil should be placed in methanol vials as quickly as possible (within 10 to 15 seconds after retrieval). Temporary storage of soil in split spoons, jars or ziplock bags is not permitted.

Field screening may still be used to decide which samples will be submitted for analysis but all potential samples must be immediately chemically preserved. Once the VOC or PHC F1 sample has been collected the remaining portion of the sample can be placed into plastic bags and sealed tightly with a nominal head space. Upon completion of each borehole, gas tech or PID readings can be taken of each sample collected to determine which sample(s) will be submitted for chemical analysis.

In addition to samples collected in methanol vials, a separate container must be collected to determine moisture content. The same jars that are used to collect other soil samples are appropriate containers (60ml or 120ml).

Equipment Required

- Nitrile Gloves
- Field Parameter Measurement Device (Gastech, PID)
- Laboratory Sample Bottles
- Terracores or sampling syringes (sampler)
- Field Notebook and/or Field Sheets
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Ice

- 1. Review sampling plan and sampling locations with project manager
- Determine what equipment and supplies are required.

- 3. Obtain necessary sampling and monitoring equipment.
- 4. Coordinate with project manager and clients, as required, for site access.
- 5. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 6. Identify and mark all sampling locations.
- 7. Assemble the appropriate laboratory supplied bottles.
- 8. Collect the sample to be analyzed
 - a. Borehole split spoon, sample from spoon
 - b. Test pit, collect sample in bag from excavator bucket, then sample immediately
- 9. Push the sampler into the soil to retrieve the sample.
- 10. Remove the sampler from the soil.
- 11. Clean off loose soil that may be on the outside of the sampler and remove extra soil if applicable.
- 12. Place the mouth of the sampler into the 40ml methanol vial.
- 13. Ensure vial is at an angle to reduce the chance of splashing chemical.
- 14. Collect samples in the laboratory supplied bottle
- 15. Log all samples in the site logbook and label all samples.
- 16. Package samples and complete necessary paperwork.
- 17. Transport sample to staging area for preparation for transport to analytical laboratory.

- Field Sampling guidance Document # 1210 Soil Sampling for Volatile Compounds, U.S.EPA,
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011

STANDARD OPERATING PROCEDURE – WELL DEVELOPMENT

Introduction

Monitoring well development is necessary to ensure that complete hydraulic connection is made and maintained between the well and the aquifer material surrounding the well screen and filter pack. It also serves to restore the groundwater properties disturbed during drilling.

Most common techniques at Terraprobe include 'surging', and bailing, often used together. Other development methods that may be used include jetting, airlift, and submersible pump methods. Jetting is typically not used as a development method for environmental investigations, but is commonly used for water resource monitoring wells or drinking water wells. Generally a phased process is used to develop wells, starting with a gentle bailing phase to remove sand, followed by a surging phase, and finally a pumping phase after the well begins to clear up.

After a well is first installed, and in fact, often before the bentonite pellet seal is set, gentle bailing is used to remove water and sand from the well. Bailing can be accomplished through the use of dedicated bailers or Waterra inertia pumps. The purpose of this technique is used to settle the sand pack. After further well sealant materials have been added and allowed to set for approximately 48 hours, bailing is resumed as part of well development. The purpose of bailing is to remove any fine material that may have accumulated in the well, and start pulling in natural material into the sand pack. Bailing is often conducted until the sand content in the removed water begins to decrease.

After the sand content begins to decrease, surging is conducted. A surge block is used to move sediments from the filter pack into the well casing. All surge blocks will be constructed of materials that will not introduce contamination into the well. Surge blocks should have some manner of allowing pressure release to prevent casing collapse. Terraprobe uses Waterra surge blocks which fit onto Waterra inertia pumps. The surge block is moved up and down the well screen interval and then removed, followed by a return to bailing to remove any sand brought into the well by the surging action. Care should be taken to not surge too strongly with subsequent casing deformation or collapse; the well screen interval is often the weakest part of a well. Surging should be followed by additional bailing to remove fine materials that may have entered the well during the surging effort.

After surging has been completed and the sand content of the bailed water has decreased, a submersible pump or inertia pump is used to continue well development. The pump should be moved up and

down the well screen interval until the obtained water is relatively clear. Well development will continue until the water in the well clarifies and monitoring parameters such as pH, specific conductivity, and temperature stabilize as defined in the project-specific planning documents. It should be noted that where very fine-grained formations are present at the screened interval, continued well development until clear water is obtained might be impossible. Decisions regarding when to cease development where very fine-grained conditions exist should be made between the field supervisor and project manager.

During well development pH, specific conductivity, temperature, and turbidity should be monitored frequently to establish natural conditions and evaluate whether the well has been completely developed. The main criterion for well development is clear water (Nephelometric turbidity units or NTU of less than 5). As mentioned above, clear water can often be impossible to obtain with environmental monitoring wells. A further criterion for completed well development is that the other water quality parameters mentioned above stabilize to within 10 percent between readings over one well volume. The minimum volume of water purged from the well during development will be approximately a minimum of 3 borehole volumes (wells will typically not reach stabilization of water quality parameters before this condition is achieved and may not have reached stability even after this threshold has been achieved).

Equipment Required

- Interface or Water Level Meter
- Nitrile Gloves
- Water Quality Meter (EC, pH, Temperature)
- Bucket
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Waterra
- Waterra cutters (avoid using knives)
- Surge Blocks (if required)
- Foot valves
- Storage for contaminated (or suspected contaminated) water.
- Access Agreements (if required)

- 1. Review monitoring well locations with project manager
- 2. Review borehole logs and determine monitoring well depths and well screen locations.
- 3. Obtain Waterra tubing, foot valves and surge blocks.
- 4. Coordinate with project manager and clients, as required, for site access.
- 5. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 6. Identify and mark all monitoring wells.

- 7. Open the monitoring well and take initial readings (ie; head space air monitor readings, water level, well depth) and record in the field notebook.
- 8. Organize equipment.
- 9. Bailing the monitoring well:
 - a. Calculate casing volume to determine the ideal amount to be purged (three casing volumes).
 - b. Attach foot valve to that end of Waterra
 - c. Slowly lower Waterra down the well. Once it hits the bottom, leave some extra Waterra above the top of the well to easily handle pumping and cut the Waterra.
 - d. Slowly remove three casing volumes from the monitoring well.
 - e. Dispose of purged water in barrels if known or suspected contaminates are of concern, or however the project manager instructs.
- 10. Surging the monitoring well
 - a. Slip surge block onto the end of the Waterra and reattach the foot valve, securing the surge block
 - b. Place surge block and Waterra back into the monitoring well
 - c. Raise and lower the surge block along the screen. (Should be able to feel location of the well screen)
 - d. Continue surging for 5-10 minutes.
- 11. Final purge of the monitoring well
 - a. Remove surge block from Waterra
 - b. Lower the Waterra back down the well. Begin pumping water out of the well, taking care to note water quality and appearance (smell, clarity, etc.).
 - c. Continue to purge the monitoring well until the following water quality parameters have stabilized:
 - i. <u>Turbidity</u> (± 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized),
 - ii. Conductivity (± 3%),
 - iii. Temperature (± 3%),
 - iv. \underline{pH} (± 0.1 unit),
 - d. Dispose of purged water in barrels if known or suspected contaminates are of concern, or however the project manager instructs.
- 12. Record final measurements in field book, record date, water level before and after development, quantity of water removed, equipment used and techniques (surge and purge, or purge only).

- ASTM Standard Practice and Installation of Ground Water Monitoring Wells in Aquifers
- EPA SOP#2044 Well Development March 10, 199

APPENDIX E

Borehole Logs

TERRAPROBE INC.

LOG OF BOREHOLE 1

Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : MC

Date started : January 29, 2018 Project: Trails of Collingwood-High Street & Telfer Road Compiled by : AS

Sheet No. : 1 of 1 Location: Collingwood, Ontario Checked by: BW

Position : E: 561310, N: 4926133 (UTM 17T) Elevation Datum : Geodetic

Rig typ	e :	: Track-mounted				Drilling	Method	
Ę L		SOIL PROFILE			SAMP		ale .	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity 8 Lab Da
Depth	Elev lepth (m) 88.7	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Blows / 0.3m) X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined Pocket Penetrometer 40 80 120 160 10 20 30 10 20 30 Comme PL MC LL Plastic Water Content Limit Water Content Li
	88.5	200mm TOPSOIL	7 <u>7 1</u> 4					Artesian conditions encountered
	0.2 88.1	FILL, silty sand, trace clay, trace gravel, loose, brown, moist		1	SS	5	-	PID: 0 SS1 Analysis: M&I, Pest.
1	0.6	SANDY SILT, trace clay, trace gravel, loose, brown, wet		2	SS	6	188 -	PID: 0 □ SS2 Analysis: M&I, Pestat 0.9m, spoo
11	86.9	large stone at tip of spoon, very dense		3	SS	50 / 125mm	187 –	-PID: 0
2	1.8	SILTY SANDY GRAVEL, some clay,	0	_				
		grey, wet (GLACIAL TILL)	0 0 0	4	AS	1	-	PID: 0 34 30 2
3			0	5	SS	19	186 –	PID: 0
		compact	0 0				-	
4			0 0 0				185 -	
5 1	83.7	very dense	o. O	6	SS	57 / 200mm	184 –	-PID: 0
	5.0	END OF BOREHOLE						at 5.0m, auge refusal
Auger refusal					WATER LEVEL READINGS			

Auger refusal

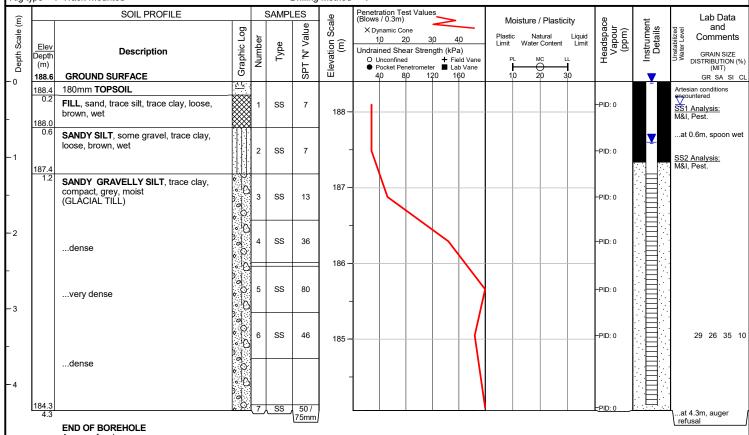
Unstabilized water level measured at 0.9 m below ground surface; borehole was open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS

Elevation (m) 188.6 n/a

187.9


Project No. : 1-17-0918 Client : Trails of Collingwood Originated by: MC

Date started : January 29, 2018 Project : Trails of Collingwood-High Street & Telfer Road Compiled by : AS

Checked by: BW Sheet No. : 1 of 1 Location: Collingwood, Ontario

Elevation Datum : Geodetic Position : E: 561356, N: 4926123 (UTM 17T)

Drilling Method Rig type Track-mounted

Auger refusal

Unstabilized water level measured at 0.3 m below ground surface; borehole was open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS

<u>Date</u> Feb 13, 2018 Feb 28, 2018 Water Depth (m) Elevation (m) 0.0 (ag)* -0.1 (ag)* 0.8 n/a Mar 24, 2020

: 1-17-0918 Client : Trails of Collingwood Originated by : MC Project No.

Date started : January 29, 2018 Project : Trails of Collingwood-High Street & Telfer Road Compiled by : AS

Sheet No. : 1 of 1 Location: Collingwood, Ontario Checked by: BW

Position : E: 561382, N: 4926186 (UTM 17T) Elevation Datum : Geodetic

Rig t	/pe :	I rack-mounted				Drilling	Method	<u>:</u>	
Depth Scale (m)	Elev Depth (m)	SOIL PROFILE Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	Penetration Test Values Blows / 0.3m) X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined	Lab Data and Comments Parilipation Washington William Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CI
- 0 -	188.4 0.2	200mm TOPSOIL FILL, silty sand, trace gravel, trace organics, trace clay, loose, brown, moist	<u></u>	1	SS	5	188 –		Artesian conditions encountered SS1 Analysis: M&I, Pest.
-1	0.6	SANDY SILT , some gravel, trace clay, loose, grey, wet		2	SS	9	-	-PID: 0 ▼	at 0.6m, spoon wet SS2 Analysis: M&I, Pest.
-	186.8			3	SS	3	187 –	PID: 0	10 22 56 12
-2	1.8 186.2	SANDY GRAVELLY SILT, trace clay, compact, grey, wet		4	SS	1	-	PID: 0	
-3	2.4	SILTY SANDY GRAVEL, trace clay, grey, wet (GLACIAL TILL)compact		5	SS	18	186 -	-PID: 0	
_	184.9	dense	0000	6	SS	32	185 –	-PID: 0	1 of 2.7m ougor
	3.7	END OF BORFHOLE							at 3.7m, auger refusal

END OF BOREHOLE

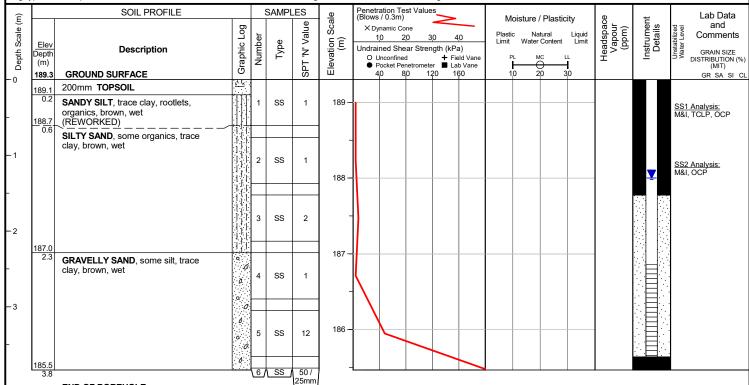
Auger refusal

Unstabilized water level measured at 0.3 m below ground surface; borehole was open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS

Peb 13, 2018 Feb 28, 2018 Mar 24, 2020 Water Depth (m) 0.0 (ag)* -0.1 (ag)* 0.9 Elevation (m) n/a n/a 187.7


Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started: March 10, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁŒ

Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by : ÁÓY

Position : E: 561222, N: 4926049 (UTM 17T) Elevation Datum : Geodetic

Rig type : Geoprobe Drilling Method : Hollow stem augers

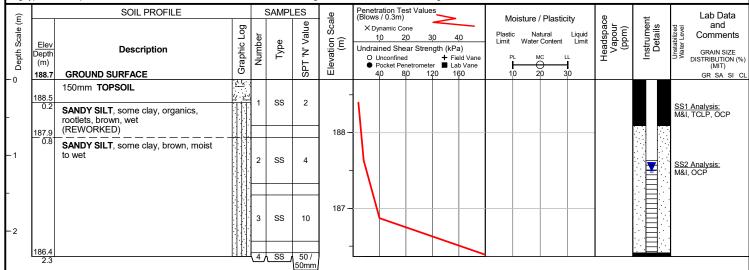
END OF BOREHOLE Auger refusal

Augei reiusai

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.


 $\begin{array}{c|c} WATER \ LEVEL \ READINGS \\ \underline{\textbf{Date}} & \underline{\textbf{Water Depth (m)}} & \underline{\textbf{Elevation (m)}} \\ Mar \ 24, 2020 & 1.3 & 188.0 \end{array}$


Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started: March 9, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁDET

Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by :ÁOY

Rig type : Geoprobe Drilling Method : Hollow stem augers

END OF BOREHOLE

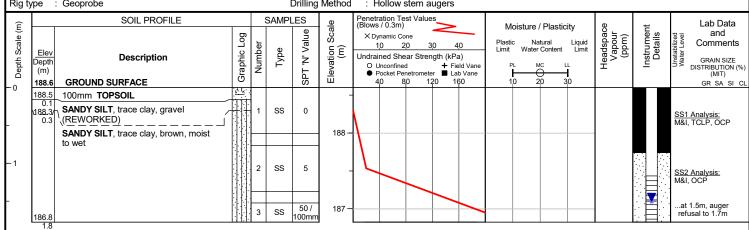
Auger refusal

WATER LEVEL READINGS

<u>Date</u> <u>Water Depth (m)</u> <u>Elevation (m)</u>
Mar 24, 2020 1.€2 187.7

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.


: 1-17-0918 Originated by : JSB Project No. Client : Trails of Collingwood

Date started : March 9, 2020 Project : Trails of Collingwood-High Street & Telfer Road Compiled by :ÁOET

Location: Collingwood, Ontario Checked by :ÁÓY Sheet No. : 1 of 1

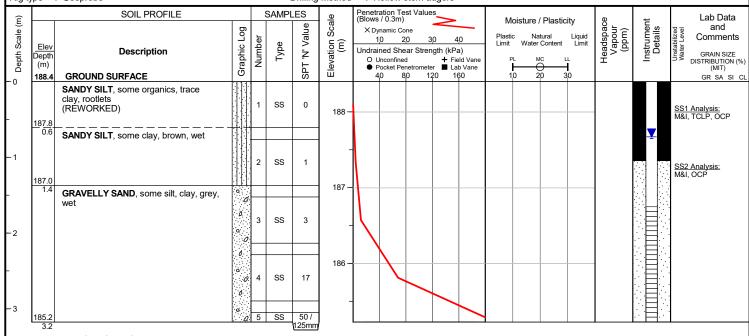
Drilling Method : Hollow stem augers Geoprobe

END OF BOREHOLE

Auger refusal

Borehole was dry and open upon completion of drilling.

WATER LEVEL READINGS <u>Date</u> Mar 24, 2020 Elevation (m) 187.1 Water Depth (m)


Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started: March 10, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁŒ

Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by : ÁÓY

Position : E: 561315, N: 4926069 (UTM 17T) Elevation Datum : Geodetic

tig type : Geoprobe Drilling Method : Hollow stem augers

END OF BOREHOLE

Auger refusal

Borehole was dry and open upon completion of drilling.

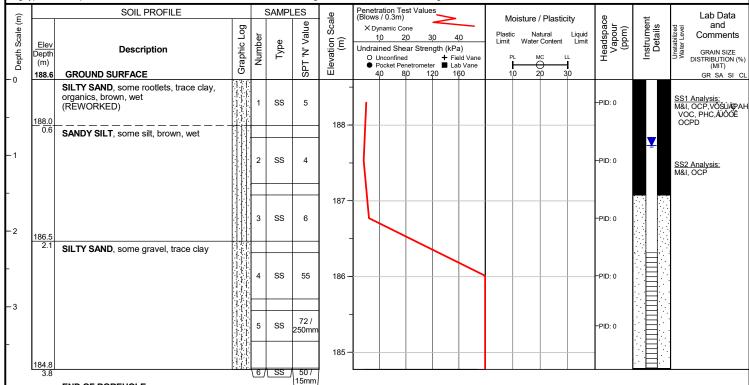
50 mm dia. monitoring well installed.

WATER LEVEL READINGS

<u>Date</u> <u>Water Depth (m)</u> <u>Elevation (m)</u>

Mar 24, 2020 0.7 187.7

17-09 18-42 pn logs.gpj


Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started: March 12, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁDET

Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by :ÁOY

Position : E: 561307, N: 4926188 (UTM 17T) Elevation Datum : Geodetic

Rig type : Geoprobe Drilling Method : Hollow stem augers

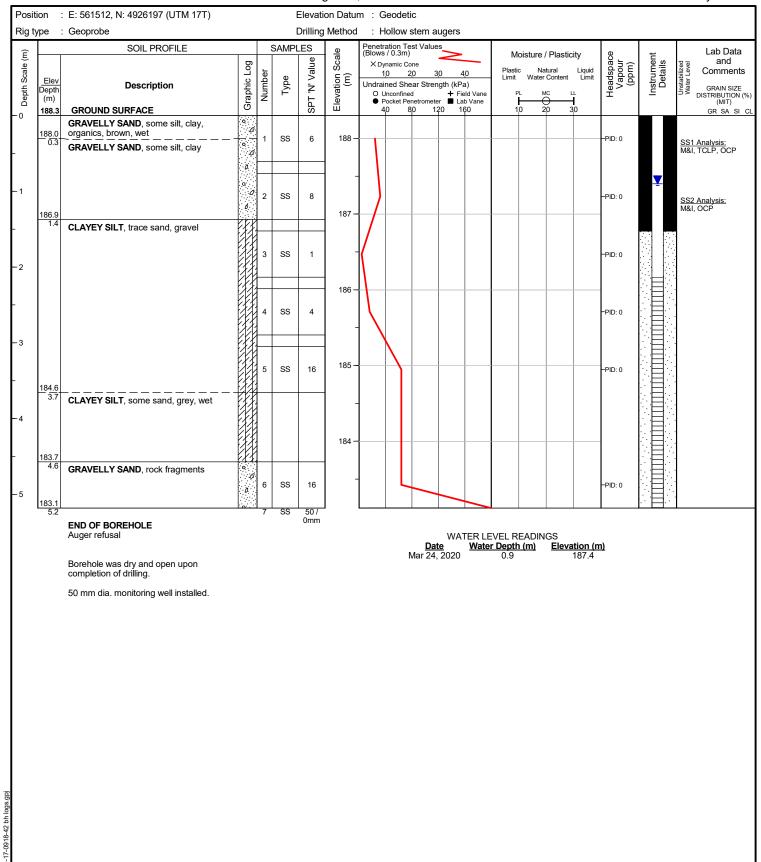
END OF BOREHOLE Auger refusal

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS

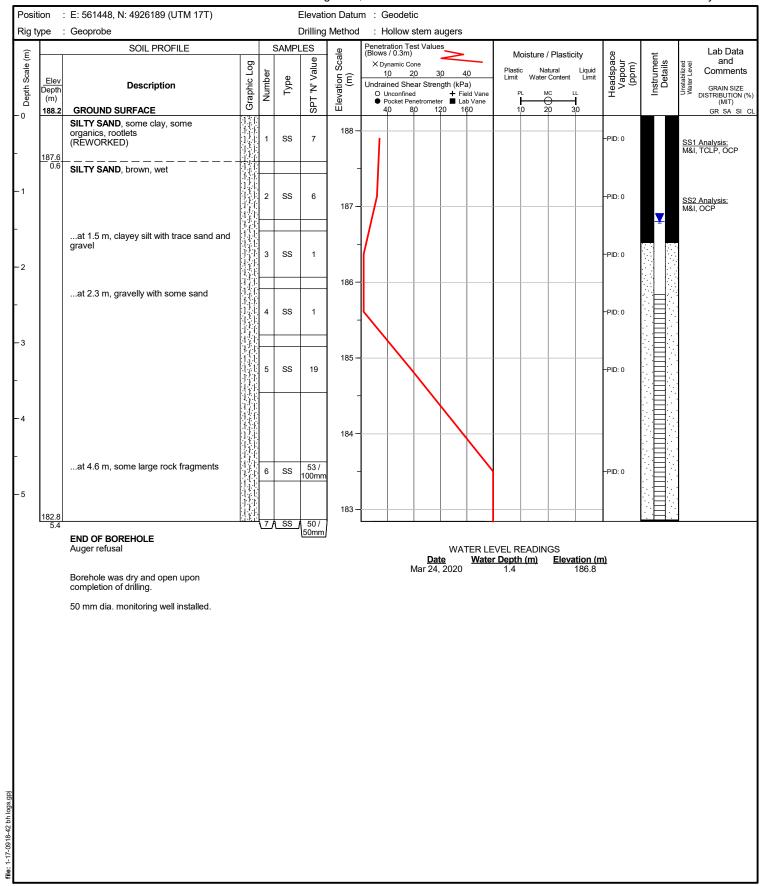
<u>Date</u> <u>Water Depth (m)</u> <u>Elevation (m)</u>


Mar 24, 2020 0.9 187.7

Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started: March 13, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁŒ

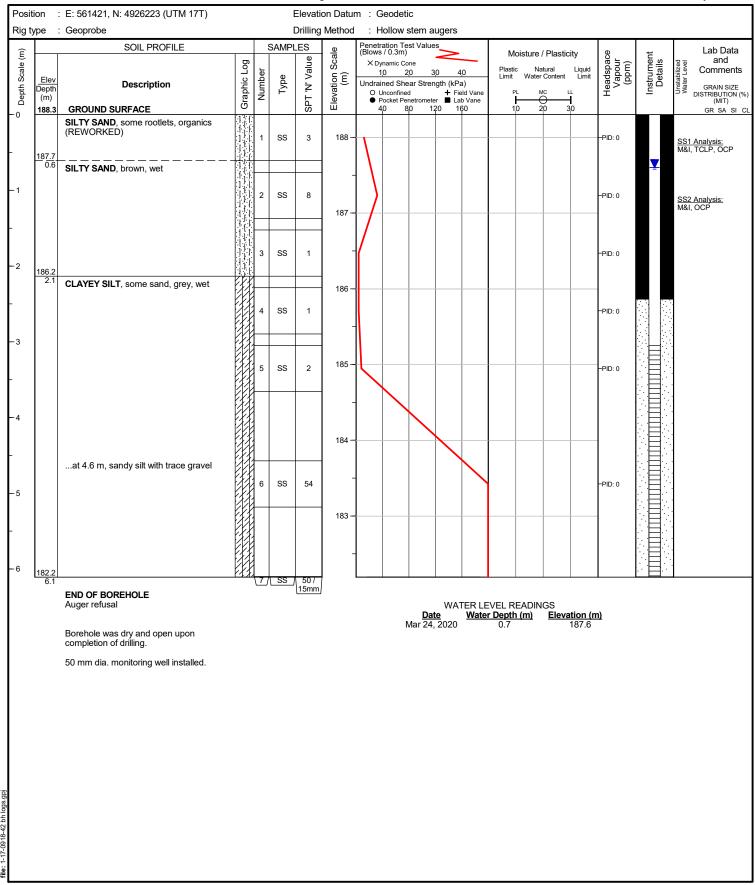
Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by :/ÓY



Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started : March 12, 2020 Project : Trails of Collingwood-High Street & Telfer Road Compiled by : AM

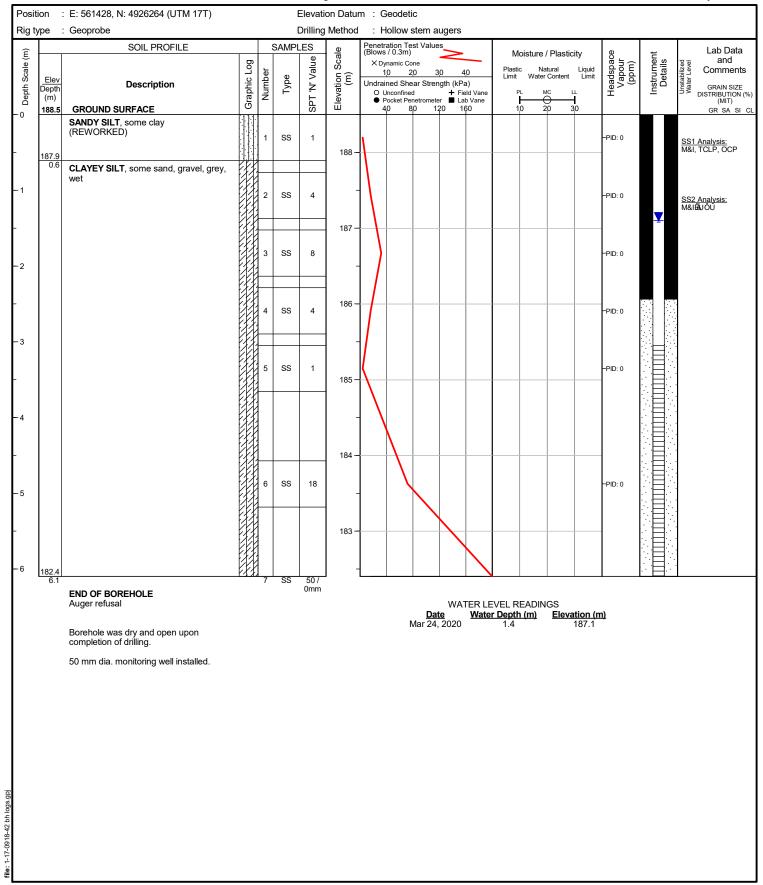
Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by : BW



Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

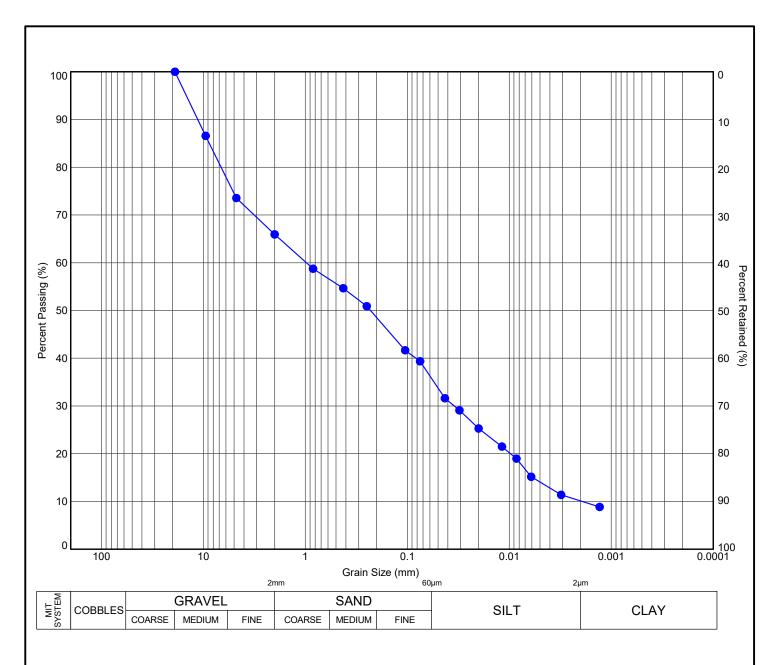
Date started: March 12, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁŒ

Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by :/ÓY



Project No. : 1-17-0918 Client : Trails of Collingwood Originated by : JSB

Date started: March 13, 2020 Project: Trails of Collingwood-High Street & Telfer Road Compiled by: ÁŒ


Sheet No. : 1 of 1 Location : Collingwood, Ontario Checked by :/ÓY

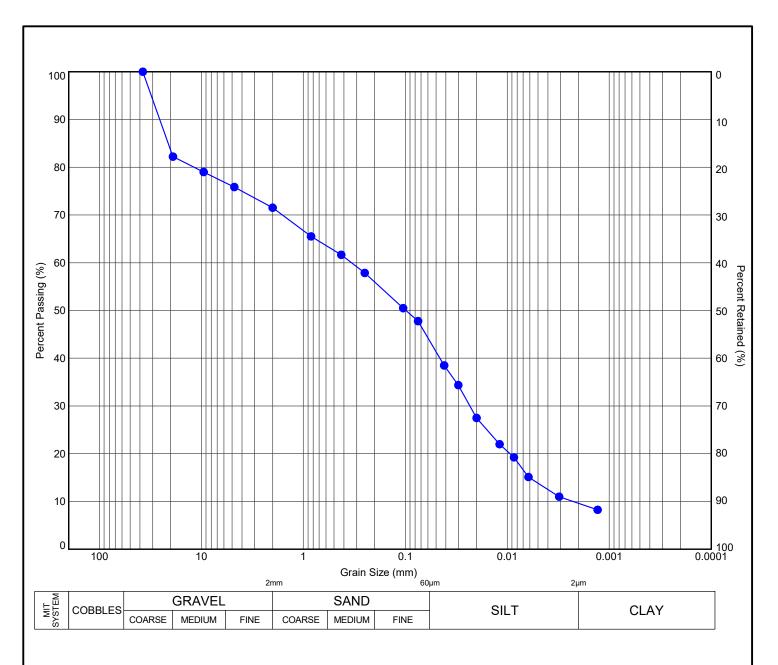
APPENDIX F

Grain Size Analysis

TERRAPROBE INC.

MIT	SYS	

١		Hole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
Ī	•	1	AS4	2.3	186.4	34	30	26	10	
١										
١										
١										
١										
١										
١										
١										
ı										
ı										


Title:

File No.:

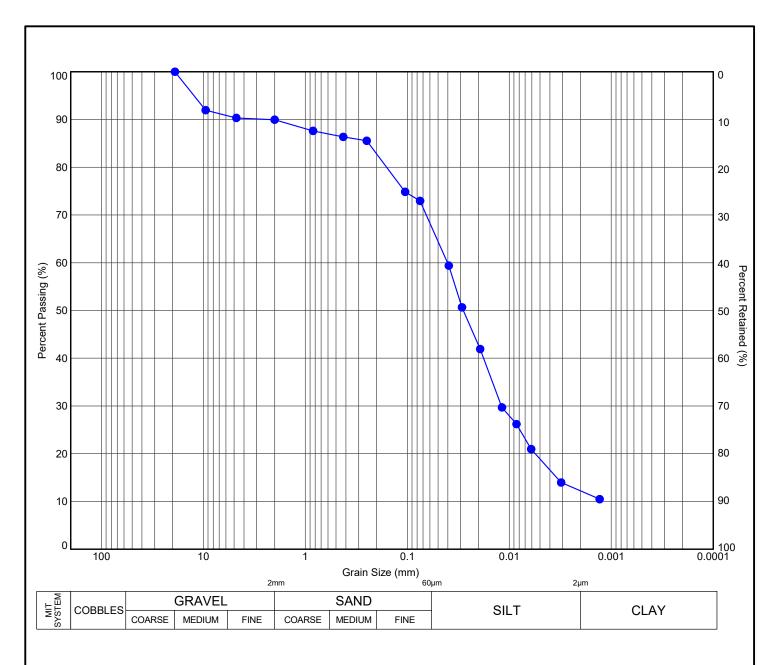
GRAIN SIZE DISTRIBUTION SILTY SANDY GRAVEL, SOME CLAY

13

1-17-0918-42

М	IT S	YS:	TF	М

١		Hole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
Ī	•	2	SS6	3.4	185.2	29	26	35	10	
١										
١										
١										
١										
١										
١										
İ										
ı										
١										



Title:

GRAIN SIZE DISTRIBUTION SANDY GRAVELLY SILT, TRACE CLAY

File No.:

1-17-0918-42

M	IT S	YS.	ΓFΙ	V

	Hole ID	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
•	3	SS3	1.5	187.1	10	22	56	12	

Title:

GRAIN SIZE DISTRIBUTION SANDY SILT, SOME GRAVEL, TRACE CLAY

File No.:

1-17-0918-42

APPENDIX G

Ground Water Levels

TERRAPROBE INC.

Ground Water Depths (m below ground surface)

Well	Ground Elevation (m asl)	Stick up (m)	Drilled Well Depth (m)	Well Screen Bottom Elevation (m asl)	Well Screen Top Elevation (m asl)	Water Depth Mar 24, 2020 (m bgs)
BH1	188.70	0.82	5.00	183.70	186.70	0.80
BH2	188.60	0.89	4.30	184.30	187.30	0.80
BH3	188.60	0.91	3.70	184.90	187.34	0.87
BH4	189.30	0.84	3.80	185.60	186.80	1.30
BH5	188.70	0.75	2.30	186.40	187.60	1.02
BH6	188.60	-	1.80	186.80	187.50	1.51
BH7	188.40	0.83	3.20	185.20	186.75	0.73
BH8	188.60	0.87	3.80	184.80	186.30	0.87
BH9	188.30	0.86	5.20	183.10	186.20	0.90
BH10	188.20	0.89	5.40	182.80	185.80	1.40
BH11	188.30	0.92	6.10	182.20	185.25	0.70
BH12	188.50	0.95	6.10	182.40	185.45	1.41

Ground Water Elevations (m above sea level)

Well	Ground Elevation (m asl)	Stick up (m)	Borehole Depth (m)	Well Screen Bottom Elevation (m asl)	Well Screen Top Elevation (m asl)	Ground Water Elevation Mar 24, 2020 (m asl)
BH1	188.70	0.82	5.00	183.70	186.70	187.90
BH2	188.60	0.89	4.30	184.30	187.30	187.80
BH3	188.60	0.91	3.70	184.90	187.34	187.73
BH4	189.30	0.84	3.80	185.60	186.80	188.00
BH5	188.70	0.75	2.30	186.40	187.60	187.68
BH6	188.60	-	1.80	186.80	187.50	187.09
BH7	188.40	0.83	3.20	185.20	186.75	187.67
BH8	188.60	0.87	3.80	184.80	186.30	187.73
BH9	188.30	0.86	5.20	183.10	186.20	187.40
BH10	BH10 188.20		5.40	182.80	185.80	186.80
BH11	188.30	0.92	6.10	182.20	185.25	187.60
BH12	188.50	0.95	6.10	182.40	185.45	187.09

APPENDIX H

Geological Units

TERRAPROBE INC.


GEOLOGICAL UNITS TRAILS OF COLLINGWOOD, HIGH STREET AND TELFER ROAD COLLINGWOOD, ONTARIO PROJECT #1-17-0918-42.1

		BH1			BH2			ВН3			BH4			BH5		BH6			
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	
Topsoil	188.7	188.5	0.2	188.6	188.4	0.2	188.6	188.4	0.2	189.3	189.1	0.2	188.7	188.5	0.2	188.6	188.5	0.1	
Earth Fill or Reworked Native	188.5	188.1	0.4	188.4	188.0	0.4	188.4	188.0	0.4	189.1	188.7	0.4	188.5	187.9	0.6	188.5	188.3	0.2	
Native Soil	188.1	183.7	4.4	188.0	184.3	3.7	188.0	184.9	3.1	188.7	185.5	3.2	187.9	186.4	1.5	188.3	186.8	1.5	
Bedrock	183.7	-	-	184.3	-	-	184.9	-	-	185.5	-	-	186.4	-	-	186.8	-	-	

		BH7			BH8		ВН9				BH10			Not Encountered			BH12	
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)				Elev. Bottom (masl)	Thickness (m)			Thickness (m)	Elev. Top (masl)	Thickness (m)	
Topsoil	N	ot Encountere	d	N	ot Encountere	ed	N	Not Encountered			Not Encountered			ot Encountere	d	Not Encountered		
Earth Fill or Reworked Native	188.4	187.8	0.6	188.6	188.0	0.6	Ν	Not Encountered		188.2	187.6	0.6	188.3	187.7	0.6	188.5	187.9	0.6
Native Soil	187.8	185.2	2.6	188.0	184.8	3.2	188.3	183.1	5.2	187.6	182.8	4.8	187.7	182.2	5.5	187.9	182.4	5.5
Bedrock	185.2	-	-	184.8	-	-	183.1	-	-	182.8	-	-	182.2	-	-	182.4	-	-

APPENDIX I

Monitoring Well Construction Details

TERRAPROBE INC.

MONITORING WELL CONSTRUCTION
TRAILS OF COLLINGWOOD, HIGH STREET AND TELFER ROAD
COLLINGWOOD, ONTARIO
PROJECT #1-17-0918-42.1

Well ID	BI	1 1	В	H2	В	Н3	В	H4	В	Н5	В	Н6	В	H7	В	Н8	В	Н9	BI	H10	BH	I11	BI	H12
Stick Up (m)	0.0	82	0.	.89	0.	.91	0.	84	0.	.75		-	0.	83	0.	87	0	.86	0.	89	0.9	92	0.	.95
Ground Elev. (masl)	ound Elev. (masl) 188.72		18	8.57	18	8.61	189	9.30	188	8.70	18	8.60	188	3.40	188	3.60	188.30		188.20		188.30		188.50	
Well Component	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)	Depth (m)	Elev. (masl)
Bentonite - Top	0.00	188.72	0.00	188.57	0.00	188.61	0.00	189.30	0.00	188.70	0.00	188.60	0.00	188.40	0.00	188.60	0.00	188.30	0.00	188.20	0.00	188.30	0.00	188.50
Bentonite - Bottom	1.52	187.20	1.07	187.50	1.07	187.54	1.50	187.80	0.60	188.10	0.85	187.75	1.00	187.40	1.50	187.10	1.50	186.80	1.65	186.55	2.45	185.85	2.45	186.05
Sand - Top	1.52	187.20	1.07	187.50	1.07	187.54	1.50	187.80	0.60	188.10	0.85	187.75	1.00	187.40	1.50	187.10	1.50	186.80	1.65	186.55	2.45	185.85	2.45	186.05
Screen - Top	1.98	186.74	1.22	187.35	1.22	187.39	2.40	186.90	1.10	187.60	1.20	187.40	1.60	186.80	2.25	186.35	2.10	186.20	2.40	185.80	3.05	185.25	3.05	185.45
Screen - Bottom	5.03	183.69	4.27	184.30	3.66	184.95	3.80	185.50	2.30	186.40	1.80	186.80	3.20	185.20	3.80	184.80	5.20	183.10	5.40	182.80	6.10	182.20	6.10	182.40
Sand - Bottom	5.03	183.69	4.27	184.30	3.66	184.95	3.80	185.50	2.30	186.40	1.80	186.80	3.20	185.20	3.80	184.80	5.20	183.10	5.40	182.80	6.10	182.20	6.10	182.40

APPENDIX J

Laboratory Certificate of Analysis

CERTIFICATES OF ANALYSIS

(SOIL)

TERRAPROBE INC.

TERRAPROBE-BRAMPTON

ATTN: ALIREZA MALEK

11 Indell Lane

Brampton ON L6T 3Y3

Date Received: 17-MAR-20

Report Date: 01-APR-20 07:44 (MT)

Version: FINAL REV. 4

Client Phone: 905-796-2650

Certificate of Analysis

Lab Work Order #: L2428783
Project P.O. #: NOT SUBMITTED

Job Reference: 1-17-918

C of C Numbers: 17-615451, 17-615452

Legal Site Desc:

Comments: ES/WT - pH analysis added to all samples

Dilution factor added to OC Pesticide analysis per analyst

Emily Smith Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2428783 CONT'D....

Job Reference: 1-17-918

PAGE 2 of 14

01-APR-20 07:44 (MT)

Summary of Guideline Exceedances

Suideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
		5, 2011 Standards - T2-Soil-Res/Park/	<u> </u>			
.2428783-1	BH4-SS1	Metals	Arsenic (As)	79.7	18	ug/g
			Lead (Pb)	133	120	ug/g
		Organochlorine Pesticides	Total DDE	4.29	0.26	ug/g
			Total DDT	1.78	1.4	ug/g
2428783-3	BH5-SS1	Organochlorine Pesticides	Total DDE	3.48	0.26	ug/g
2428783-5	BH6-SS1	Metals	Arsenic (As)	18.9	18	ug/g
		Organochlorine Pesticides	Total DDE	4.05	0.26	ug/g
2428783-7	BH7-SS1	Organochlorine Pesticides	Total DDE	0.699	0.26	ug/g
2428783-9	BH8-SS1	Organochlorine Pesticides	Total DDE	0.478	0.26	ug/g
2428783-16	BH11-SS1	Organochlorine Pesticides	Total DDE	0.283	0.26	ug/g
2428783-18	BH12-SS1	Organochlorine Pesticides	Total DDE	0.752	0.26	ug/g
ntario Reg	ulation 153/04 - April 1	5, 2011 Standards - T2-Soil-Res/Park/		002	0.20	~9/9
2428783-1	BH4-SS1	Metals	Arsenic (As)	79.7	18	ua/a
			Lead (Pb)	133	120	ug/g ug/g
		Organochlorine Pesticides	Total DDE	4.29	0.33	ug/g
			Total DDT	1.78	1.4	ug/g
2428783-3	BH5-SS1	Organochlorine Pesticides	Total DDE	3.48	0.33	ug/g
2428783-5	BH6-SS1	Metals	Arsenic (As)	18.9	18	ug/g
		Organochlorine Pesticides	Total DDE	4.05	0.33	ug/g
2428783-7	BH7-SS1	Organochlorine Pesticides	Total DDE	0.699	0.33	ug/g
2428783-9	BH8-SS1	Organochlorine Pesticides	Total DDE	0.478	0.33	
2428783-18	BH12-SS1	Organochlorine Pesticides	Total DDE	0.478	0.33	ug/g ug/g

L2428783 CONT'D.... Job Reference: 1-17-918 PAGE 3 of 14 01-APR-20 07:44 (MT)

Physical Tests - SOIL

,											
		Lab ID	L2428783-1	L2428783-2	L2428783-3	L2428783-4	L2428783-5	L2428783-6	L2428783-7	L2428783-9	L2428783-10
	;	Sample Date	10-MAR-20	10-MAR-20	09-MAR-20	09-MAR-20	09-MAR-20	09-MAR-20	10-MAR-20	12-MAR-20	12-MAR-20
		Sample ID	BH4-SS1	BH4-SS2	BH5-SS1	BH5-SS2	BH6-SS1	BH6-SS2	BH7-SS1	BH8-SS1	BH8-SS2
		Guide Limits									
Analyte	Unit	#1 #2									
% Moisture	%		28.2	22.7	26.1	18.4	29.9	18.6	29.7	26.5	24.2
pH	pH units		6.93	7.45	7.23	7.73	7.31	7.63	7.46	7.36	7.70

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D.... Job Reference: 1-17-918 PAGE 4 of 14 01-APR-20 07:44 (MT)

Physical Tests - SOIL

		Sample	ab ID Date ple ID	L2428783-11 12-MAR-20 BH8-SS3	L2428783-12 12-MAR-20 BH9-SS1	L2428783-13 12-MAR-20 BH9-SS2	L2428783-14 12-MAR-20 BH10-SS1	L2428783-15 12-MAR-20 BH10-SS2	L2428783-16 12-MAR-20 BH11-SS1	L2428783-17 12-MAR-20 BH11-SS2	L2428783-18 13-MAR-20 BH12-SS1	L2428783-19 13-MAR-20 BH12-SS2
Analyte	Unit	Guide l #1	Limits #2									
% Moisture	%	-	-	10.5	44.9	19.0	29.5	23.8	26.7	23.9	24.4	12.3
pH	pH units	-	-	7.74	7.18	7.75	7.50	7.82	7.39	7.81	7.38	7.65

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....
Job Reference: 1-17-918
PAGE 5 of 14
01-APR-20 07:44 (MT)

Physical Tests - SOIL

i ilyaicai i cata - aoil					
			Lab ID	L2428783-20	L2428783-21
	9	Sampl	e Date	09-MAR-20	13-MAR-20
		San	ple ID	DUP1	DUP2
	(Guide	Limits		
Analyte	Unit	#1	#2		
% Moisture	%	-	-	17.0	15.0
рН	pH units	-	-	7.78	7.76

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....
Job Reference: 1-17-918
PAGE 6 of 14
01-APR-20 07:44 (MT)

Metals - SOIL

Metals - SOIL												
		Sampl	Lab ID	L2428783-1 10-MAR-20	L2428783-2 10-MAR-20	L2428783-3 09-MAR-20	L2428783-4 09-MAR-20	L2428783-5 09-MAR-20	L2428783-6 09-MAR-20	L2428783-7 10-MAR-20	L2428783-9 12-MAR-20	L2428783-10 12-MAR-20
			ple ID	BH4-SS1	BH4-SS2	BH5-SS1	BH5-SS2	BH6-SS1	BH6-SS2	BH7-SS1	BH8-SS1	BH8-SS2
Analyte	Unit	Guide #1	Guide Limits #1 #2									
Antimony (Sb)	ug/g	7.5	7.5	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	ug/g	18	18	79.7	2.9	14.0	4.2	18.9	3.8	5.8	7.6	2.1
Barium (Ba)	ug/g	390	390	56.5	27.8	60.5	34.9	55.4	26.4	44.0	26.3	6.0
Beryllium (Be)	ug/g	4	5	<0.50	<0.50	0.63	<0.50	0.54	<0.50	0.52	<0.50	<0.50
Boron (B)	ug/g	120	120	8.2	5.3	13.3	14.9	15.1	13.2	11.0	7.1	<5.0
Boron (B), Hot Water Ext.	ug/g	1.5	1.5	1.20	0.33	0.77	0.17	0.57	0.12	0.67	0.48	<0.10
Cadmium (Cd)	ug/g	1.2	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	ug/g	160	160	15.4	10.9	20.6	16.6	19.4	13.5	18.0	12.1	8.8
Cobalt (Co)	ug/g	22	22	5.5	4.7	7.0	7.4	6.1	6.5	6.6	4.6	2.7
Copper (Cu)	ug/g	140	180	73.1	7.3	31.2	17.8	33.8	18.4	20.2	16.8	11.6
Lead (Pb)	ug/g	120	120	133	8.3	33.8	7.0	52.0	5.7	9.4	8.7	3.9
Mercury (Hg)	ug/g	0.27	1.8	0.125	0.0319	0.0943	0.0114	0.114	0.0121	0.0778	0.0319	<0.0050
Molybdenum (Mo)	ug/g	6.9	6.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel (Ni)	ug/g	100	130	12.8	9.1	16.0	17.7	14.7	15.3	14.1	9.2	4.3
Selenium (Se)	ug/g	2.4	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	20	25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	ug/g	1	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	23	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	86	86	22.9	15.1	29.3	21.6	25.3	19.0	22.5	19.4	20.4
Zinc (Zn)	ug/g	340	340	56.2	32.3	63.0	29.9	65.1	25.5	58.3	29.4	17.6

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....
Job Reference: 1-17-918
PAGE 7 of 14
01-APR-20 07:44 (MT)

Metals - SOIL

wietais - SOIL				1010070010	10100=0010	1010070011	1010070017	10100=0010	1010070017	1010070010	10100=0010	
		Sample	_ab ID	L2428783-12 12-MAR-20	L2428783-13 12-MAR-20	L2428783-14 12-MAR-20	L2428783-15 12-MAR-20	L2428783-16 12-MAR-20	L2428783-17 12-MAR-20	L2428783-18 13-MAR-20	L2428783-19 13-MAR-20	L2428783-20 09-MAR-20
			ple ID	BH9-SS1	BH9-SS2	BH10-SS1	BH10-SS2	BH11-SS1	BH11-SS2	BH12-SS1	BH12-SS2	DUP1
Analyte	Unit	Guide #1	Limits #2									
Antimony (Sb)	ug/g	7.5	7.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	ug/g	18	18	6.5	4.9	11.5	2.3	6.2	2.1	9.5	3.3	4.8
Barium (Ba)	ug/g	390	390	23.1	21.7	27.5	7.8	23.6	7.6	25.1	23.9	30.5
Beryllium (Be)	ug/g	4	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Boron (B)	ug/g	120	120	8.7	8.4	9.4	<5.0	8.7	<5.0	7.2	10.6	12.5
Boron (B), Hot Water Ext.	ug/g	1.5	1.5	0.46	0.20	1.00	0.14	0.67	0.12	0.31	0.14	0.22
Cadmium (Cd)	ug/g	1.2	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	ug/g	160	160	11.5	11.2	11.6	8.6	10.8	9.0	11.5	11.7	15.8
Cobalt (Co)	ug/g	22	22	3.8	4.2	4.8	3.1	4.7	3.0	4.3	4.8	8.4
Copper (Cu)	ug/g	140	180	16.2	14.2	20.5	9.6	19.5	10.9	17.4	13.2	20.1
Lead (Pb)	ug/g	120	120	8.0	6.4	10.2	4.0	8.9	4.3	10.9	4.9	8.2
Mercury (Hg)	ug/g	0.27	1.8	0.0204	0.0131	0.0327	<0.0050	0.0282	<0.0050	0.0208	0.0083	0.0175
Molybdenum (Mo)	ug/g	6.9	6.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel (Ni)	ug/g	100	130	8.7	9.6	10.4	4.6	10.1	4.8	9.5	10.9	19.4
Selenium (Se)	ug/g	2.4	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	20	25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	ug/g	1	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	23	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	86	86	15.6	16.5	17.8	18.4	16.1	19.3	18.8	16.0	20.7
Zinc (Zn)	ug/g	340	340	25.1	25.5	28.4	16.0	25.0	19.2	27.3	20.3	32.8

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....
Job Reference: 1-17-918
PAGE 8 of 14
01-APR-20 07:44 (MT)

Speciated Metals - SOIL

opeciated metale col												
			Lab ID	L2428783-1	L2428783-2	L2428783-3	L2428783-4	L2428783-5	L2428783-6	L2428783-7	L2428783-9	L2428783-10
		Sampl	le Date	10-MAR-20	10-MAR-20	09-MAR-20	09-MAR-20	09-MAR-20	09-MAR-20	10-MAR-20	12-MAR-20	12-MAR-20
		San	nple ID	BH4-SS1	BH4-SS2	BH5-SS1	BH5-SS2	BH6-SS1	BH6-SS2	BH7-SS1	BH8-SS1	BH8-SS2
		Guide	Limits									
Analyte	Unit	#1	#2									
Chromium, Hexavalent	ug/g	8	10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....
Job Reference: 1-17-918
PAGE 9 of 14
01-APR-20 07:44 (MT)

Speciated Metals - SOIL

		L	ab ID	L2428783-12	L2428783-13	L2428783-14	L2428783-15	L2428783-16	L2428783-17	L2428783-18	L2428783-19	L2428783-20
		Sample	Date	12-MAR-20	12-MAR-20	12-MAR-20	12-MAR-20	12-MAR-20	12-MAR-20	13-MAR-20	13-MAR-20	09-MAR-20
		Sam	ple ID	BH9-SS1	BH9-SS2	BH10-SS1	BH10-SS2	BH11-SS1	BH11-SS2	BH12-SS1	BH12-SS2	DUP1
		Guide	Limits									
Analyte	Unit	Guide #1	Limits #2									

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....
Job Reference: 1-17-918
PAGE 10 of 14
01-APR-20 07:44 (MT)

Organochlorine Pesticides - SOIL

		Sample	ab ID Date ple ID	L2428783-1 10-MAR-20 BH4-SS1	L2428783-2 10-MAR-20 BH4-SS2	L2428783-3 09-MAR-20 BH5-SS1	L2428783-4 09-MAR-20 BH5-SS2	L2428783-5 09-MAR-20 BH6-SS1	L2428783-6 09-MAR-20 BH6-SS2	L2428783-7 10-MAR-20 BH7-SS1	L2428783-9 12-MAR-20 BH8-SS1	L2428783-10 12-MAR-20 BH8-SS2
Analyte	Unit	Guide #1	Limits #2									
Aldrin	ug/g	0.05	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
gamma-hexachlorocyclohexane	ug/g	0.056	0.063	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
a-chlordane	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chlordane (Total)	ug/g	0.05	0.05	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028
g-chlordane	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
op-DDD	ug/g	-	-	<0.020	<0.020	0.157	<0.020	0.166	<0.020	0.042	0.029	<0.020
pp-DDD	ug/g	-	-	0.133	<0.020	0.421	<0.020	0.580	<0.020	0.126	0.108	<0.020
Total DDD	ug/g	3.3	3.3	0.133	<0.028	0.578	<0.028	0.746	<0.028	0.168	0.138	<0.028
o,p-DDE	ug/g	-	-	<0.020	<0.020	0.038	<0.020	0.058	<0.020	<0.020	<0.020	<0.020
pp-DDE	ug/g	-	-	4.29	0.099	3.44	0.023	3.99	<0.020	0.699	0.478	<0.020
Total DDE	ug/g	0.26	0.33	4.29	0.099	3.48	<0.028	4.05	<0.028	0.699	0.478	<0.028
op-DDT	ug/g	-	-	0.171	<0.020	0.139	<0.020	0.134	<0.020	0.073	0.053	<0.020
pp-DDT	ug/g	-	-	1.61	0.023	0.963	<0.020	0.790	<0.020	0.332	0.231	<0.020
Total DDT	ug/g	1.4	1.4	1.78	<0.028	1.10	<0.028	0.924	<0.028	0.405	0.285	<0.028
Dieldrin	ug/g	0.05	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Endosulfan I	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Endosulfan II	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Endosulfan (Total)	ug/g	0.04	0.04	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028
Endrin	ug/g	0.04	0.04	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Heptachlor	ug/g	0.15	0.15	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Heptachlor Epoxide	ug/g	0.05	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Hexachlorobenzene	ug/g	0.52	0.52	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Hexachlorobutadiene	ug/g	0.012	0.014	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Hexachloroethane	ug/g	0.089	0.07	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Methoxychlor	ug/g	0.13	0.13	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Surrogate: 2-Fluorobiphenyl	%	-	-	89.1	86.5	83.6	79.3	88.8	88.5	90.0	83.5	91.2
Surrogate: d14-Terphenyl	%	-	-	86.5	82.3	81.9	81.0	91.9	97.9	86.5	87.8	83.3

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D.... Job Reference: 1-17-918 PAGE 11 of 14 01-APR-20 07:44 (MT)

Organochloring Posticidos - SOII

		Sample	ab ID Date ple ID	L2428783-11 12-MAR-20 BH8-SS3	L2428783-12 12-MAR-20 BH9-SS1	L2428783-13 12-MAR-20 BH9-SS2	L2428783-14 12-MAR-20 BH10-SS1	L2428783-15 12-MAR-20 BH10-SS2	L2428783-16 12-MAR-20 BH11-SS1	L2428783-17 12-MAR-20 BH11-SS2	L2428783-18 13-MAR-20 BH12-SS1	L2428783-19 13-MAR-20 BH12-SS2
Analyte	Unit	Guide #1	Limits #2									
Aldrin	ug/g	0.05	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
gamma-hexachlorocyclohexane	ug/g	0.056	0.063	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
a-chlordane	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chlordane (Total)	ug/g	0.05	0.05	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028
g-chlordane	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
op-DDD	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.091	<0.020
pp-DDD	ug/g	-	-	<0.020	<0.020	<0.020	0.027	<0.020	0.062	<0.020	0.335	<0.020
Total DDD	ug/g	3.3	3.3	<0.028	<0.028	<0.028	<0.028	<0.028	0.062	<0.028	0.426	<0.028
o,p-DDE	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
pp-DDE	ug/g	-	-	<0.020	0.085	0.029	0.181	<0.020	0.283	<0.020	0.752	<0.020
Total DDE	ug/g	0.26	0.33	<0.028	0.085	0.029	0.181	<0.028	0.283	<0.028	0.752	<0.028
op-DDT	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	0.023	<0.020	0.092	<0.020
pp-DDT	ug/g	-	-	<0.020	<0.020	<0.020	0.036	<0.020	0.088	<0.020	0.277	<0.020
Total DDT	ug/g	1.4	1.4	<0.028	<0.028	<0.028	0.036	<0.028	0.110	<0.028	0.369	<0.028
Dieldrin	ug/g	0.05	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Endosulfan I	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Endosulfan II	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Endosulfan (Total)	ug/g	0.04	0.04	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028
Endrin	ug/g	0.04	0.04	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Heptachlor	ug/g	0.15	0.15	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Heptachlor Epoxide	ug/g	0.05	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Hexachlorobenzene	ug/g	0.52	0.52	<0.010	<0.010	<0.010	0.025	<0.010	<0.010	<0.010	<0.010	<0.010
Hexachlorobutadiene	ug/g	0.012	0.014	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Hexachloroethane	ug/g	0.089	0.07	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Methoxychlor	ug/g	0.13	0.13	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Surrogate: 2-Fluorobiphenyl	%	-	-	81.7	67.2	84.4	75.9	87.5	85.6	83.3	84.7	91.9
Surrogate: d14-Terphenyl	%	-	-	69.8	53.9	73.9	77.7	85.8	67.1	70.8	82.7	90.4

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

L2428783 CONT'D....

Job Reference: 1-17-918

PAGE 12 of 14

01-APR-20 07:44 (MT)

Organochlorine Pesticides - SOIL

Organochlorine Pesticides - S	OIL			
			ab ID	L2428783-21
		Sample		13-MAR-20
		Sam	ple ID	DUP2
		Guide	Limits	
Analyte	Unit	#1	#2	
Aldrin	ug/g	0.05	0.05	<0.020
gamma-hexachlorocyclohexane	ug/g	0.056	0.063	<0.010
a-chlordane	ug/g	-	-	<0.020
Chlordane (Total)	ug/g	0.05	0.05	<0.028
g-chlordane	ug/g	-	-	<0.020
op-DDD	ug/g	-	-	<0.020
pp-DDD	ug/g	-	-	<0.020
Total DDD	ug/g	3.3	3.3	<0.028
o,p-DDE	ug/g	-	-	<0.020
pp-DDE	ug/g	-	-	0.043
Total DDE	ug/g	0.26	0.33	0.043
op-DDT	ug/g	-	-	<0.020
pp-DDT	ug/g	-	-	<0.020
Total DDT	ug/g	1.4	1.4	<0.028
Dieldrin	ug/g	0.05	0.05	<0.020
Endosulfan I	ug/g	-	-	<0.020
Endosulfan II	ug/g	-	-	<0.020
Endosulfan (Total)	ug/g	0.04	0.04	<0.028
Endrin	ug/g	0.04	0.04	<0.020
Heptachlor	ug/g	0.15	0.15	<0.020
Heptachlor Epoxide	ug/g	0.05	0.05	<0.020
Hexachlorobenzene	ug/g	0.52	0.52	<0.010
Hexachlorobutadiene	ug/g	0.012	0.014	<0.010
Hexachloroethane	ug/g	0.089	0.07	<0.010
Methoxychlor	ug/g	0.13	0.13	<0.020
Surrogate: 2-Fluorobiphenyl	%	-	-	90.4
Surrogate: d14-Terphenyl	%	-	-	84.4

Guide Limit #1: T2-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Fine)

Reference Information

L2428783 CONT'D.... Job Reference: 1-17-918 PAGE 13 of 14 01-APR-20 07:44 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference**

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CALCULATION CHLORDANE-T-CALC-WT Soil Chlordane Total sums

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA).

The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

DDD-DDE-DDT-CALC-WT Soil DDD, DDE, DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

ENDOSULFAN-T-CALC- Soil Endosulfan Total sums CALCULATION

WT

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

HG-200.2-CVAA-WT Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Soil **MOISTURE-WT** % Moisture CCME PHC in Soil - Tier 1 (mod)

Soil PEST-OC-511-WT OC Pesticides-O.Reg 153/04 (July SW846 8270 (511)

Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

L2428783 CONT'D.... Job Reference: 1-17-918 PAGE 14 of 14 01-APR-20 07:44 (MT)

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**	
PH-WT	Soil	nH	MOFF F3137A	

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

17-615451 17-615452

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2428783 Report Date: 01-APR-20 Page 1 of 10

TERRAPROBE-BRAMPTON Client:

11 Indell Lane

Brampton ON L6T 3Y3

Contact: ALIREZA MALEK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R5034094 WG3296878-4 DUP Boron (B), Hot Water Ex	ct.	L2428783-19 0.14	0.15		ug/g	6.9	30	23-MAR-20
WG3296878-2 IRM Boron (B), Hot Water Ex	rt.	WT SAR3	85.3		%		70-130	23-MAR-20
WG3296878-3 LCS Boron (B), Hot Water Ex	rt.		100.0		%		70-130	23-MAR-20
WG3296878-1 MB Boron (B), Hot Water Ex	t.		<0.10		ug/g		0.1	23-MAR-20
CR-CR6-IC-WT	Soil							
Batch R5035828								
WG3295851-4 CRM Chromium, Hexavalent		WT-SQC012	92.1		%		70-130	24-MAR-20
WG3295851-3 DUP Chromium, Hexavalent		L2430024-1 <0.20	<0.20	RPD-NA	ug/g	N/A	35	24-MAR-20
WG3295851-2 LCS Chromium, Hexavalent			97.8		%		80-120	24-MAR-20
WG3295851-1 MB Chromium, Hexavalent			<0.20		ug/g		0.2	24-MAR-20
HG-200.2-CVAA-WT	Soil							
Batch R5034161								
WG3296873-2 CRM Mercury (Hg)		WT-CANMET-	TILL2 111.4		%		70-130	23-MAR-20
WG3296873-6 DUP Mercury (Hg)		WG3296873-5 0.0175	0.0178		ug/g	1.8	40	23-MAR-20
WG3296873-3 LCS Mercury (Hg)			108.0		%		80-120	23-MAR-20
WG3296873-1 MB Mercury (Hg)			<0.0050		mg/kg		0.005	23-MAR-20
MET-200.2-CCMS-WT	Soil							
Batch R5033306								
WG3295774-2 CRM Antimony (Sb)		WT-CANMET-	TILL2 92.2		%		70-130	20-MAR-20
Arsenic (As)			102.6		%		70-130	20-MAR-20
Barium (Ba)			101.6		%		70-130	20-MAR-20
Beryllium (Be)			87.3		%		70-130	20-MAR-20
Boron (B)			3.3		mg/kg		0-8.6	20-MAR-20
Cadmium (Cd)			95.7		%		70-130	20-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 2 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5033306								
WG3295774-2 CRM		WT-CANMET-			0/			
Chromium (Cr)			98.5		%		70-130	20-MAR-20
Cobalt (Co)			97.7		%		70-130	20-MAR-20
Copper (Cu)			98.9		%		70-130	20-MAR-20
Lead (Pb)			95.1		%		70-130	20-MAR-20
Molybdenum (Mo)			100.8		%		70-130	20-MAR-20
Nickel (Ni)			98.6		%		70-130	20-MAR-20
Selenium (Se)			0.37		mg/kg		0.15-0.55	20-MAR-20
Silver (Ag)			0.25		mg/kg		0.16-0.36	20-MAR-20
Thallium (TI)			96.7 91.2		%		70-130	20-MAR-20
Uranium (U) Vanadium (V)					%		70-130	20-MAR-20
` ,			99.5		%		70-130	20-MAR-20
Zinc (Zn)		W0000577/ 5	94.0		/0		70-130	20-MAR-20
WG3295774-6 DUP Antimony (Sb)		WG3295774-5 <0.10	<0.10	RPD-NA	ug/g	N/A	30	20-MAR-20
Arsenic (As)		0.67	0.67		ug/g	1.2	30	20-MAR-20
Barium (Ba)		43.6	42.4		ug/g	2.9	40	20-MAR-20
Beryllium (Be)		0.26	0.26		ug/g	3.0	30	20-MAR-20
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	20-MAR-20
Cadmium (Cd)		0.128	0.135	2	ug/g	5.0	30	20-MAR-20
Chromium (Cr)		16.9	16.8		ug/g	0.5	30	20-MAR-20
Cobalt (Co)		4.36	4.24		ug/g	2.8	30	20-MAR-20
Copper (Cu)		4.24	4.25		ug/g	0.2	30	20-MAR-20
Lead (Pb)		3.60	3.60		ug/g	0.0	40	20-MAR-20
Molybdenum (Mo)		0.27	0.25		ug/g	6.5	40	20-MAR-20
Nickel (Ni)		8.69	8.47		ug/g	2.7	30	20-MAR-20
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	20-MAR-20
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	20-MAR-20
Thallium (TI)		<0.050	<0.050	RPD-NA	ug/g	N/A	30	20-MAR-20
Uranium (U)		0.308	0.295		ug/g	4.4	30	20-MAR-20
Vanadium (V)		25.2	25.3		ug/g	0.5	30	20-MAR-20
Zinc (Zn)		45.9	44.9		ug/g	2.3	30	20-MAR-20
WG3295774-4 LCS			-		- J. J	0		_0 11 11. 20
Antimony (Sb)			103.8		%		80-120	20-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 3 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5033306								
WG3295774-4 LCS Arsenic (As)			102.7		%		80-120	20-MAR-20
Barium (Ba)			105.3		%		80-120	20-MAR-20
Beryllium (Be)			88.7		%		80-120	20-MAR-20
Boron (B)			87.5		%		80-120	20-MAR-20
Cadmium (Cd)			100.6		%		80-120	20-MAR-20
Chromium (Cr)			101.0		%		80-120	20-MAR-20
Cobalt (Co)			99.1		%		80-120	20-MAR-20
Copper (Cu)			98.5		%		80-120	20-MAR-20
Lead (Pb)			96.2		%		80-120	20-MAR-20
Molybdenum (Mo)			99.1		%		80-120	20-MAR-20
Nickel (Ni)			99.0		%		80-120	20-MAR-20
Selenium (Se)			101.6		%		80-120	20-MAR-20
Silver (Ag)			96.8		%		80-120	20-MAR-20
Thallium (TI)			99.1		%		80-120	20-MAR-20
Uranium (U)			91.6		%		80-120	20-MAR-20
Vanadium (V)			101.9		%		80-120	20-MAR-20
Zinc (Zn)			93.1		%		80-120	20-MAR-20
WG3295774-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	20-MAR-20
Arsenic (As)			<0.10		mg/kg		0.1	20-MAR-20
Barium (Ba)			<0.50		mg/kg		0.5	20-MAR-20
Beryllium (Be)			<0.10		mg/kg		0.1	20-MAR-20
Boron (B)			<5.0		mg/kg		5	20-MAR-20
Cadmium (Cd)			<0.020		mg/kg		0.02	20-MAR-20
Chromium (Cr)			<0.50		mg/kg		0.5	20-MAR-20
Cobalt (Co)			<0.10		mg/kg		0.1	20-MAR-20
Copper (Cu)			<0.50		mg/kg		0.5	20-MAR-20
Lead (Pb)			<0.50		mg/kg		0.5	20-MAR-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	20-MAR-20
Nickel (Ni)			<0.50		mg/kg		0.5	20-MAR-20
Selenium (Se)			<0.20		mg/kg		0.2	20-MAR-20
Silver (Ag)			<0.10		mg/kg		0.1	20-MAR-20
Thallium (TI)			<0.050		mg/kg		0.05	20-MAR-20
Uranium (U)			<0.050		mg/kg		0.05	20-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 4 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5033306								
WG3295774-1 MB Vanadium (V)			<0.20		mg/kg		0.2	20-MAR-20
Zinc (Zn)			<2.0		mg/kg		2	20-MAR-20
Batch R5034449								
WG3296873-2 CRM		WT-CANMET-						
Antimony (Sb)			92.4		%		70-130	23-MAR-20
Arsenic (As)			101.7		%		70-130	23-MAR-20
Barium (Ba)			101.9		%		70-130	23-MAR-20
Beryllium (Be)			91.3		%		70-130	23-MAR-20
Boron (B)			3.3		mg/kg		0-8.6	23-MAR-20
Cadmium (Cd)			97.5		%		70-130	23-MAR-20
Chromium (Cr)			101.8		%		70-130	23-MAR-20
Cobalt (Co)			100.6		%		70-130	23-MAR-20
Copper (Cu)			100.9		%		70-130	23-MAR-20
Lead (Pb)			101.0		%		70-130	23-MAR-20
Molybdenum (Mo)			94.5		%		70-130	23-MAR-20
Nickel (Ni)			99.2		%		70-130	23-MAR-20
Selenium (Se)			0.34		mg/kg		0.15-0.55	23-MAR-20
Silver (Ag)			0.24		mg/kg		0.16-0.36	23-MAR-20
Thallium (TI)			99.5		%		70-130	23-MAR-20
Uranium (U)			97.8		%		70-130	23-MAR-20
Vanadium (V)			101.5		%		70-130	23-MAR-20
Zinc (Zn)			97.3		%		70-130	23-MAR-20
WG3296873-6 DUP		WG3296873-5						
Antimony (Sb)		<0.10	<0.10	RPD-NA	ug/g	N/A	30	23-MAR-20
Arsenic (As)		4.79	4.84		ug/g	1.1	30	23-MAR-20
Barium (Ba)		30.5	31.0		ug/g	1.5	40	23-MAR-20
Beryllium (Be)		0.46	0.44		ug/g	4.1	30	23-MAR-20
Boron (B)		12.5	12.1		ug/g	3.3	30	23-MAR-20
Cadmium (Cd)		0.037	0.038		ug/g	2.4	30	23-MAR-20
Chromium (Cr)		15.8	15.9		ug/g	0.9	30	23-MAR-20
Cobalt (Co)		8.41	8.46		ug/g	0.6	30	23-MAR-20
Copper (Cu)		20.1	20.0		ug/g	0.2	30	23-MAR-20
Lead (Pb)		8.24	7.97		ug/g	3.3	40	23-MAR-20
Molybdenum (Mo)		0.40	0.40		ug/g			23-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 5 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5034449)							
WG3296873-6 DUP Molybdenum (Mo)		WG3296873 -	5 0.40		ug/g	2.1	40	23-MAR-20
Nickel (Ni)		19.4	19.4		ug/g	0.1	30	23-MAR-20
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	23-MAR-20
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	23-MAR-20
Thallium (TI)		0.093	0.090		ug/g	3.4	30	23-MAR-20
Uranium (U)		0.687	0.652		ug/g	5.2	30	23-MAR-20
Vanadium (V)		20.7	20.6		ug/g	0.6	30	23-MAR-20
Zinc (Zn)		32.8	33.0		ug/g	0.7	30	23-MAR-20
WG3296873-4 LCS Antimony (Sb)			103.4		%		80-120	23-MAR-20
Arsenic (As)			101.6		%		80-120	23-MAR-20
Barium (Ba)			102.3		%		80-120	23-MAR-20
Beryllium (Be)			93.4		%		80-120	23-MAR-20
Boron (B)			92.1		%		80-120	23-MAR-20
Cadmium (Cd)			96.3		%		80-120	23-MAR-20
Chromium (Cr)			100.1		%		80-120	23-MAR-20
Cobalt (Co)			97.7		%		80-120	23-MAR-20
Copper (Cu)			97.2		%		80-120	23-MAR-20
Lead (Pb)			101.3		%		80-120	23-MAR-20
Molybdenum (Mo)			100.9		%		80-120	23-MAR-20
Nickel (Ni)			97.7		%		80-120	23-MAR-20
Selenium (Se)			98.6		%		80-120	23-MAR-20
Silver (Ag)			95.1		%		80-120	23-MAR-20
Thallium (TI)			101.0		%		80-120	23-MAR-20
Uranium (U)			97.1		%		80-120	23-MAR-20
Vanadium (V)			102.1		%		80-120	23-MAR-20
Zinc (Zn)			97.1		%		80-120	23-MAR-20
WG3296873-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	23-MAR-20
Arsenic (As)			<0.10		mg/kg		0.1	23-MAR-20
Barium (Ba)			<0.50		mg/kg		0.5	23-MAR-20
Beryllium (Be)			<0.10		mg/kg		0.1	23-MAR-20
Boron (B)			<5.0		mg/kg		5	23-MAR-20
Cadmium (Cd)			<0.020		mg/kg		0.02	23-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 6 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result (Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5034449								
WG3296873-1 MB			0.50				0.5	
Chromium (Cr)			<0.50		mg/kg		0.5	23-MAR-20
Cobalt (Co)			<0.10 <0.50		mg/kg		0.1	23-MAR-20
Copper (Cu)			<0.50		mg/kg		0.5	23-MAR-20
Lead (Pb)					mg/kg		0.5	23-MAR-20
Molybdenum (Mo)			<0.10		mg/kg		0.1 0.5	23-MAR-20
Nickel (Ni)			<0.50		mg/kg			23-MAR-20
Selenium (Se)			<0.20		mg/kg		0.2	23-MAR-20
Silver (Ag)			<0.10		mg/kg		0.1	23-MAR-20
Thallium (TI)			<0.050		mg/kg		0.05	23-MAR-20
Uranium (U)			<0.050		mg/kg		0.05	23-MAR-20
Vanadium (V)			<0.20		mg/kg		0.2	23-MAR-20
Zinc (Zn)			<2.0		mg/kg		2	23-MAR-20
MOISTURE-WT	Soil							
Batch R5028626								
WG3294102-3 DUP % Moisture		L2428783-17 23.9	25.2		%	5.0	20	18-MAR-20
WG3294102-2 LCS			400.2		0/			
% Moisture			100.3		%		90-110	18-MAR-20
WG3294102-1 MB % Moisture			<0.25		%		0.25	18-MAR-20
Batch R5033679								
WG3295824-3 DUP		L2430024-1						
% Moisture		18.1	17.8		%	1.8	20	20-MAR-20
WG3295824-2 LCS % Moisture			101.1		%		90-110	20-MAR-20
WG3295824-1 MB								
% Moisture			<0.25		%		0.25	20-MAR-20
PEST-OC-511-WT	Soil							
Batch R5032957								
WG3294279-3 DUP Aldrin		WG3294279-5 <0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
a-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
g-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
op-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
pp-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
• • • • • • • • • • • • • • • • • • • •			-	=	3.0		· -	== =0

Workorder: L2428783 Report Date: 01-APR-20 Page 7 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test N	/latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT	Soil							
Batch R5032957								
WG3294279-3 DUP		WG3294279-5			,			
o,p-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
pp-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
op-DDT		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
pp-DDT		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
Dieldrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
Endosulfan I		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
Endosulfan II		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
Endrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
gamma-hexachlorocyclohe	exane	<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-MAR-20
Heptachlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
Heptachlor Epoxide		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
Hexachlorobenzene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-MAR-20
Hexachlorobutadiene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-MAR-20
Hexachloroethane		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-MAR-20
Methoxychlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-MAR-20
WG3294279-2 LCS								
Aldrin			116.2		%		50-140	19-MAR-20
a-chlordane			90.6		%		50-140	19-MAR-20
g-chlordane			90.6		%		50-140	19-MAR-20
op-DDD			88.7		%		50-140	19-MAR-20
pp-DDD			85.6		%		50-140	19-MAR-20
o,p-DDE			87.7		%		50-140	19-MAR-20
pp-DDE			86.1		%		50-140	19-MAR-20
op-DDT			83.4		%		50-140	19-MAR-20
pp-DDT			86.2		%		50-140	19-MAR-20
Dieldrin			90.0		%		50-140	19-MAR-20
Endosulfan I			87.0		%		50-140	19-MAR-20
Endosulfan II			84.4		%		50-140	19-MAR-20
Endrin			92.0		%		50-140	19-MAR-20
gamma-hexachlorocyclohe	exane		100.2		%		50-140	19-MAR-20
Heptachlor			97.6		%		50-140	19-MAR-20
Heptachlor Epoxide			94.2		%		50-140	19-MAR-20
Hexachlorobenzene			102.1		%		50-140	19-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 8 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test Matrix	Reference R	lesult	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT Soil							
Batch R5032957							
WG3294279-2 LCS	_			0/			
Hexachlorobutadiene		02.1		%		50-140	19-MAR-20
Hexachloroethane		12.7		%		50-140	19-MAR-20
Methoxychlor	9	91.1		%		50-140	19-MAR-20
WG3294279-1 MB Aldrin	<	<0.020		ug/g		0.02	20-MAR-20
a-chlordane		<0.020		ug/g		0.02	20-MAR-20
g-chlordane		<0.020		ug/g		0.02	20-MAR-20
op-DDD		<0.020		ug/g		0.02	20-MAR-20
pp-DDD		<0.020		ug/g		0.02	20-MAR-20
o,p-DDE		<0.020		ug/g		0.02	20-MAR-20
pp-DDE		<0.020		ug/g		0.02	20-MAR-20
op-DDT		<0.020		ug/g		0.02	20-MAR-20
pp-DDT		<0.020		ug/g		0.02	20-MAR-20
Dieldrin	<	<0.020		ug/g		0.02	20-MAR-20
Endosulfan I	<	<0.020		ug/g		0.02	20-MAR-20
Endosulfan II	<	<0.020		ug/g		0.02	20-MAR-20
Endrin	<	<0.020		ug/g		0.02	20-MAR-20
gamma-hexachlorocyclohexane	<	<0.010		ug/g		0.01	20-MAR-20
Heptachlor	<	<0.020		ug/g		0.02	20-MAR-20
Heptachlor Epoxide	<	<0.020		ug/g		0.02	20-MAR-20
Hexachlorobenzene	<	<0.010		ug/g		0.01	20-MAR-20
Hexachlorobutadiene	<	<0.010		ug/g		0.01	20-MAR-20
Hexachloroethane	<	<0.010		ug/g		0.01	20-MAR-20
Methoxychlor	<	<0.020		ug/g		0.02	20-MAR-20
Surrogate: 2-Fluorobiphenyl	8	39.3		%		50-140	20-MAR-20
Surrogate: d14-Terphenyl	9	98.1		%		50-140	20-MAR-20
WG3294279-4 MS	WG3294279-5						
Aldrin	1	29.0		%		50-140	19-MAR-20
a-chlordane		94.3		%		50-140	19-MAR-20
g-chlordane		95.8		%		50-140	19-MAR-20
op-DDD		92.0		%		50-140	19-MAR-20
pp-DDD		91.2		%		50-140	19-MAR-20
o,p-DDE		94.3		%		50-140	19-MAR-20
pp-DDE	9	91.3		%		50-140	19-MAR-20

Workorder: L2428783 Report Date: 01-APR-20 Page 9 of 10

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT	Soil							
Batch R503	2957							
	MS	WG3294279-5						
op-DDT			94.8		%		50-140	19-MAR-20
pp-DDT			99.1		%		50-140	19-MAR-20
Dieldrin			92.0		%		50-140	19-MAR-20
Endosulfan I			90.4		%		50-140	19-MAR-20
Endosulfan II			91.2		%		50-140	19-MAR-20
Endrin			113.9		%		50-140	19-MAR-20
gamma-hexachlor	ocyclohexane		114.5		%		50-140	19-MAR-20
Heptachlor			109.5		%		50-140	19-MAR-20
Heptachlor Epoxic	de		96.0		%		50-140	19-MAR-20
Hexachlorobenzei	ne		110.3		%		50-140	19-MAR-20
Hexachlorobutadi	ene		106.0		%		50-140	19-MAR-20
Hexachloroethane	•		119.0		%		50-140	19-MAR-20
Methoxychlor			109.5		%		50-140	19-MAR-20
PH-WT	Soil							
Batch R504	3273							
	DUP	L2428783-1						
рН		6.93	6.90	J	pH units	0.03	0.3	27-MAR-20
	_CS							
рН			6.99		pH units		6.9-7.1	27-MAR-20

Workorder: L2428783 Report Date: 01-APR-20

Client: TERRAPROBE-BRAMPTON Page 10 of 10

11 Indell Lane

Brampton ON L6T 3Y3

Contact: ALIREZA MALEK

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2428783-COFC

COC Number: 17 - 615451

Page 1 of 2

	www.alsglobal.com									w - Con	tact vou	r AM to	confirm all	E&P TAT	s (surcha	rges mav	apply))	٦
Report To	Contact and company name below will appear on the final report	Colort Decay 5	Report Format		TOD (DICITAL)	Sw - Contact your AM to confirm all E&P TATs (surcharges may apply) Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply													
Company:	Jera Prope	Select Report Fo	L., L		EDD (DIGITAL)	• ।	4 day [P4-		- Stan	i i i			lay [E-10		ges upp	·		Г	ᅱ
Contact:	Alireza Malek	-d `	(QC) Report with Repo			ا يُونِ الْهُونِ	4 day [P4-	-		RGEN			• -		مادادها م	∾ lE3 ਯ	0 04		_
Phone:	905.746.2050x 168	4 - '	oults to Criteria on Report - p	provide details below		PRIO	3 day [P3-		片	EME			eekend o			y [⊏2-20	U 70		_
	Company address below will appear on the final report	Select Distribution				<u>ē</u>	2 day [P2- Date and Tim	-	لا	## P 74-			, gg		eppiy/1	:: 0:n			\dashv
Street:	11 Fridell lane	Email 1 or Fax	amalek @	ienapaba	vca	- 1. AV.	N. 1	1.45	de en						ndiska per	-1171			ᅥ
City/Province:	Brampton	Email 2				For tests	s that can not be	performe	ed accordi	ng to the se				ntacted.					ᅱ
Postal Code:		Email 3						Analysis Request Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below										<u>o</u>	ᅱ
Invoice To	Same as Report To YES NO		Invoice Dis	tribution		<u> </u>	lr	ndicate Fi	iltered (F),	Preserved	(P) or Fi	Itered and	Preserved (F	P) below			3	details	١
	Copy of Invoice with Report YES NO	Select Invoice D	istribution: Er	MAIL MAIL	FAX	نجِ ا									_	\square		<u> </u>	
Company:		Email 1 or Fax				g Z			Ì				ļ	1		1 1	1	provide further	-
Contact:		Email 2				ٳۼۣڿ		↓		۱ ا	D					1	- 13	-	ļ
	Project Information	11.4 3/34	ranger en			6.4	(≥			\ \ \ \	3							2	ı
ALS Account # /	Quote #:	AFE/Cost Center:		PO#		4	[2] ₹		`		上太	n	Ì		Ì			9	
Job #:	7-918	Major/Minor Code:		Routing Code:] [2]	77	\mathcal{A}	′	$_2 \mathcal{Q}$	T =	1 1					١.	(please	2
PO / AFE:	<u> </u>	Requisitioner:				Hichael	拉	1 8	. 1	7 7	~ ~ ·	1		1			١١ ـ	St 4	Į.
LSD:		Location:				-	47 ~		ו ל	\mathcal{I} \subset	4	1	İ				ᇦ .	[]	CONTAINERS
aryw y y y		-			. 11/	Cino	Sestic	ł J		9 6		1 1				1 1	ON HOLD		
ALS Lab Wor	tk Order # (lab use only): L 242-87821141	ALS Contact:		Sampler: A	Malell	\$0	147		- 8	<u>J</u>	#~	†		1 1		1 1	83 I.	.∞ œ	ב צ
	Sample Identification and/or Coordinates	.L	Date	Time	T	MERME		110	1	21	J 12	}					SAMPLES	Sample	NUMBER OF
ALS Sample # (lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	₹ 2	92	1	M.	1	٦, ١,					L	₹ .	San	Ž
				am	Sail3	1	VV	1											
4	B14-551		1013/20	_am		1:		+ +	-+	+	+		_						\Box
	BH4-552		N /2		Soil	V		 /	-	+		+-+				++	-		-
	BH5-SSI		19/3/20	N	SOIKI	1V	VV	V				 		-		+-+	-+		
	BH5=552		9/3/20	A/	3011 ⁽¹⁾		1							1		 	_	_	
PASE SESSION	BHK_SSI	18.1.5	9/2/20		Soilling		11/	1 🗸 🛘			ŀ			1				l_	
	010-001		2/2/20	/	Sauf	17	./												
	B46-859		4/3/20	~	South	\ V	<i>\\</i>	1			+		_	 			一十		
	BHY-351		40/3/2 0	<u> </u>	15011/uT	 V	VV	V		_	-	+-+		 		+-+	十	+	
	BH7_955		10/3/20	N/	5011	1/	i /	\perp			}	+		+ +		+			
	AHV-SSI		17/3/20	M	Soilar	V	VV	V		VV	<u> </u>			\perp		\bot	\perp	_	
	042 66 7		17/3/24	41	Scil 27	V					1								
	B110-238		12/2/20	 //	Sc1 11	1	V							T			1	Ì	
	1248-773		112/3/20	 ~	 	+	 • 	\dagger			+	+ +		1		$\uparrow \uparrow \uparrow$	丁	一	
	<u></u>		<u> </u>	<u> </u>	<u></u>	<u> </u>		لــــــــــــــــــــــــــــــــــــــ	SAR	APLE C	ONDITI	ON AS F	RECEIVE) (lab us	e only)				
Drinkin	g Water (DW) Samples ¹ (client use) Special Instructions	Specify Criteria to (ele	o add on report by clic ectronic COC only)	king on the drop-	GOWN HIST DEIOW	Froze	en .	П	10		Obser		Yes			No			
l.	Aram a Barrulated DM Suptam2	<u>-</u>				- 100	acks 🔲	,	Cubes	Cu		열 시 유해	Yes			No			
	is [] No [Table 2					ng Initiated											184	W	
	numan consumption/ use?					INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES						ES °C	15.75						
l .													4.4						
Y	SHIPMENT RELEASE (client use)	<u> </u>	INITIAL CLIDNES	T RECEPTION	(lah use only)	ــــــــــــــــــــــــــــــــــــــ			<u> </u>	FIN	AL SH	IPMENT	DECEDI	ION (lab	use only	<i>;</i>			
SHIPMENT RELEASE (client use) Released by, Date: Date: Time: Received by: Date:					Time	Rec	eived b	by:		4.	Date:			10.00		ime;	1.18	=	
17/3/2a20						1			in in the second		114	$\perp M$	ar	177	<u> 20</u>		14	(-	
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATOR	Y COPY YELLO	W - CLI	IENT COPY											JULY 2017	FRON

Chain of Custody (COC) / Analytical Request Form

COC Number: 17 - 615452

Page Qof

Environmental Canada Toll Free: 1 800 668 9878

	www.alsglobal.com				.	2.12.22.2		1								_
Report To	Contact and company name below will appear on the final report	Rep	ort Format /	Distribution			lect Service L							y apply	y)	\dashv
Company:	Terraproba	Select Report Format:		.	DD (DIGITAL)		gular [R]	Standard			- business days		es apply			ᅰ
Contact:	Alireza Nalek	Quality Control (QC) Repo			NO NO	ובמו	y [P4-20%]	\Box	1 8		day [E-100%					Ц
Phone:	905.796.2050×168	Compare Results to Criteri					y [P3-25%]	Ц	Sa Sa	me Day, W	eekend or	Statutory h	oliday [E2-	200%		\Box
	Company address below will appear on the final report	Select Distribution:	EMAIL	, MAIL	FAX)	y [P2-50%]	Ц		boratory	opening fee					_
Street:	11 Forder lane	Email 1 or Fax Qm	ILL D	Terra Da	be: Ca	Residence of the state of the	and These Record			_		art ratingly	7 771700			
City/Province:	Brandton	Email 2	- U			For tests that c	an not be perform	ed according to				ected.				
Postal Co d e:		Email 3								Analysis R			 1		<i>в</i> Т	
Invoice To	Same as Report To YES NO		Invoice Dist	ribution		ļ	Indicate F	iltered (F), Pre	served (P) o	r Filtered and	Preserved (F/F) below			detail	- 1
	Copy of Invoice with Report YES NO	Select Invoice Distribution	: EM/	AIL MAIL	FAX S	A PATON										
Company:		Email 1 or Fax				3							1 1	. 1	ovide further	
Contact:		Email 2				. . .	_ !							. 1	de f	l
	Project Information	A Comment	4.1			Forming	\$			ì	lì			. 1	<u>§</u>	1
ALS Account # /	Quote #:	AFE/Cost Center:	F	PO#		(A)	F 25 7	<u>ે</u>				1 1			8	ا پر
Job #: \\	7-0918	Major/Minor Code:		Routing Code:	W	4 1	D F							. 1	릞	R
PO / AFE:		Requisitioner:				Hydade	スかい	<u> </u>				1		- A	ş	[₹
LSD:		Location:				14.	ママス	ノー						НОГР	ardo	CONTAINERS
ALC LOS MO	+ O-fort (leb use only) 04.00-1@21/10	ALS Contact:		Sampler: $A \cdot N$	1.001	3:0								8	haz	ъ В
ALS LID WO	nk Order # (lab use only):	ALS CONTACT.		pampier, I.L. I	with	`S	137	<u>'</u>						E E	e is	E.
ALS Sample #	Sample Identification and/or Coordinates		Date	Time	Sample Type	Metals	EIGI)						SAMPLES ON	Sample	NUMBER
(lab use only)	(This description will appear on the report)	(dd-i	nmm-yy)	(hh:mm)	- Jampio Type	3		/ _	-					┝╬┤	ő	_ Z _
	BHQ_SSI	751	313/3/	9 an	Soil IT	VV	VV								4	
	RHU SSS		., 9,94	Cun	SOILIT	VV										
	BH10 SSI	17/3	3/.70	Gr-	Soiler	VV										
	, <u> </u>	12/-	2/2/		50127	1/1/	 									
	BHIO-SS>	 d 	3/2/6 	an	T				+							
	BHIL-SSI	12/3	3/20	_an_	Soil 15	VV				+		-		一十		\Box
	Bit1-552	12/3	120	<u>a</u> m	Sci 27	VV								├─┤		
	BHIZ-SSI	12/3	310	1	SOLLAT	VV	VV							\vdash		igspace
	BHI2 SS	13/3	120	A.	Soulat	رز کرز ا	1		1					Ш		╙
i i	Du 14	CUE	100	~~	4117						1 1		ı <u> </u>			
		19	you		50111	V										
	17mb,0		3/2이		10" J	 	+		+ +							
	\				 		 		 	++				1		\vdash
200								CAMDI	E COND	TION AS I	RECEIVED	lah use on	lv)	$ldsymbol{\sqcup}$		المسا
Drinkin	g Water (DW) Samples ¹ (client use)	Specify Criteria to add on re (electronic C		ing on the drop-	down list below	Frozen		SAMEL		ervations	Yes	13				
	5 D. J. J. DW 6 - 4 - 2		,			ice Packs		Cubes 🔲			Yes	ā	No			1
	es No lable 2	RPI				Cooling In						v. Tel				Ta 1
	numan consumption/ use?	N1-				-	INITTIAL COOL	ER TEMPERA	TURES °C	1		FINAL CÓOLE	R TEMPERAT	JRES °C		
											n. 4	N 19				
Y	ES NO SHIPMENT RELEASE (client use)	MITTA	SHIPMENT	RECEPTION (lab use only)			<u> </u>	FINAL	SHIPMENT	RECEPTION	N (lab use	only)	لتنسب		
Released by:	C C Date: Time:	Received by:		Date:		Time:	Received	A \sim		Date:	1	111	n	Time	٦,	
J. He	al Cl 17/3/2020						レム			/\	W	110	, : <u>.</u>	117	• ()	· ——
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHIT	E - LABORATOR	Y COPY YELLO	W - CLIENT	COPY								JULY 2	2017 FRONT

CERTIFICATES OF ANALYSIS

(GROUNDWATER)

TERRAPROBE INC.

TERRAPROBE-BRAMPTON

ATTN: Alireza Malek

11 Indell Lane

Brampton ON L6T 3Y3

Date Received: 27-MAR-20

Report Date: 03-APR-20 12:45 (MT)

Version: FINAL

Client Phone: 416-939-5804

Certificate of Analysis

Lab Work Order #: L2432026
Project P.O. #: NOT SUBMITTED
Job Reference: 1-17-918-4201

C of C Numbers: 17-796045, 17-796046

Legal Site Desc:

Emily Smith Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 2 of 12

03-APR-20 12:45 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Ground Water (Coarse Soil)-All Types of Property Use (No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Ground Water (Fine Soil)-All Types of Property Use (No parameter exceedances)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 3 of 12

03-APR-20 12:45 (MT)

Dissolved Metals - WATER

		Sample	ab ID Date ple ID	L2432026-1 26-MAR-20 BH 12	L2432026-2 26-MAR-20 BH 9	L2432026-3 26-MAR-20 BH 11	L2432026-4 26-MAR-20 BH 10	L2432026-5 26-MAR-20 BH 8	L2432026-6 26-MAR-20 BH 3	L2432026-7 26-MAR-20 BH 4	L2432026-8 26-MAR-20 BH 7	L2432026-9 26-MAR-20 BH 2
Analyte	Unit	Guide #1	Limits #2									
Dissolved Mercury Filtration Location		-	-	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD
Dissolved Metals Filtration Location		-	-	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD
Antimony (Sb)-Dissolved	ug/L	6	6	0.21	<0.10	0.20	0.22	<0.10	<0.10	<0.10	<0.10	<0.10
Arsenic (As)-Dissolved	ug/L	25	25	0.41	0.36	1.00	0.59	0.79	0.58	0.76	1.44	0.16
Barium (Ba)-Dissolved	ug/L	1000	1000	77.4	46.8	66.5	85.2	92.7	62.7	131	60.8	50.9
Beryllium (Be)-Dissolved	ug/L	4	4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Boron (B)-Dissolved	ug/L	5000	5000	137	336	375	350	196	351	96	237	377
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Chromium (Cr)-Dissolved	ug/L	50	50	<0.50	<0.50	<0.50	<0.50	0.83	<0.50	<0.50	<0.50	<0.50
Cobalt (Co)-Dissolved	ug/L	3.8	3.8	0.25	<0.10	0.13	0.27	0.89	<0.10	0.13	1.45	<0.10
Copper (Cu)-Dissolved	ug/L	87	87	2.43	0.69	1.62	1.12	1.70	0.48	2.66	2.41	1.32
Lead (Pb)-Dissolved	ug/L	10	10	<0.050	< 0.050	<0.050	<0.050	0.607	<0.050	<0.050	<0.050	<0.050
Mercury (Hg)-Dissolved	ug/L	0.29	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Molybdenum (Mo)-Dissolved	ug/L	70	70	5.81	1.13	3.52	5.11	0.600	0.162	0.444	1.66	0.169
Nickel (Ni)-Dissolved	ug/L	100	100	0.71	<0.50	0.98	0.99	1.66	<0.50	0.55	2.16	0.55
Selenium (Se)-Dissolved	ug/L	10	10	0.139	<0.050	0.054	0.121	0.051	<0.050	<0.050	0.076	<0.050
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Sodium (Na)-Dissolved	ug/L	490000	490000	13200	17400	26800	21300	52900	42000	175000 ^{DLHC}	60400	47800
Thallium (TI)-Dissolved	ug/L	2	2	0.021	<0.010	<0.010	0.022	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (U)-Dissolved	ug/L	20	20	1.18	0.102	0.650	0.931	0.333	0.049	0.310	1.42	0.042
Vanadium (V)-Dissolved	ug/L	6.2	6.2	<0.50	<0.50	<0.50	<0.50	1.13	<0.50	<0.50	<0.50	<0.50
Zinc (Zn)-Dissolved	ug/L	1100	1100	3.0	1.8	2.2	1.1	5.5	<1.0	4.2	3.2	2.7

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 4 of 12

03-APR-20 12:45 (MT)

Dissolved Metals - WATER

		Sample	ab ID Date ple ID	L2432026-10 26-MAR-20 BH 1	L2432026-11 26-MAR-20 BH 5	L2432026-12 26-MAR-20 BH 6	L2432026-13 26-MAR-20 DUP 1	L2432026-14 26-MAR-20 DUP 2
Analyte	Unit	Guide #1	Limits #2					
Dissolved Mercury Filtration Location		-	-	FIELD	FIELD	FIELD	FIELD	FIELD
Dissolved Metals Filtration Location		-	-	FIELD	FIELD	FIELD	FIELD	FIELD
Antimony (Sb)-Dissolved	ug/L	6	6	<0.10	<1.0 DLHC	<1.0 DLHC	0.22	<0.10
Arsenic (As)-Dissolved	ug/L	25	25	0.34	1.0 DLHC	<1.0 DLHC	0.39	0.43
Barium (Ba)-Dissolved	ug/L	1000	1000	87.9	59.5 DLHC	49.5 DLHC	81.1	50.3
Beryllium (Be)-Dissolved	ug/L	4	4	<0.10	<1.0 DLHC	<1.0 DLHC	<0.10	<0.10
Boron (B)-Dissolved	ug/L	5000	5000	199	<100 DLHC	<100 DLHC	151	372
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	<0.010	< 0.050 DLHC	<0.050 ^{DLHC}	<0.010	<0.010
Chromium (Cr)-Dissolved	ug/L	50	50	<0.50	<5.0 DLHC	<5.0 DLHC	<0.50	< 0.50
Cobalt (Co)-Dissolved	ug/L	3.8	3.8	0.13	<1.0 DLHC	<1.0 DLHC	0.25	<0.10
Copper (Cu)-Dissolved	ug/L	87	87	1.31	5.5 DLHC	5.5 DLHC	1.89	1.62
Lead (Pb)-Dissolved	ug/L	10	10	<0.050	<0.50 DLHC	<0.50 DLHC	< 0.050	0.061
Mercury (Hg)-Dissolved	ug/L	0.29	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Molybdenum (Mo)-Dissolved	ug/L	70	70	0.181	0.50 DLHC	1.58 DLHC	6.16	1.18
Nickel (Ni)-Dissolved	ug/L	100	100	0.84	<5.0 DLHC	<5.0 DLHC	0.77	< 0.50
Selenium (Se)-Dissolved	ug/L	10	10	0.055	<0.50 DLHC	<0.50 DLHC	0.107	< 0.050
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.050	<0.50 DLHC	<0.50 DLHC	<0.050	<0.050
Sodium (Na)-Dissolved	ug/L	490000	490000	59700	418000 ^{DLHC}	457000 ^{DLHC}	14700	19400
Thallium (TI)-Dissolved	ug/L	2	2	<0.010	<0.10 DLHC	<0.10 DLHC	0.022	<0.010
Uranium (U)-Dissolved	ug/L	20	20	0.048	2.97 DLHC	5.18 DLHC	1.24	0.103
Vanadium (V)-Dissolved	ug/L	6.2	6.2	<0.50	<5.0 DLHC	<5.0 DLHC	<0.50	<0.50
Zinc (Zn)-Dissolved	ug/L	1100	1100	2.8	<10 DLHC	<10 DLHC	2.5	3.4

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 5 of 12

03-APR-20 12:45 (MT)

Speciated Metals - WATER

openiated inicials with En												
		L	ab ID	L2432026-1	L2432026-2	L2432026-3	L2432026-4	L2432026-5	L2432026-6	L2432026-7	L2432026-8	L2432026-9
		Sample	Date	26-MAR-20								
		Samı	ple ID	BH 12	BH 9	BH 11	BH 10	BH 8	BH 3	BH 4	BH 7	BH 2
		Guide L	Limits									
Analyte	Unit	#1	#2									
Chromium, Hexavalent	ug/L	25	25	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 6 of 12

03-APR-20 12:45 (MT)

Speciated Metals - WATER

			Lab ID	L2432026-10	L2432026-11	L2432026-12	L2432026-13	L2432026-14
		Sampl	e Date	26-MAR-20	26-MAR-20	26-MAR-20	26-MAR-20	26-MAR-20
		San	ple ID	BH 1	BH 5	BH 6	DUP 1	DUP 2
		Guide	Limits					
Analyte	Unit	#1	#2					
Analyte	J.III	<i>π</i> ι						

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 7 of 12

03-APR-20 12:45 (MT)

Volatile Organic Compounds - WATER

Lab ID L2432026-15
Sample Date 26-MAR-20
Sample ID VOC/BTEX/F1
TRIP BLANK

	Unit	Guide #1	Limits #2	
Analyte				
Acetone	ug/L	2700	2700	<30
Benzene	ug/L	5	5	<0.50
Bromodichloromethane	ug/L	16	16	<2.0
Bromoform	ug/L	25	25	<5.0
Bromomethane	ug/L	0.89	0.89	<0.50
Carbon tetrachloride	ug/L	0.79	5	<0.20
Chlorobenzene	ug/L	30	30	<0.50
Dibromochloromethane	ug/L	25	25	<2.0
Chloroform	ug/L	2.4	22	<1.0
1,2-Dibromoethane	ug/L	0.2	0.2	<0.20
1,2-Dichlorobenzene	ug/L	3	3	<0.50
1,3-Dichlorobenzene	ug/L	59	59	<0.50
1,4-Dichlorobenzene	ug/L	1	1	<0.50
Dichlorodifluoromethane	ug/L	590	590	<2.0
1,1-Dichloroethane	ug/L	5	5	<0.50
1,2-Dichloroethane	ug/L	1.6	5	<0.50
1,1-Dichloroethylene	ug/L	1.6	14	<0.50
cis-1,2-Dichloroethylene	ug/L	1.6	17	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	17	<0.50
Methylene Chloride	ug/L	50	50	<5.0
1,2-Dichloropropane	ug/L	5	5	<0.50
cis-1,3-Dichloropropene	ug/L	-	-	<0.30
trans-1,3-Dichloropropene	ug/L	-	-	<0.30
1,3-Dichloropropene (cis & trans)	ug/L	0.5	0.5	<0.50
Ethylbenzene	ug/L	2.4	2.4	<0.50
n-Hexane	ug/L	51	520	<0.50
Methyl Ethyl Ketone	ug/L	1800	1800	<20
Methyl Isobutyl Ketone	ug/L	640	640	<20
MTBE	ug/L	15	15	<2.0
Styrene	ug/L	5.4	5.4	<0.50

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

m+p-Xylenes

Xylenes (Total)

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Difluorobenzene

ANALYTICAL REPORT

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 8 of 12

03-APR-20 12:45 (MT)

Volatile Organic Compounds - WATER

		Sample	Lab ID e Date ple ID	L2432026-15 26-MAR-20 VOC/BTEX/F1 TRIP BLANK
Analyte	Unit	Guide #1	Limits #2	
1,1,1,2-Tetrachloroethane	ug/L	1.1	1.1	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1	1	<0.50
Tetrachloroethylene	ug/L	1.6	17	<0.50
Toluene	ug/L	24	24	<0.50
1,1,1-Trichloroethane	ug/L	200	200	<0.50
1,1,2-Trichloroethane	ug/L	4.7	5	<0.50
Trichloroethylene	ug/L	1.6	5	<0.50
Trichlorofluoromethane	ug/L	150	150	<5.0
Vinyl chloride	ug/L	0.5	1.7	<0.50
o-Xylene	ug/L	-	-	<0.30

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

ug/L

ug/L

300

300

< 0.40

< 0.50

97.7

99.9

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 9 of 12

03-APR-20 12:45 (MT)

Organochlorine Pesticides - WATER

			₋ab ID	L2432026-1	L2432026-2	L2432026-3	L2432026-4	L2432026-5	L2432026-6	L2432026-7	L2432026-8	L2432026-9
		Sample		26-MAR-20								
		Sam	ple ID	BH 12	BH 9	BH 11	BH 10	BH 8	BH 3	BH 4	BH 7	BH 2
Analyte	Unit	Guide #1	Limits #2									
Aldrin	ug/L	0.35	0.35	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
gamma-hexachlorocyclohexane	ug/L	1.2	1.2	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
a-chlordane	ug/L	-	-	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Chlordane (Total)	ug/L	7	7	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011
g-chlordane	ug/L	-	-	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
o,p-DDD	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
pp-DDD	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	< 0.0040
Total DDD	ug/L	10	10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
o,p-DDE	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
pp-DDE	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
Total DDE	ug/L	10	10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
op-DDT	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
pp-DDT	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
Total DDT	ug/L	2.8	2.8	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
Dieldrin	ug/L	0.35	0.35	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Endosulfan I	ug/L	-	-	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070
Endosulfan II	ug/L	-	-	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070
Endosulfan (Total)	ug/L	1.5	1.5	<0.0099	<0.0099	<0.0099	<0.0099	< 0.0099	<0.0099	<0.0099	<0.0099	<0.0099
Endrin	ug/L	0.48	0.48	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Heptachlor	ug/L	1.5	1.5	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Heptachlor Epoxide	ug/L	0.048	0.048	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Hexachlorobenzene	ug/L	1	1	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Hexachlorobutadiene	ug/L	0.44	0.6	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Hexachloroethane	ug/L	2.1	2.1	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Methoxychlor	ug/L	6.5	6.5	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Surrogate: Decachlorobiphenyl	%	-	-	86.3	66.9	89.3	88.5	68.9	84.8	85.4	93.5	88.3
Surrogate: Tetrachloro-m-xylene	%	-	-	95.3	89.2	89.8	86.2	80.1	85.9	88.9	88.8	89.5

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2432026 CONT'D....

Job Reference: 1-17-918-4201

PAGE 10 of 12

03-APR-20 12:45 (MT)

Organochlorine Pesticides - WATER

		Sample	Lab ID e Date ple ID	L2432026-10 26-MAR-20 BH 1	L2432026-11 26-MAR-20 BH 5	L2432026-12 26-MAR-20 BH 6	L2432026-13 26-MAR-20 DUP 1	L2432026-14 26-MAR-20 DUP 2
Analyte	Unit	Guide #1	Limits #2					
Aldrin	ug/L	0.35	0.35	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
gamma-hexachlorocyclohexane	ug/L	1.2	1.2	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
a-chlordane	ug/L	-	-	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Chlordane (Total)	ug/L	7	7	<0.011	<0.011	<0.011	<0.011	<0.011
g-chlordane	ug/L	-	-	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
o,p-DDD	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
pp-DDD	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
Total DDD	ug/L	10	10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
o,p-DDE	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
pp-DDE	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
Total DDE	ug/L	10	10	<0.0057	<0.0057	<0.0057	<0.0057	< 0.0057
op-DDT	ug/L	-	-	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
pp-DDT	ug/L	-	-	<0.0040	<0.0050 ^{DLQ}	<0.0040	<0.0040	<0.0040
Total DDT	ug/L	2.8	2.8	<0.0057	<0.0064	<0.0057	<0.0057	<0.0057
Dieldrin	ug/L	0.35	0.35	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Endosulfan I	ug/L	-	-	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070
Endosulfan II	ug/L	-	-	<0.0070	<0.0070	<0.0070	<0.0070	<0.0070
Endosulfan (Total)	ug/L	1.5	1.5	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099
Endrin	ug/L	0.48	0.48	<0.010	<0.010	<0.010	<0.010	<0.010
Heptachlor	ug/L	1.5	1.5	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Heptachlor Epoxide	ug/L	0.048	0.048	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Hexachlorobenzene	ug/L	1	1	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Hexachlorobutadiene	ug/L	0.44	0.6	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Hexachloroethane	ug/L	2.1	2.1	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Methoxychlor	ug/L	6.5	6.5	<0.0080	<0.0080	<0.0080	<0.0080	<0.0080
Surrogate: Decachlorobiphenyl	%	-	-	74.0	82.6	77.0	83.1	80.1
Surrogate: Tetrachloro-m-xylene	%	-	-	94.8	89.1	97.5	90.9	89.2

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

Reference Information

Qualifiers for Individual Parameters Listed:

 Qualifier
 Description

 DLQ
 Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

 DLHC
 Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

CHLORDANE-T-CALC-WT Water Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July 2011) EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

DDD-DDE-DDT-CALC-WT Water DDD, DDE, DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

ENDOSULFAN-T-CALC- Water Endosulfan Total sums CALCULATION WT

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

HG-D-UG/L-CVAA-WT Water Diss. Mercury in Water by CVAAS EPA 1631E (mod)

(ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

OCP-ROUTINE-WT Water Pesticides, Organochlorine in Water SW846 8270

Samples are extracted using a solvent mixture and the resulting extracts are analyzed on GC/MSD

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

L2432026 CONT'D....
Job Reference: 1-17-918-4201
PAGE 12 of 12
03-APR-20 12:45 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

17-796045 17-796046

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Qualifier

Workorder: L2432026 Report Date: 03-APR-20 Page 1 of 11

RPD

Limit

Analyzed

Units

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Matrix

Reference

Result

Contact: Alireza Malek

Test

Test	Wallix	Reference	Result	Qualifier	Units	KPD	LIIIII	Allalyzeu
CR-CR6-IC-R511-WT	Water							
Batch R5046547								
WG3300952-4 DUP Chromium, Hexavalent		WG3300952-3 <0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAR-20
WG3300952-2 LCS Chromium, Hexavalent			100.7		%		80-120	30-MAR-20
WG3300952-1 MB Chromium, Hexavalent			<0.50		ug/L		0.5	30-MAR-20
WG3300952-5 MS Chromium, Hexavalent		WG3300952-3	99.5		%		70-130	30-MAR-20
HG-D-UG/L-CVAA-WT	Water							
Batch R5044988								
WG3300794-4 DUP		WG3300794-3						
Mercury (Hg)-Dissolved		<0.0050	<0.0050	RPD-NA	ug/L	N/A	20	30-MAR-20
WG3300794-2 LCS Mercury (Hg)-Dissolved			111.0		%		80-120	30-MAR-20
WG3300794-1 MB Mercury (Hg)-Dissolved			<0.0050		ug/L		0.005	30-MAR-20
WG3300794-6 MS Mercury (Hg)-Dissolved		WG3300794-5	106.1		%		70-130	30-MAR-20
MET-D-UG/L-MS-WT	Water							
Batch R5044308								
WG3300310-4 DUP Antimony (Sb)-Dissolved	1	WG3300310-3 0.21	0.21		ug/L	3.4	20	20 MAP 20
Arsenic (As)-Dissolved		0.41	0.40		ug/L	2.8	20	30-MAR-20 30-MAR-20
Barium (Ba)-Dissolved		77.4	76.8		ug/L	0.7	20	30-MAR-20
Beryllium (Be)-Dissolved		<0.10	<0.10	RPD-NA	ug/L	N/A	20	30-MAR-20
Boron (B)-Dissolved		137	138	KFD-NA	ug/L	0.7	20	30-MAR-20
Cadmium (Cd)-Dissolved	4	<0.0050	< 0.0050	RPD-NA	ug/L	N/A	20	30-MAR-20
Chromium (Cr)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAR-20
Cobalt (Co)-Dissolved	~	0.25	0.25	IN D-INA	ug/L	0.5	20	30-MAR-20
Copper (Cu)-Dissolved		2.43	2.41		ug/L	0.9	20	30-MAR-20
Lead (Pb)-Dissolved		<0.050	<0.050	RPD-NA	ug/L	N/A	20	30-MAR-20
Molybdenum (Mo)-Disso	lved	5.81	5.88	IN D INA	ug/L	1.2	20	30-MAR-20
Nickel (Ni)-Dissolved	- 	0.71	0.71		ug/L	0.2	20	30-MAR-20
Selenium (Se)-Dissolved	l	0.139	0.111	J	ug/L	0.029	0.1	30-MAR-20
Silver (Ag)-Dissolved	•	<0.050	<0.050	RPD-NA	ug/L	0.029 N/A	20	30-MAR-20
Sodium (Na)-Dissolved		13200	13200	NI D NA	ug/L	0.1	20	30-MAR-20
		13200	13200		uu/L	0.1	70	30-MAR-20

Workorder: L2432026 Report Date: 03-APR-20 Page 2 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R50443	08							
WG3300310-4 DU		WG3300310-3						
Thallium (TI)-Dissolv		0.021	0.022		ug/L	7.4	20	30-MAR-20
Uranium (U)-Dissolve		1.18	1.20		ug/L	1.7	20	30-MAR-20
Vanadium (V)-Dissol	ved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAR-20
Zinc (Zn)-Dissolved		3.0	3.0		ug/L	0.6	20	30-MAR-20
WG3300310-2 LC3 Antimony (Sb)-Disso			97.4		%		80-120	27-MAR-20
Arsenic (As)-Dissolve	ed		101.4		%		80-120	27-MAR-20
Barium (Ba)-Dissolve	ed		101.2		%		80-120	27-MAR-20
Beryllium (Be)-Dissol	lved		105.7		%		80-120	27-MAR-20
Boron (B)-Dissolved			103.7		%		80-120	27-MAR-20
Cadmium (Cd)-Disso	olved		97.1		%		80-120	27-MAR-20
Chromium (Cr)-Disso	olved		100.9		%		80-120	27-MAR-20
Cobalt (Co)-Dissolve	d		99.8		%		80-120	27-MAR-20
Copper (Cu)-Dissolve	ed		98.6		%		80-120	27-MAR-20
Lead (Pb)-Dissolved			103.4		%		80-120	27-MAR-20
Molybdenum (Mo)-Di	issolved		97.8		%		80-120	27-MAR-20
Nickel (Ni)-Dissolved	l		100.3		%		80-120	27-MAR-20
Selenium (Se)-Disso	lved		99.6		%		80-120	27-MAR-20
Silver (Ag)-Dissolved	I		102.0		%		80-120	27-MAR-20
Sodium (Na)-Dissolv	ed		104.3		%		80-120	27-MAR-20
Thallium (TI)-Dissolv	ed		103.8		%		80-120	27-MAR-20
Uranium (U)-Dissolve	ed		99.1		%		80-120	27-MAR-20
Vanadium (V)-Dissol	ved		103.1		%		80-120	27-MAR-20
Zinc (Zn)-Dissolved			100.6		%		80-120	27-MAR-20
WG3300310-1 MB Antimony (Sb)-Disso			<0.10		ug/L		0.1	27-MAR-20
Arsenic (As)-Dissolve			<0.10		ug/L		0.1	27-MAR-20
Barium (Ba)-Dissolve	ed		<0.10		ug/L		0.1	27-MAR-20
Beryllium (Be)-Dissol			<0.10		ug/L		0.1	27-MAR-20
Boron (B)-Dissolved			<10		ug/L		10	27-MAR-20
Cadmium (Cd)-Disso	olved		<0.0050		ug/L		0.005	27-MAR-20
Chromium (Cr)-Disso	olved		<0.50		ug/L		0.5	27-MAR-20
Cobalt (Co)-Dissolve	d		<0.10		ug/L		0.1	27-MAR-20
Copper (Cu)-Dissolve	ed		<0.20		ug/L		0.2	27-MAR-20
i								

Workorder: L2432026 Report Date: 03-APR-20 Page 3 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Contact: Alireza Malek

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R504430	08							
WG3300310-1 MB Lead (Pb)-Dissolved			<0.050		ug/L		0.05	07.144.D. 00
Molybdenum (Mo)-Dis	seolved		<0.050		ug/L		0.05	27-MAR-20
Nickel (Ni)-Dissolved	SSOIVEU		<0.50		ug/L		0.05	27-MAR-20
` ,	und		<0.050		ŭ		0.05	27-MAR-20
Selenium (Se)-Dissolved	veu				ug/L		0.05	27-MAR-20
	٠. ا		<0.050		ug/L			27-MAR-20
Sodium (Na)-Dissolve			<50		ug/L		50	27-MAR-20
Thallium (TI)-Dissolve			<0.010		ug/L		0.01	27-MAR-20
Uranium (U)-Dissolve			<0.010		ug/L		0.01	27-MAR-20
Vanadium (V)-Dissolv	ed .		<0.50		ug/L		0.5	27-MAR-20
Zinc (Zn)-Dissolved			<1.0		ug/L		1	27-MAR-20
WG3300310-5 MS Antimony (Sb)-Dissolv	ved	WG3300310-3	3 100.4		%		70-130	30-MAR-20
Arsenic (As)-Dissolve	d		110.5		%		70-130	30-MAR-20
Barium (Ba)-Dissolve			N/A	MS-B	%		-	30-MAR-20
Beryllium (Be)-Dissolv	/ed		94.5		%		70-130	30-MAR-20
Boron (B)-Dissolved			N/A	MS-B	%		-	30-MAR-20
Cadmium (Cd)-Dissol	ved		104.4		%		70-130	30-MAR-20
Chromium (Cr)-Disso	lved		98.0		%		70-130	30-MAR-20
Cobalt (Co)-Dissolved	d		93.0		%		70-130	30-MAR-20
Copper (Cu)-Dissolve	d		87.6		%		70-130	30-MAR-20
Lead (Pb)-Dissolved			95.9		%		70-130	30-MAR-20
Molybdenum (Mo)-Dis	ssolved		91.6		%		70-130	30-MAR-20
Nickel (Ni)-Dissolved			91.4		%		70-130	30-MAR-20
Selenium (Se)-Dissol	ved		118.1		%		70-130	30-MAR-20
Silver (Ag)-Dissolved			81.1		%		70-130	30-MAR-20
Sodium (Na)-Dissolve	ed		N/A	MS-B	%		-	30-MAR-20
Thallium (TI)-Dissolve	ed		94.5		%		70-130	30-MAR-20
Uranium (U)-Dissolve	d		N/A	MS-B	%		-	30-MAR-20
Vanadium (V)-Dissolv	/ed		100.5		%		70-130	30-MAR-20
Zinc (Zn)-Dissolved			95.7		%		70-130	30-MAR-20
` '								

OCP-ROUTINE-WT Water

Workorder: L2432026 Report Date: 03-APR-20 Page 4 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Name	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Aidrin 10.1 % 50.150 02.APR.20 gamma-hexachlorocyclohexane 89.1 % 50.150 02.APR.20 a-chlordane 102.6 % 50.150 02.APR.20 g-chlordane 103.8 % 50.150 02.APR.20 g-chlordane 103.8 % 50.150 02.APR.20 o.p-DDD 120.8 % 50.150 02.APR.20 pp-DDD 100.1 % 50.150 02.APR.20 o.p-DDE 100.1 % 50.150 02.APR.20 op-DDT 62.6 % 50.150 02.APR.20 op-DDT 53.0 % 50.150 02.APR.20 Dieldrin 96.5 % 50.150 02.APR.20 Endosulfan I 118.1 % 50.150 02.APR.20 Endissulfan II 118.1 % 50.150 02.APR.20 Heptachlor Epoxide 90.5 % 50.150 02.APR.20 Heptachlor Epoxide 90.5 %	OCP-ROUTINE-WT	Water							
Aldrin 110.1 % 50-150 02-APR-20 gamma-hexalhorocyclohexane 89.1 % 50-150 02-APR-20 a-chlordane 102.6 % 50-150 02-APR-20 g-chlordane 103.8 % 50-150 02-APR-20 o.p-DDD 121.2 % 50-150 02-APR-20 op-DDD 120.8 % 50-150 02-APR-20 op-DDE 100.1 % 50-150 02-APR-20 op-DDT 62.6 % 50-150 02-APR-20 op-DDT 53.0 % 50-150 02-APR-20 Dieldrin 96.5 % 50-150 02-APR-20 Endosulfan I 18.1 % 50-150 02-APR-20 Endosulfan I 18.1 % 50-150 02-APR-20 Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Hexachloroberzene 100.7	Batch R5050354								
gamma-hexachlorocyclohexane 89.1 % 50-150 02-APR-20 ac-thlordane 102.6 % 50-150 02-APR-20 g-chlordane 103.8 % 50-150 02-APR-20 op-DDD 121.2 % 50-150 02-APR-20 op-DDD 121.2 % 50-150 02-APR-20 op-DDD 120.8 % 50-150 02-APR-20 op-DDD 120.8 % 50-150 02-APR-20 op-DDE 99.6 % 50-150 02-APR-20 op-DDT 62.6 % 50-150 02-APR-20 op-DDT 53.0 % 50-150 02-APR-20 op-DDT 53.0 % 50-150 02-APR-20 op-DDT 53.0 % 50-150 02-APR-20 op-DDT 53.0 % 50-150 02-APR-20 op-DDT 53.0 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDT 54.1 % 50-150 02-APR-20 op-DDD 54.1 % 50-150 02-APR-20 op-DDD 54.0 % 50-150 02-APR-20 op-DDD 54.0 % 50-150 02-APR-20 op-DDD 54.0 % 50-150 02-APR-20 op-DDD 54.0 % 50-150 02-APR-20 op-DDD 54.0 % 50-150 02-APR-20 op-DDD 54.0 % 50-150 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 54.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDD 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 % 50-0040 0p-L 0.004 02-APR-20 op-DDT 56.0 %				440.4		0/			
a-chlordane 102.6 % 50-150 02-APR-20 g-chlordane 103.8 % 50-150 02-APR-20 o.p-DDD 121.2 % 50-150 02-APR-20 o.p-DDD 121.2 % 50-150 02-APR-20 o.p-DDD 120.8 % 50-150 02-APR-20 o.p-DDE 100.1 % 50-150 02-APR-20 o.p-DDE 100.1 % 50-150 02-APR-20 o.p-DDE 99.6 % 50-150 02-APR-20 o.p-DDT 62.6 % 50-150 02-APR-20 o.p-DDT 53.0 % 50-150 02-APR-20 o.p-DDT 53.0 % 50-150 02-APR-20 o.p-DDT 53.0 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDT 66.5 % 50-150 02-APR-20 o.p-DDD 66.5 % 50-150 02-APR-20 o.p-DDD 66.5 % 50-150 02-APR-20 o.p-DDD 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 % 50-150 02-APR-20 o.p-DDT 66.0 %		hovene							
g-chlordane 103.8 % 50-150 02-APR-20 co-DDD 121.2 % 50-150 02-APR-20 pp-DDD 120.8 % 50-150 02-APR-20 op-DDE 100.1 % 50-150 02-APR-20 pp-DDE 99.6 % 50-150 02-APR-20 op-DDT 62.6 % 50-150 02-APR-20 pp-DDT 53.0 % 50-150 02-APR-20 pp-DDT 53.0 % 50-150 02-APR-20 pp-DDT 58.1 % 50-150 02-APR-20 pp-DDT 98.5 % 50-150 02-APR-20 pendosulfan I 98.1 % 50-150 02-APR-20 pendosulfan II 118.1 % 50-150 02-APR-20 pendosulfan II 118.1 % 50-150 02-APR-20 Heptachlor 76.0 % 50-150 02-APR-20 Heptachlor 8.5 % 50-150 02-		onexane							
Op-DDD 121.2 % 50-150 02-APR-20 Pp-DDD 120.8 % 50-150 02-APR-20 Op-DDE 100.1 % 50-150 02-APR-20 Pp-DDE 99.6 % 50-150 02-APR-20 Op-DDT 62.6 % 50-150 02-APR-20 Pp-DDT 53.0 % 50-150 02-APR-20 Diddrin 96.5 % 50-150 02-APR-20 Endosulfan I 98.1 % 50-150 02-APR-20 Endrin 100.9 % 50-150 02-APR-20 Heptachlor 76.0 % 50-150 02-APR-20 Heptachlore Epoxide 90.5 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Metxachlorobundariene 88.5 % 50-150 02-APR-20 Mexachlorobundariene 91.8 %									
pp-DDD 120.8 % 50.150 02.APR-20 0.p-DDE 100.1 % 50.150 02.APR-20 0.p-DDE 99.6 % 50.150 02.APR-20 0p-DDT 99.6 % 50.150 02.APR-20 0p-DDT 62.6 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20 02.APR-20 0p-DDT 53.0 % 50.150 02.APR-20	•								
o.p-DDE 100.1 % 50.150 02-APR-20 pp-DDE 99.6 % 50.150 02-APR-20 op-DDT 62.6 % 50.150 02-APR-20 pp-DDT 53.0 % 50.150 02-APR-20 Dieldrin 96.5 % 50.150 02-APR-20 Endosulfan I 98.1 % 50.150 02-APR-20 Endrin 100.9 % 50.150 02-APR-20 Endrin 100.9 % 50.150 02-APR-20 Heptachlor 76.0 % 50.150 02-APR-20 Heptachlor Epoxide 90.5 % 50.150 02-APR-20 Hexachlorobenzene 100.7 % 50.150 02-APR-20 Hexachlorobenzene 91.8 % 50.150 02-APR-20 Hexachlorobenzene 91.8 % 50.150 02-APR-20 Methoxychlor 54.5 % 50.150 02-APR-20 Methoxychlor <0.008.0									
pp-DDE 99.6 % 50-150 02-APR-20 op-DDT 62.6 % 50-150 02-APR-20 pp-DDT 53.0 % 50-150 02-APR-20 Dieldrin 96.5 % 50-150 02-APR-20 Endosulfan I 98.1 % 50-150 02-APR-20 Endosulfan II 118.1 % 50-150 02-APR-20 Endrin 100.9 % 50-150 02-APR-20 Heptachlor 76.0 % 50-150 02-APR-20 Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobethane 88.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB % 50-150 02-APR-20 gamma-hexachlorocyclohexane <0.0080									
Op-DDT 62.6 % 50.150 02-APR-20 pp-DDT 53.0 % 50.150 02-APR-20 Dieldrin 96.5 % 50.150 02-APR-20 Endosulfan I 98.1 % 50.150 02-APR-20 Endosulfan II 118.1 % 50.150 02-APR-20 Endrin 100.9 % 50.150 02-APR-20 Heptachlor 76.0 % 50.150 02-APR-20 Heptachlor Epoxide 90.5 % 50.150 02-APR-20 Hexachlorobenzene 100.7 % 50.150 02-APR-20 Hexachloroethane 88.5 % 50.150 02-APR-20 Hexachloroethane 91.8 % 50.150 02-APR-20 Methoxychlor 54.5 % 50.150 02-APR-20 WG3300758-1 MB N 50.150 02-APR-20 garma-hexachlorocyclohexane <0.0080								50-150	
PP-DDT								50-150	
Dieldrin 96.5 % 50-150 02-APR-20 Endosulfan I 98.1 % 50-150 02-APR-20 Endosulfan II 118.1 % 50-150 02-APR-20 Endrin 100.9 % 50-150 02-APR-20 Heptachlor 76.0 % 50-150 02-APR-20 Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobutadiene 88.5 % 50-150 02-APR-20 Hexachlorobutadiene 91.8 % 50-150 02-APR-20 Hexachlorobutadiene 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 50-150 02-APR-20 02-APR-20 Malari 0.0150 02-APR-20 Methoxychlor 0.0080 ug/L 0.008 02-APR-20 gamma-hexachlorocyclohexane									
Endosulfan I 98.1 % 50-150 02-APR-20 Endosulfan II 118.1 % 50-150 02-APR-20 Endrin 100.9 % 50-150 02-APR-20 Heptachlor 76.0 % 50-150 02-APR-20 Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobutadiene 88.5 % 50-150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB % 50-150 02-APR-20 gamma-hexachlorocyclohexane <0.0080								50-150	02-APR-20
Endosulfan II 118.1 % 50-150 02-APR-20 Endrin 100.9 % 50-150 02-APR-20 Heptachlor 76.0 % 50-150 02-APR-20 Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobutadiene 88.5 % 50-150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB V 50-150 02-APR-20 Md1rin <0.0080								50-150	02-APR-20
Endrin 100.9 % 50.150 02-APR-20 Heptachlor 76.0 % 50.150 02-APR-20 Heptachlor Epoxide 90.5 % 50.150 02-APR-20 Hexachlorobenzene 100.7 % 50.150 02-APR-20 Hexachlorobutadiene 88.5 % 50.150 02-APR-20 Hexachloroethane 91.8 % 50.150 02-APR-20 Methoxychlor 54.5 % 50.150 02-APR-20 WG3300758-1 MB MB 0.008 02-APR-20 Jamma-hexachlorocyclohexane <0.0080	Endosulfan I							50-150	02-APR-20
Heptachlor 76.0 % 50.150 02-APR-20 Heptachlor Epoxide 90.5 % 50.150 02-APR-20 Hexachlorobenzene 100.7 % 50.150 02-APR-20 Hexachlorobutadiene 88.5 % 50.150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB MB 0.008 02-APR-20 Aldrin <0.0080								50-150	02-APR-20
Heptachlor Epoxide 90.5 % 50-150 02-APR-20 Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobutadiene 88.5 % 50-150 02-APR-20 Hexachlorobutadiene 91.8 % 50-150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 Methoxychlor 54.5 % 60-150 02-APR-20 Methoxychlor 54.5	Endrin							50-150	02-APR-20
Hexachlorobenzene 100.7 % 50-150 02-APR-20 Hexachlorobutadiene 88.5 % 50-150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB NB 0.0080 Ug/L 0.008 02-APR-20 gamma-hexachlorocyclohexane <0.0080	Heptachlor			76.0		%		50-150	02-APR-20
Hexachlorobutadiene 88.5 % 50-150 02-APR-20 Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB Aldrin <0.0080	Heptachlor Epoxide			90.5				50-150	02-APR-20
Hexachloroethane 91.8 % 50-150 02-APR-20 Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB Aldrin <0.0080 ug/L 0.008 02-APR-20 gamma-hexachlorocyclohexane <0.0080				100.7		%		50-150	02-APR-20
Methoxychlor 54.5 % 50-150 02-APR-20 WG3300758-1 MB Aldrin <0.0080 ug/L 0.008 02-APR-20 gamma-hexachlorocyclohexane <0.0080	Hexachlorobutadiene			88.5		%		50-150	02-APR-20
WG3300758-1 MB Aldrin <0.0080 ug/L 0.008 02-APR-20 gamma-hexachlorocyclohexane <0.0080	Hexachloroethane			91.8		%		50-150	02-APR-20
Aldrin <0.0080	Methoxychlor			54.5		%		50-150	02-APR-20
gamma-hexachlorocyclohexane <0.0080									
a-chlordane <0.0080									02-APR-20
g-chlordane <0.0080	gamma-hexachlorocyclo	ohexane				ug/L			02-APR-20
o,p-DDD <0.0040				<0.0080		ug/L			02-APR-20
pp-DDD <0.0040	_			<0.0080		ug/L		0.008	02-APR-20
o,p-DDE <0.0040	•			<0.0040		ug/L		0.004	02-APR-20
pp-DDE <0.0040	pp-DDD			<0.0040		ug/L		0.004	02-APR-20
op-DDT <0.0040	o,p-DDE			<0.0040		ug/L		0.004	02-APR-20
pp-DDT <0.0040	pp-DDE			<0.0040		ug/L		0.004	02-APR-20
Dieldrin <0.0080 ug/L 0.008 02-APR-20 Endosulfan I <0.0070	op-DDT			<0.0040		ug/L		0.004	02-APR-20
Endosulfan I <0.0070 ug/L 0.007 02-APR-20	pp-DDT			<0.0040		ug/L		0.004	02-APR-20
•	Dieldrin			<0.0080		ug/L		0.008	02-APR-20
Endosulfan II <0.0070 ug/L 0.007 02-APR-20	Endosulfan I			<0.0070		ug/L		0.007	02-APR-20
	Endosulfan II			<0.0070		ug/L		0.007	02-APR-20

Workorder: L2432026 Report Date: 03-APR-20 Page 5 of 11

TERRAPROBE-BRAMPTON Client:

11 Indell Lane

Brampton ON L6T 3Y3

Contact: Alireza Malek

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-WT	Water							
Batch R5050354								
WG3300758-1 MB Endrin			<0.010		ug/L		0.01	02 APP 20
Heptachlor			<0.0080		ug/L		0.008	02-APR-20 02-APR-20
Heptachlor Epoxide			<0.0080		ug/L		0.008	02-APR-20
Hexachlorobenzene			<0.0080		ug/L		0.008	02-APR-20
Hexachlorobutadiene			<0.0080		ug/L		0.008	02-APR-20
Hexachloroethane			<0.0080		ug/L		0.008	02-APR-20
Methoxychlor			<0.0080		ug/L		0.008	02-APR-20
Surrogate: Decachlorob	piphenyl		71.2		%		40-130	02-APR-20
Surrogate: Tetrachloro-			77.0		%		40-130	02-APR-20
VOC-511-HS-WT	Water							02 / II / C 20
Batch R5044228								
WG3300206-4 DUP		WG3300206-3	3					
1,1,1,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,1,2,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	30-MAR-20
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	30-MAR-20
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
Bromodichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAR-20
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	30-MAR-20
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	30-MAR-20
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	30-MAR-20
cis-1,2-Dichloroethylene	e	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20

Workorder: L2432026 Report Date: 03-APR-20 Page 6 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5044	1228							
	UP	WG3300206-						
cis-1,3-Dichloropro		<0.30	<0.30	RPD-NA	ug/L	N/A	30	30-MAR-20
Dibromochloromet		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAR-20
Dichlorodifluorome	thane	<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAR-20
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	30-MAR-20
Methyl Ethyl Keton	е	<20	<20	RPD-NA	ug/L	N/A	30	30-MAR-20
Methyl Isobutyl Ket	one	<20	<20	RPD-NA	ug/L	N/A	30	30-MAR-20
Methylene Chloride	•	<5.0	<5.0	RPD-NA	ug/L	N/A	30	30-MAR-20
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAR-20
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	30-MAR-20
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
Tetrachloroethylen	е	<0.50	< 0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
Toluene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
trans-1,2-Dichloroe	ethylene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
trans-1,3-Dichlorop	oropene	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	30-MAR-20
Trichloroethylene		0.94	0.93		ug/L	1.1	30	30-MAR-20
Trichlorofluorometh	nane	<5.0	<5.0	RPD-NA	ug/L	N/A	30	30-MAR-20
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAR-20
WG3300206-1 L	cs							
1,1,1,2-Tetrachloro	ethane		97.3		%		70-130	27-MAR-20
1,1,2,2-Tetrachloro	ethane		84.3		%		70-130	27-MAR-20
1,1,1-Trichloroetha	ne		98.4		%		70-130	27-MAR-20
1,1,2-Trichloroetha	ne		92.1		%		70-130	27-MAR-20
1,1-Dichloroethane			92.3		%		70-130	27-MAR-20
1,1-Dichloroethyler	ne		87.7		%		70-130	27-MAR-20
1,2-Dibromoethane	•		90.3		%		70-130	27-MAR-20
1,2-Dichlorobenzer	ne		97.8		%		70-130	27-MAR-20
1,2-Dichloroethane			89.0		%		70-130	27-MAR-20
1,2-Dichloropropan	ie		92.7		%		70-130	27-MAR-20
1,3-Dichlorobenzer	ne		102.2		%		70-130	27-MAR-20
1,4-Dichlorobenzer	ne		100.1		%		70-130	27-MAR-20
Acetone			89.5		%		60-140	27-MAR-20

Workorder: L2432026 Report Date: 03-APR-20 Page 7 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5044228								
WG3300206-1 LCS					04			
Benzene			95.7		%		70-130	27-MAR-20
Bromodichloromethane			93.4		%		70-130	27-MAR-20
Bromoform			88.5		%		70-130	27-MAR-20
Bromomethane			78.8		%		60-140	27-MAR-20
Carbon tetrachloride			99.96		%		70-130	27-MAR-20
Chlorobenzene			97.4		%		70-130	27-MAR-20
Chloroform			96.1		%		70-130	27-MAR-20
cis-1,2-Dichloroethylene)		94.8		%		70-130	27-MAR-20
cis-1,3-Dichloropropene)		83.6		%		70-130	27-MAR-20
Dibromochloromethane			91.2		%		70-130	27-MAR-20
Dichlorodifluoromethane	Э		80.2		%		50-140	27-MAR-20
Ethylbenzene			99.6		%		70-130	27-MAR-20
n-Hexane			87.4		%		70-130	27-MAR-20
m+p-Xylenes			99.6		%		70-130	27-MAR-20
Methyl Ethyl Ketone			85.3		%		60-140	27-MAR-20
Methyl Isobutyl Ketone			75.9		%		60-140	27-MAR-20
Methylene Chloride			92.8		%		70-130	27-MAR-20
MTBE			95.2		%		70-130	27-MAR-20
o-Xylene			106.9		%		70-130	27-MAR-20
Styrene			92.5		%		70-130	27-MAR-20
Tetrachloroethylene			99.7		%		70-130	27-MAR-20
Toluene			100.5		%		70-130	27-MAR-20
trans-1,2-Dichloroethyle	ene		88.5		%		70-130	27-MAR-20
trans-1,3-Dichloroprope	ne		91.5		%		70-130	27-MAR-20
Trichloroethylene			97.9		%		70-130	27-MAR-20
Trichlorofluoromethane			86.2		%		60-140	27-MAR-20
Vinyl chloride			100.2		%		60-140	27-MAR-20
WG3300206-2 MB								
1,1,1,2-Tetrachloroetha			<0.50		ug/L		0.5	30-MAR-20
1,1,2,2-Tetrachloroetha	ne		<0.50		ug/L		0.5	30-MAR-20
1,1,1-Trichloroethane			<0.50		ug/L		0.5	30-MAR-20
1,1,2-Trichloroethane			<0.50		ug/L		0.5	30-MAR-20
1,1-Dichloroethane			< 0.50		ug/L		0.5	30-MAR-20
1,1-Dichloroethylene			< 0.50		ug/L		0.5	30-MAR-20

Workorder: L2432026 Report Date: 03-APR-20 Page 8 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5044228 WG3300206-2 MB			0.00				0.0	
1,2-Dibromoethane			<0.20		ug/L		0.2	30-MAR-20
1,2-Dichlorobenzene			<0.50		ug/L		0.5	30-MAR-20
1,2-Dichloroethane			<0.50		ug/L		0.5	30-MAR-20
1,2-Dichloropropane			<0.50		ug/L		0.5	30-MAR-20
1,3-Dichlorobenzene			<0.50		ug/L		0.5	30-MAR-20
1,4-Dichlorobenzene			<0.50		ug/L		0.5	30-MAR-20
Acetone			<30		ug/L		30	30-MAR-20
Benzene			<0.50		ug/L		0.5	30-MAR-20
Bromodichloromethane			<2.0		ug/L		2	30-MAR-20
Bromoform			<5.0		ug/L		5	30-MAR-20
Bromomethane			<0.50		ug/L		0.5	30-MAR-20
Carbon tetrachloride			<0.20		ug/L		0.2	30-MAR-20
Chlorobenzene			<0.50		ug/L		0.5	30-MAR-20
Chloroform			<1.0		ug/L		1	30-MAR-20
cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	30-MAR-20
cis-1,3-Dichloropropene			< 0.30		ug/L		0.3	30-MAR-20
Dibromochloromethane			<2.0		ug/L		2	30-MAR-20
Dichlorodifluoromethane)		<2.0		ug/L		2	30-MAR-20
Ethylbenzene			<0.50		ug/L		0.5	30-MAR-20
n-Hexane			<0.50		ug/L		0.5	30-MAR-20
m+p-Xylenes			< 0.40		ug/L		0.4	30-MAR-20
Methyl Ethyl Ketone			<20		ug/L		20	30-MAR-20
Methyl Isobutyl Ketone			<20		ug/L		20	30-MAR-20
Methylene Chloride			<5.0		ug/L		5	30-MAR-20
MTBE			<2.0		ug/L		2	30-MAR-20
o-Xylene			< 0.30		ug/L		0.3	30-MAR-20
Styrene			<0.50		ug/L		0.5	30-MAR-20
Tetrachloroethylene			<0.50		ug/L		0.5	30-MAR-20
Toluene			<0.50		ug/L		0.5	30-MAR-20
trans-1,2-Dichloroethyle	ne		<0.50		ug/L		0.5	30-MAR-20
trans-1,3-Dichloroproper			<0.30		ug/L		0.3	30-MAR-20
Trichloroethylene			<0.50		ug/L		0.5	30-MAR-20
Trichlorofluoromethane			<5.0		ug/L		5	30-MAR-20
					ŭ			23 20

Workorder: L2432026 Report Date: 03-APR-20 Page 9 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5044 WG3300206-2 N	4228 //B							
Vinyl chloride			<0.50		ug/L		0.5	30-MAR-20
Surrogate: 1,4-Difle	uorobenzene		99.9		%		70-130	30-MAR-20
Surrogate: 4-Brom	ofluorobenzene		98.1		%		70-130	30-MAR-20
	I S	WG3300206-3	3					
1,1,1,2-Tetrachloro	oethane		98.4		%		50-140	30-MAR-20
1,1,2,2-Tetrachloro	oethane		86.3		%		50-140	30-MAR-20
1,1,1-Trichloroetha	ane		98.1		%		50-140	30-MAR-20
1,1,2-Trichloroetha	ane		93.5		%		50-140	30-MAR-20
1,1-Dichloroethane	9		91.9		%		50-140	30-MAR-20
1,1-Dichloroethyler	ne		86.1		%		50-140	30-MAR-20
1,2-Dibromoethane	е		91.6		%		50-140	30-MAR-20
1,2-Dichlorobenzer	ne		97.5		%		50-140	30-MAR-20
1,2-Dichloroethane	e		88.8		%		50-140	30-MAR-20
1,2-Dichloropropar	ne		93.0		%		50-140	30-MAR-20
1,3-Dichlorobenzer	ne		100.2		%		50-140	30-MAR-20
1,4-Dichlorobenzei	ne		98.5		%		50-140	30-MAR-20
Acetone			92.5		%		50-140	30-MAR-20
Benzene			95.4		%		50-140	30-MAR-20
Bromodichloromet	hane		94.3		%		50-140	30-MAR-20
Bromoform			90.5		%		50-140	30-MAR-20
Bromomethane			75.6		%		50-140	30-MAR-20
Carbon tetrachloric	de		99.96		%		50-140	30-MAR-20
Chlorobenzene			97.4		%		50-140	30-MAR-20
Chloroform			96.1		%		50-140	30-MAR-20
cis-1,2-Dichloroeth	ylene		95.1		%		50-140	30-MAR-20
cis-1,3-Dichloropro	ppene		80.1		%		50-140	30-MAR-20
Dibromochloromet	hane		92.6		%		50-140	30-MAR-20
Dichlorodifluorome	ethane		76.6		%		50-140	30-MAR-20
Ethylbenzene			98.6		%		50-140	30-MAR-20
n-Hexane			84.7		%		50-140	30-MAR-20
m+p-Xylenes			98.5		%		50-140	30-MAR-20
Methyl Ethyl Keton	e		86.8		%		50-140	30-MAR-20
Methyl Isobutyl Ket	tone		77.1		%		50-140	30-MAR-20
Methylene Chloride	е		92.4		%		50-140	30-MAR-20

Workorder: L2432026 Report Date: 03-APR-20 Page 10 of 11

Client: TERRAPROBE-BRAMPTON

11 Indell Lane

Brampton ON L6T 3Y3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R50442	228							
WG3300206-5 MS	3	WG3300206-3						
MTBE			95.0		%		50-140	30-MAR-20
o-Xylene			106.4		%		50-140	30-MAR-20
Styrene			92.1		%		50-140	30-MAR-20
Tetrachloroethylene			97.9		%		50-140	30-MAR-20
Toluene			99.6		%		50-140	30-MAR-20
trans-1,2-Dichloroeth	nylene		86.2		%		50-140	30-MAR-20
trans-1,3-Dichloropro	opene		86.1		%		50-140	30-MAR-20
Trichloroethylene			97.4		%		50-140	30-MAR-20
Trichlorofluorometha	ane		84.4		%		50-140	30-MAR-20
Vinyl chloride			96.6		%		50-140	30-MAR-20

Quality Control Report

Workorder: L2432026 Report Date: 03-APR-20

Client: TERRAPROBE-BRAMPTON Page 11 of 11

11 Indell Lane

Brampton ON L6T 3Y3

Contact: Alireza Malek

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample SRM Standard Reference Material MS Matrix Spike Matrix Spike Duplicate **MSD** Average Desorption Efficiency ADE

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

coc Number: 17 - 796046
Page | of 2

JAKE 2994.					ğ			9	Py Py		8			WHITE - LABORATOR	ТІНМ	K	Received by	VATION Time:	LL 12020	Reference by: $30 \text{N} = 60 \text{ Back page for als locations and sampling information}$	BIESIADE	Refeased by: TOYN 5 REFER TO BAC
Time:		e only)	N (rap us	CEPTION	FINAL SRIPMENT RECEPTION (120 use only)	NAL S				,		খ	(lab use or	INITIAL SHIPMENT RECEPTION (lab use only)	SHIPMENT	MILIM			(client use)	SHIPMENT RELEASE (client use)	SHIP	
-			-				_		\int))	0)						is X 8	
္က	ERATUR	ER TEMP	FINAL COOLER TEMPERATURES °C	75		C. 83	TEMPERATURES °C	ER TEM	NITTAL COOLER!	IN I				-				IADIE C	_	ption/ use?	Aro samples for human consumption/ use?	Aro samples for
	ŧ		. [ē	Cusway searmaca	usways	4			Cooling Initiated	Cooling Cooling							T.//. 2		ated DW System?	Are samples taken from a Regulated DW System?	Are samples tal
	3 8	•		¥ es	rvations	SIF Observations	ν α T			ا نیمال	Frozen				C only)	electronic CC		(electronic COC only)		Drinking Water (DW) Samples' (client use)	ing Water (DW)	Drink
		Š	lab use o	EIVED (I:	SAMPLE CONDITION AS RECEIVED (lab use only	CONDIT	MPLE	SA				elow	down list b	ng on the drop	port by clicki	to add on re	Specify Criteria	Special Instructions /	_		-	
			_			\vdash		2		JV	5		_	16:00						S) # (S		
	L		1			1	1	3	Z	ر د	5	ľ		TH 130					1	8 H S		
	$oxed{\Gamma}$	T	+	+		-	-	\$	2	\ \ \	2			4.00						BH 1	_	
	igg		+	1	$\frac{1}{1}$	-	igdash	S	<	\ <u>\</u>	7			20.00		-	i i			BH 2		
	\prod	I	+	1	-	+	-	ج	Z		2	<u></u>		12:30						847	•	
		İ	+	1		╁	-	<	₹	\ <u>\</u>	ß			11:00						고		
	\prod	İ	+	‡		-	-	<		<u> </u>	2			94:11						8 HB		
	$oldsymbol{\perp}$		+-	-	F	+	-	3	L	\ <u>\</u>	5	L		11:30							9	
	\perp		+	1		╁	-	<u> </u>	K		7			11:00						BH 10	9	
	1	1	+	ļ		╁	+	5	k	<u>{</u>	2			6:30						BH 11	B)	
	1	İ	+	1	+	+	+	K	Į,	\ <u><</u>	5		-	9:50						19	}	
	1	Ţ	+	1	-	╁	-	<			12	<u> </u>	(212)	9:10	26-03-20	76-6				12	BH	
S	-			L		\vdash				100 100	1 -	8	Sample Ty	(hh:mm)	(dd-mmm-yy)	(dd-n		or Coordinates ar on the report)	Sample Identification and/or Coordinates (This description will appear on the report)	Sample Id (This desc		ALS Sample # (lab use only)
AMF								CRE	lecci	_ YES Solved	MBE	12.	n 5, 8;	Sampler: John 5, Bicsia		Emily Smith	ALS Contact:	Zode		use only); 16	ALS Lab Work Order # (lab use only):	M qeri STV
^ L									<u>'</u>								Location:					LSD:
E.								1	<u>' 15</u> 4								Requisitioner:					PO/AFE:
S									10	es ta	_			Routing Code:	7		Major/Minor Code:			420	17-418-	Job#
0	_					_			<u>U</u>	7				PO#	_		AFE/Cost Centor:)	91891	! / Quote #:	ALS Account # / Quote #:
N							_				IT/		184)	Oll and Gas Required Fields (client use)	Required	Oll and Ga			tion	v		
H						_					AII						Email 2			4055	Locerta	Contact:
IC											4E		- (a	LROSSIG YOUR OFOLG. 19	31 @ JS		Email 1 or Fax			d J6.	Tothaciale	Company:
L			_				-	_	-	F	RS		FAX			Distribution:	Select Invoice Distribution:		X YES	with Report	Copy of Invoice with Report	ļ
D			F/P) below	reserved (F.	Indicato Filtered (F), Preservod (P) or Filtered and Preserved (F/P) below	ervod (P)	(F), Pres	Po Filtorex	夏夏)			ibution	Invoice Distribution	1		0	∐ Yes X №	ñ lo	Same as Report To	Invoice To
١	$\frac{1}{2}$			rest	Analysis Request	, P								1		4	Email 3		Y3	70	3-1	Postal Code:
			34	kil be contact	Fer tests that can not be performed according to the service level schedad, you will be contacted.	servica lavi	ing to the s	ed accord	be perform	et can not	or tests the	Fe	10	is sign ock is tollow obe	3k めいわ	1,5,000	Email 2		f	_	Si'd m	City/Province:
	3	yy hh:n	dd-mmm-yy hh:mm				(EAP TA	buts and Time Required for all EAP TATE	no Roqui	in pine or	2		(4	tollaprobo. (A	3	<u>\$</u>	Email 1 or Fax		Thub Lin	The The		Street:
		ply)]	may apı	ning fees	(Laboratory opening fees may apply)]		EM		-50%]	2 day [P2-50%]	(Custn		FAX	MAJL [] FAX	EMAN.	tion:	Select Distribution:		ar on the final report	Company address below will appear on the final report	Company add	Priorie:
Š	- FE2 -20	holidav	tatutory i	and or St	Same Day. Weekend or Sta		ERGEN		1-25%]	4 day [P4-20%] 3 day [P3-25%]	ORITY ISS Days		if box checker	VI Company Best I'm in Criteria on Benort - movide details below if box checked	with Report	(QC) Repor	Quality Control (QC) Report with Report		15	2	Alie	Contact:
1		Ardde saby	· no surchar	rness days -	Standard TAT if received by 3 pm - business days - no surchargus apply	i receive	ndard TA	S X	' I	Regular [R]	4	т Т	EDD (DIGITAL)	EXCEL		Format:	Select Report Format:			cobe	Terracione	Company:
Aidda	Jos may	urchare	SP IAIS (8	îlm ali Eă	Salact Service Level Below - Contact your Aid to confirm all E&P TA18 (surcharges may apply)	ntact yo	OW - Co	Neg Be	ervice L	Salact S				distribution	Report Format / Distribution	Repo			odow will appear on the	Contact and company name below will appear on the final report	Centa	Report To
						-	.]			1			-		l est					www.aisglobal.com	www.ais	

s) Environmental www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

(lab use only)

Page 2 of 2

coc Number: 17 - 796045

Banart To	Contact and company name below will appear on the final report		Report Format /	Distribution			Select	Service	o Level l	Below -	Conta	ct your	AM to c	confirm a	II E&F	TATs (si	ırcharge	may apply	1)
Report To		Select Report Format			O (DIGITAL)		Regu	lar (R)	X	Standard	TAT if n					no surcharg	iss abby		
Company:	Tellaptobe Alice ta Molek	Quality Control (QC) I			NO	, <u>î</u>	4 day (I	4-209	6]		ENCY	1 Busi	ness d	lay (E -	100%	1			
Contact:	(416) 434 5804	Compare Results to				Pag #	3 day [i	3-25	ا ا)	KERG	Same (Day, W	eekend	or St	atutory l	oliday [E2 -200%	
Phone:	Company address below will appear on the final report	Select Distribution:	MAIL BALL	MAIL [] F	AX	2 4	2 day [i	P2-509	6) <u> </u>]		(Labor	atory o	pening	fees :	may app	ly)]		
			aleko te	dagrops (<u> </u>	- 4	Date and	Timo R	equired fo	ell EAP	TĂTS:	2 m 4 7 7			de	i-mmm-y	y hh:mn	1	
Street:	II Intell Ln		Thicsiand			For tosts	that can re	nt be per	formed acc	ording to	the servi	ice level s	elected, y	you will be	contecto	od.			
City/Province:	Bigmotion, an	Email 3	A CHESTON SET	er Serten uch	MOT. MI									equest					
Postal Code:	Same as Report To YES X NO		Invoice Dist	ribution				ir	dicate Filte	ered (F),	Preserve	ed (P) or	Filtered a	and Preser	ved (F/I	P) below		╛╸	ॗ
		Select Invoice Distribu		AJL MAJL	FAX	181		51	FIF		$[\]$							년 전 전	ğ
	Copy of Invoice with Report YES NO	Email 1 or Fax		6(14 6 10 66 1		CONTAINERS		Τ'	\neg									10	
Company:	Lorena Lassi	Email 2	63-7731 VV	THE INVEN		1 <u>5</u>			1	2					-			エ	<u> </u>
Contact:	Project Information		id Gas Required	Fields (client us	ě)	լ⊈				SON								l z	텧
ALS Account # /	1 4 41 4	AFE/Cost Center:		PO#		1 <u>z</u>				1.,	J		1					N	S S
Job #:	1-(7-d)() - 42, l	Major/Minor Code:		Routing Code:]ၓI	-	띘	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1							100	👸
PO/AFE:	17/7/17 (6)1	Requisitioner:				8	2	2		Pal								Ιй	8
		Location:		-			Pessicides	16/19/19	₹	197									HAZARD
LSD:			 T	21	Chier Li	間間			212	1 9	├		1			1		<u>□</u>	
ALS Lab Wor	rk Order # (lab use only): 1 2432026 412	ALS Contact:	15m fl 1	Sampler: John .), Vitsialet	NUMBER	إلىقى ا	U,SSONO	eccurca eccurca eccurca	小仁	4							AM	5
	Sample Identification and/or Coordinates	· <u>·</u> · · · · · · · · · · · · · · · · ·	Date	Time		1₹	اب	3	_	1			-					≲	SUSPE
ALS Sample # (lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh;mm)	Sample Type	ž	3,	\leq		<u> </u>								S	<u> </u>
144 - 25 - 4431	O o	7/	5 U3-2U	9:10	bW	5		71	7 1	/									
	Vac	11	12-03-10	9.50	6W	5	1/1		70	Τ,		\Box	\neg		Т				
	Dup 12	<u> </u>	0 05-200	- 1770	6W	2	'	~ '	<u> </u>	1,/	1	\Box	_	\neg	\top				
	VOCIBIEX I FI TRIP BLANK				000	14	-+	\dashv		+	┼─	\vdash		+	+-	\top	 	+	
		_•			<u> </u>	+		_		+	\vdash	\vdash	+		\dashv		\vdash		
						1_	$\sqcup \downarrow$		\bot	_	4	\sqcup	_	_ _	+	-	\vdash		
										1_	1_	\sqcup			_ _		 _ 		-
													l_						
						 		一											
							\vdash	\dashv	_	+-	T	1 1			\top	1		1	
					 	+-	 	-+	+	+-	+	┼╌┤	\dashv	-	+	+	1 1		
	<u> </u>						-	+	-		+	 	\dashv	_	+	_	┝╌┼	+-	+
						<u> </u>	igspace	-		-	—	\Box			-	-	 -		 -
· · ·																بلب			
	Special instructions	/ Specify Criteria to add	d on report by click	king on the drop-de	own list below				_	SAMPI		_	_		_	b use o		Ma.	-
Drinkis	ng Water (DW) Samples¹ (client use)	{olectro	inic COC only)			Froze		1			./(Observa		Ye		片		No No	
	on from a Regulated DW System?					Ice P	acks ng Initia	M)	ce Cube	s 7	Cust	ody se	el intec	t Y	e 9			NO	Ш
	YES X NO Table 2	•				Cool					TIPES	an .	-т		gn.	IAL COOL	ER TEMPE	RATURES °C	
Are samples for	human consumption/ uso?					-A		_	OOLER T	EMPER/	TURES	-C			rli		LIN TENTPE	THORES C	·
1 11	YES X NO					Щ	1	<u>8</u> ;	<u> </u>				1	BEAT	TION	l (lab ::=	onb/		
	SHIPMENT RELEASE (client use)		NITIAL/SHIPMEN	T RECEPTION (I	ab use only)	IT/man		Dace!	ed by:		FINA	AL SHI	Date:		HUN	l (lab us	only)	Time:	
Released by:	Date: Time: U3/12/6/10/20 U3/2	Received by:	/ 1	Date WY	RIFCING	だけ	M	, vecell	ieu uy.										
2011N 2 10	TRAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATORY	COPY YELLO	W - CL	ENT CO	PΥ					_						ARE 2016 FROM
REFER TO BACK	CPAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		****				-												

APPENDIX K

Cost Estimate of Site Remediation Update,

Trails of Collingwood, Collingwood, Ontario

TERRAPROBE INC.

Consulting Geotechnical & Environmental Engineering Construction Materials Engineering, Inspection & Testing

June 19, 2015

File No. 13-11-6138
Brampton Office

Municipal Property Assessment Corporation P.O. Box 9808 Toronto, ON M1S 5T9

Attention:

RE: COST ESTIMATE OF SITE REMEDIATION UPDATE TRAILS OF COLLINGWOOD COLLINGWOOD, ONTARIO

Dear Sir/Madam:

Following an initial investigation, Terraprobe Inc. (Terraprobe) provided a letter to the Municipal Property Assessment Corporation (MPAC) on March 17, 2014, as well as supporting information on April 11, 2014, indicating that a significant portion of the Trails of Collingwood property had shallow soil contamination and provided a cost estimate to conduct remediation of the property. Additional investigation was conducted in December 2014. This letter provides an update of the results and a revised cost estimate to remediate the site, along with supporting details.

The site is comprised of approximately 7.6 hectares of undeveloped land, and is located east of High Street and north of Telfer Road in the Town of Collingwood as indicated on that attached Figure 1. Property Identification Numbers are also shown on Attachment 1. Terraprobe has conducted two drilling programs and has submitted soil samples based on a sampling grid from virtually the entire property for analysis of organochlorine pesticides and metals to investigate the effects of historical pesticide application at the former orchard that was on-site. Attachment 2 provides a figure that indicates the grid sampling locations.

The analytical results from Terraprobe's sampling are presented in Attachment 5. It should be noted that some sampling was conducted by others prior to Terraprobe's work on site, and those

Terraprobe Inc.

analytical results are not attached. However, the results of the prior sampling have been taken into account, and are generally consistent with Terraprobe's findings.

At least one sample from every sampling location was contaminated by arsenic, DDT, or DDE in excess of the Ontario Ministry of the Environment Standards that are applicable to the site with the exception of grid location IJ12. A sample was not analyzed from grid location GH89 due to wet site conditions. The status of each sample result is presented visually in Attachment 3. Each sampling location (e.g. AB23) has a column for organochlorine pesticides (OCPs) and one for metals. Each sampling location is further organized vertically by depth below ground surface in metres. Red cells indicate exceedances while green indicate the sample passed. These pesticide contaminants are typically found in shallow soil, which is in agreement with the results. The soil was generally impacted to depths of 0.3 m or 0.6 m.

Attachment 4 presents the area that was confirmed to be impacted based on the soil results (orange area) and the area that is assumed to be impacted based on adjacent sampling results (white area). The grid location IJ12 is shown in green to indicate that the sample from this location met the Standard. Including location GH89, the area impacted is approximately 98% of the total site, or approximately 7.4 hectares. A remediation cost estimate of approximately \$2.8 million was provided in the prior letter on the basis of 5.9 hectares being confirmed or assumed to be impacted. The revised cost estimate to strip, stockpile, and dispose of the soil, including environmental sampling, is approximately \$3.5 million based on the revised area of 7.4 hectares.

We trust this letter meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

Terraprobe Inc.

Olnist

David Hill, M.A.Sc., MBA, P.Eng., QP_{ESA}

Associate

Paul W. Bowen, P.Eng., P.Geo., QP_{RA}

Principal

Brampton Office

Attachments

Attachment 1 – Site location plan and Property Identification Numbers

Attachment 2 – Figure illustrating sampling grid

Attachment 3 – Table illustrating summary of sampling results

Attachment 4 – Figure illustrating confirmed and assumed areas of impact

Attachment 5 - Certificates of Analysis for Terraprobe soil sample analyses

ATTACHMENT 1

Indell Lane - Brampton Ontario Lo1 313 (905) 796-2650

REFERENC

County of Simcoe Maps, 2014

NOTES:

LEGEND:

PROJECT TITLE:

Subsurface Environmental Investigation

SITE LOCATION:

High Street and Telfer Road Collingwood, Ontario

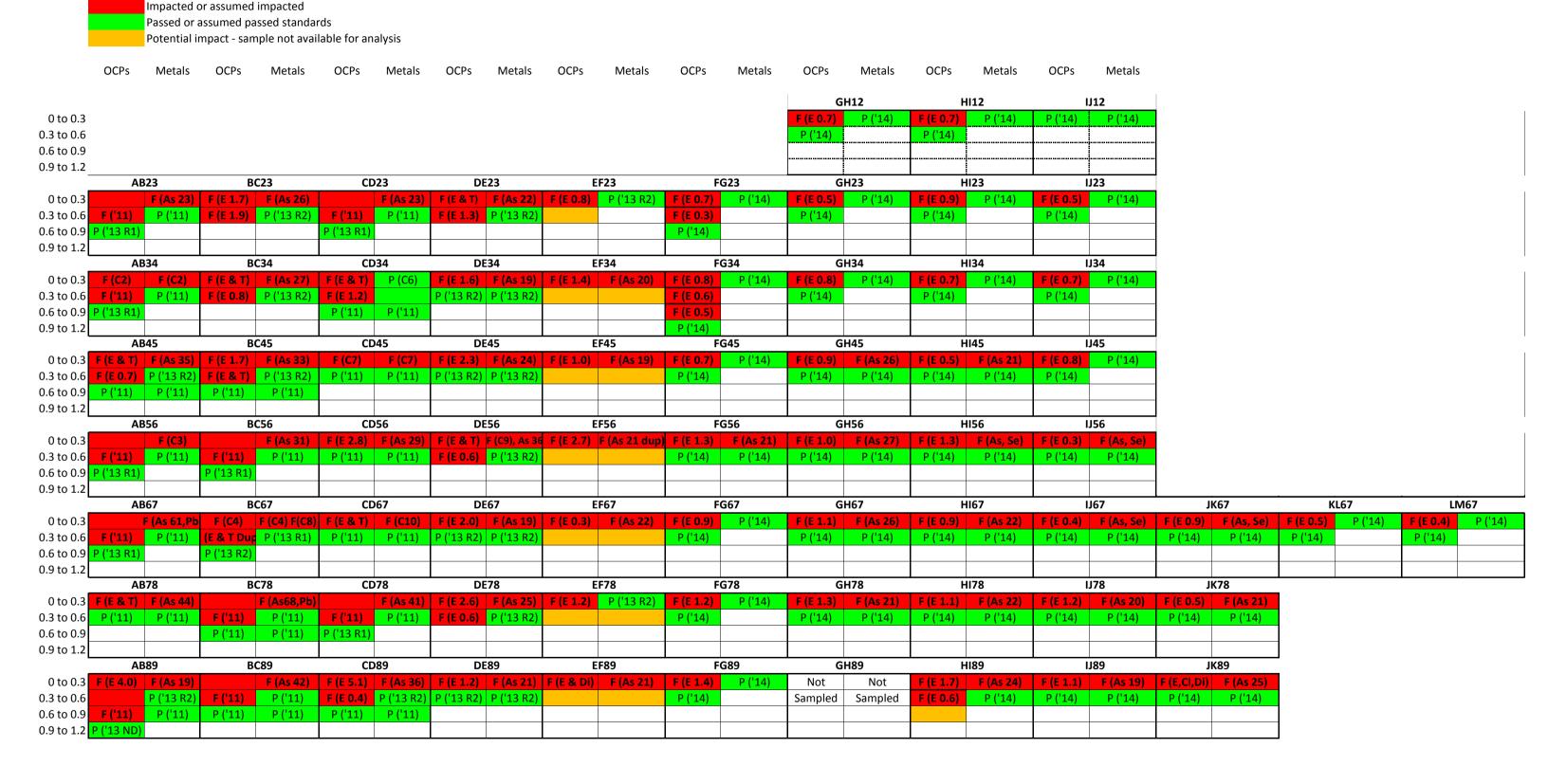
EIGUDE TITLE

SITE LOCATION PLAN AND PROPERTY IDENTIFICATION NUMBERS

REV NO.:	FILE NO.:
0	13-11-6138-1
SCALE:	
As Shown	FIGURE NO.:
March 2014	1

ATTACHMENT 2

TERRAPROBE INC.



ATTACHMENT 3

TERRAPROBE INC.

February 2015

ATTACHMENT 4

Orange – confirmed impacted

White – assumed impacted (could not be analyzed)

Green – clean based on sample analyzed

ATTACHMENT 5

TERRAPROBE INC.

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE

BRAMPTON, ON L6T3Y3

(905) 796-2650

ATTENTION TO: David Hill

PROJECT NO: 13-11-6138

AGAT WORK ORDER: 13T680579

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Jan 23, 2013

PAGES (INCLUDING COVER): 24

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES
VERSION 2:Work order updated with additional samples on Feb 4,2013.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Page 1 of 24

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: TERRAPROBE INC. ATTENTION TO: David Hill

			O. Re	eg. 153(51 ²	1) - Metals (Comprehen	ısive) (Soil)				
DATE RECEIVED: 2013-01-17								Γ	DATE REPORT	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	AB-23-A	BC-23-A	BC-23-B	CD-23-A	DE-23-A	DE-23-B	EF-23-A	BC-34-A
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4075649	4075658	4075660	4075666	4075674	4075676	4075682	4075698
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	23	26	7	23	22	14	12	27
Boron	μg/g	120	5	11	14	14	14	13	11	8	14
Barium	μg/g	390	2	48	49	70	54	53	53	30	52
Beryllium	μg/g	4	0.5	<0.5	0.5	0.7	0.6	0.6	0.6	<0.5	0.6
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	16	18	24	18	19	20	12	19
Cobalt	μg/g	22	0.5	5.6	6.4	8.8	7.2	7.2	8.4	5.0	6.5
Copper	μg/g	140	1	36	39	32	39	27	27	18	46
Lead	μg/g	120	1	56	64	14	70	21	16	12	65
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	12	15	20	15	15	18	10	15
Selenium	μg/g	2.4	0.4	<0.4	1.2	1.8	1.0	1.0	1.3	<0.4	1.4
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	23	0.5	0.5	0.6	0.8	0.6	0.7	0.7	0.5	0.6
Vanadium	μg/g	86	1	21	24	32	25	25	28	18	24
Zinc	μg/g	340	5	54	62	78	61	54	59	37	65

Certified By:

Make Muneum

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

		• • • • • • • • • • • • • • • • • • • •	9	·) ····•		,				
							[DATE REPORTE	ED: 2013-01-23	
	SAMPLE DES	CRIPTION:	BC-34-B	DE-34-A	DE-34-B	EF-34-A	AB-45-A	AB-45-B	BC-45-A	BC-45-B
	SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Unit	G/S	RDL	4075700	4075714	4075716	4075722	4075730	4075732	4075738	4075740
μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
μg/g	18	1	7	19	2	20	35	14	33	11
μg/g	120	5	14	15	6	15	11	11	14	10
μg/g	390	2	60	62	13	58	59	66	53	52
μg/g	4	0.5	0.6	0.7	<0.5	0.6	<0.5	0.6	0.6	0.5
μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
μg/g	160	2	21	23	9	21	16	21	19	20
μg/g	22	0.5	7.0	8.6	4.2	8.3	5.6	7.5	6.4	7.3
μg/g	140	1	33	29	12	31	48	29	44	25
μg/g	120	1	15	20	5	18	87	31	77	26
μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
μg/g	100	1	18	17	8	18	13	16	14	16
μg/g	2.4	0.4	0.7	1.2	<0.4	1.5	1.4	0.8	<0.4	0.9
μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	<0.4	<0.4
μg/g	23	0.5	0.7	0.8	<0.5	0.9	0.6	0.8	0.6	0.7
μg/g	86	1	25	30	17	31	24	32	25	25
μg/g	340	5	81	62	23	64	66	85	71	83
	ha\a ha\a ha\a ha\a ha\a ha\a ha\a ha\a	SAM DATE Unit G/S μg/g 7.5 μg/g 18 μg/g 120 μg/g 390 μg/g 4 μg/g 1.2 μg/g 160 μg/g 22 μg/g 140 μg/g 120 μg/g 120 μg/g 22 μg/g 140 μg/g 22 μg/g 100 μg/g 2.4 μg/g 20 μg/g 21 μg/g 23 μg/g 86	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G/S RDL µg/g 7.5 0.8 µg/g 18 1 µg/g 120 5 µg/g 390 2 µg/g 4 0.5 µg/g 1.2 0.5 µg/g 160 2 µg/g 22 0.5 µg/g 140 1 µg/g 120 1 µg/g 120 1 µg/g 6.9 0.5 µg/g 100 1 µg/g 2.4 0.4 µg/g 20 0.2 µg/g 1 0.4 µg/g 23 0.5 µg/g 1 0.4 µg/g 86 1	SAMPLE DESCRIPTION: BC-34-B SAMPLE TYPE: Soil DATE SAMPLED: 1/15/2013 Unit G/S RDL 4075700 µg/g 7.5 0.8 <0.8 µg/g 18 1 7 µg/g 120 5 14 µg/g 390 2 60 µg/g 4 0.5 0.6 µg/g 1.2 0.5 <0.5 µg/g 160 2 21 µg/g 22 0.5 7.0 µg/g 140 1 33 µg/g 120 1 15 µg/g 6.9 0.5 <0.5 µg/g 6.9 0.5 <0.5 µg/g 100 1 18 µg/g 2.4 0.4 0.7 µg/g 20 0.2 <0.2 µg/g 1 0.4 <0.4 µg/g 23 0.5 0.7 µg/g 86 1 25	SAMPLE DESCRIPTION: BC-34-B DE-34-A SAMPLE TYPE: Soil Soil DATE SAMPLED: 1/15/2013 1/15/2013 1/15/2013 Unit G/S RDL 4075700 4075714 Ug/g 7.5 0.8 <0.8 <0.8	SAMPLE DESCRIPTION: BC-34-B DE-34-A DE-34-B SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 1/15/2013 1/15/	SAMPLE DESCRIPTION: BC-34-B DE-34-A DE-34-B SOII SOII SOII SOII DATE SAMPLED: 1/15/2013 1/15/201	SAMPLE DESCRIPTION: BC-34-B DE-34-A DE-34-B EF-34-A AB-45-A SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil Soil	SAMPLE DESCRIPTION: BC-34-B DE-34-A DE-34-B EF-34-A AB-45-A AB-45-A AB-45-B SAMPLE TYPE: Soil So	SAMPLE DESCRIPTION: BC-34-B DE-34-A DE-34-B EF-34-A AB-45-A AB-45-B BC-45-B SAMPLE TYPE: Soil So

Certified By:

Mile Munemon

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: David Hill

			O. Re	eg. 153(51	1) - Metals (Comprehen	nsive) (Soil)				
DATE RECEIVED: 2013-01-17								[DATE REPORTI	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	DE-45-A	DE-45-B	EF-45-A	BC-56-A	CD-56-A	DE-56-A	DE-56-B	EF-56-A
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4075999	4076000	4076003	4076012	4076016	4076020	4076021	4076024
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	24	4	19	31	29	36	9	18
Boron	μg/g	120	5	15	8	15	11	13	16	13	11
Barium	μg/g	390	2	56	20	64	72	56	59	45	41
Beryllium	μg/g	4	0.5	0.7	<0.5	0.7	0.6	0.6	0.6	0.5	<0.5
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	21	11	23	19	19	20	20	17
Cobalt	μg/g	22	0.5	7.6	5.7	8.8	6.6	6.5	7.2	8.4	6.5
Copper	μg/g	140	1	30	17	36	42	43	30	24	25
Lead	μg/g	120	1	22	8	18	72	78	30	11	12
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	17	11	20	14	14	16	18	13
Selenium	μg/g	2.4	0.4	<0.4	0.5	1.7	1.5	1.4	1.1	1.2	1.1
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	23	0.5	0.8	<0.5	1.0	0.7	0.6	1.0	0.7	0.7
Vanadium	μg/g	86	1	27	18	33	31	24	25	25	26
Zinc	μg/g	340	5	60	30	71	72	71	68	73	51

Certified By:

Make Muneum

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: TERRAPROBE INC. ATTENTION TO: David Hill

			O. Re	eg. 153(51	1) - Metals (Comprehen	sive) (Soil)				
DATE RECEIVED: 2013-01-17								[DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	AB-67-A	BC-67-B	DE-67-A	DE-67-B	EF-67-A	AB-78-A	BC-78-A	CD-78-A
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4076028	4076033	4076040	4076041	4076044	4076048	4076052	4076056
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	61	14	19	3	22	44	68	41
Boron	μg/g	120	5	10	10	18	11	18	9	9	7
Barium	μg/g	390	2	66	59	65	25	67	46	40	39
Beryllium	μg/g	4	0.5	<0.5	0.6	0.7	<0.5	0.7	0.5	<0.5	<0.5
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	15	19	21	13	23	14	13	12
Cobalt	μg/g	22	0.5	5.8	7.3	8.0	6.9	8.7	5.8	4.7	4.4
Copper	μg/g	140	1	60	25	30	20	32	49	57	43
Lead	μg/g	120	1	143	31	20	8	18	103	145	98
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	13	14	18	14	20	12	10	10
Selenium	μg/g	2.4	0.4	1.0	0.7	<0.4	8.0	<0.4	0.7	0.6	8.0
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	23	0.5	<0.5	0.6	0.8	<0.5	0.8	<0.5	<0.5	<0.5
Vanadium	μg/g	86	1	22	29	27	22	31	22	19	18
Zinc	μg/g	340	5	62	69	69	36	79	59	47	44

Certified By:

Make Muneum

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil) DATE RECEIVED: 2013-01-17 DATE RECEIVED: 2013-01-17

DATE RECEIVED: 2013-01-17								[DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	DE-78-A	DE-78-B	EF-78-A	AB-89-A	AB-89-B	BC-89-A	CD-89-A	CD-89-B
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
1		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4076060	4076061	4076064	4076068	4076069	4076072	4076076	4076077
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	25	6	17	19	5	42	36	11
Boron	μg/g	120	5	13	11	17	5	7	6	6	7
Barium	μg/g	390	2	63	28	72	31	106	27	27	40
Beryllium	μg/g	4	0.5	0.7	<0.5	0.8	<0.5	0.6	<0.5	<0.5	<0.5
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	0.5	<0.5	0.7	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	20	14	25	9	20	10	10	14
Cobalt	μg/g	22	0.5	7.2	6.6	9.1	3.2	11.6	3.5	3.5	4.7
Copper	μg/g	140	1	30	18	34	27	16	38	31	21
Lead	μg/g	120	1	31	10	18	50	10	95	73	22
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	23	14	22	7	23	7	8	11
Selenium	μg/g	2.4	0.4	1.3	0.6	2.1	<0.4	<0.4	0.6	0.8	<0.4
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	23	0.5	0.6	<0.5	0.7	<0.5	0.5	<0.5	<0.5	0.5
Vanadium	μg/g	86	1	24	21	32	14	34	15	15	19
Zinc	μg/g	340	5	70	41	85	33	75	34	35	56

Certified By:

Mile Muneman

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

DATE RECEIVED: 2013-01-17								-	DATE REPORTE	D. 2012 01 22	
DATE RECEIVED. 2013-01-17								L	DATE REPORTE	ED. 2013-01-23	
		SAMPLE DES	CRIPTION:	DE-89-A	DE-89-B	EF-89-A	Dup#4	Dup#5	Dup#6	Dup#7	Dup#9
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4076080	4076081	4076085	4076093	4076094	4076095	4076096	4076098
Antimony	µg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	21	5	21	23	7	30	48	21
Boron	μg/g	120	5	11	13	16	12	9	10	12	12
Barium	µg/g	390	2	51	48	69	53	31	53	48	48
Beryllium	µg/g	4	0.5	<0.5	0.7	0.7	0.5	<0.5	<0.5	0.5	0.6
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	2	17	21	23	20	14	15	17	19
Cobalt	µg/g	22	0.5	5.7	7.4	8.4	7.1	6.0	5.2	5.7	7.0
Copper	µg/g	140	1	28	39	37	30	19	47	55	27
Lead	µg/g	120	1	31	11	21	21	10	78	119	14
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Nickel	µg/g	100	1	13	20	21	15	12	13	13	15
Selenium	μg/g	2.4	0.4	1.2	2.0	2.0	0.6	0.7	<0.4	1.1	0.9
Silver	µg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	µg/g	23	0.5	0.6	0.7	0.8	0.6	0.5	0.5	0.6	0.8
Vanadium	μg/g	86	1	21	27	31	26	22	22	24	27
Zinc	μg/g	340	5	59	66	75	56	39	64	66	57

Certified By:

Make Muneum

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil) DATE RECEIVED: 2013-01-17 **DATE REPORTED: 2013-01-23** SAMPLE DESCRIPTION: Dup#10 Dup#14 SAMPLE TYPE: Soil Soil DATE SAMPLED: 1/15/2013 1/15/2013 Parameter Unit G/S **RDL** 4076099 4076103 7.5 8.0 <0.8 Antimony μg/g <0.8 Arsenic 18 6 μg/g Boron μg/g 120 5 12 390 2 42 58 Barium μg/g 4 Beryllium 0.5 0.5 0.6 μg/g Cadmium 1.2 0.5 <0.5 < 0.5 μg/g 19 Chromium 160 2 20 μg/g Cobalt μg/g 22 0.5 7.7 7.5 15 Copper μg/g 140 23 Lead μg/g 120 9 15 Molybdenum μg/g 6.9 0.5 <0.5 <0.5 Nickel μg/g 100 17 14 Selenium μg/g 2.4 0.4 1.2 0.6 Silver 20 0.2 <0.2 < 0.2 μg/g Thallium μg/g 1 0.4 < 0.4 < 0.4 Uranium 23 0.5 0.6 < 0.5 μg/g Vanadium μg/g 86 1 23 31

70

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T3(RPI) - Current

μg/g

340

65

Certified By:

Zinc

60-130

CLIENT NAME: TERRAPROBE INC.

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				O. Reg. 15	3(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2013-01-17								[DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	AB-23-C	BC-23-A	BC-23-B	CD-23-C	DE-23-A	DE-23-B	EF-23-A	AB-34-C
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4075654	4075658	4075660	4075670	4075674	4075676	4075682	4075694
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	0.010	1.7	1.9	0.012	3.3	1.3	0.80	< 0.007
DDD	μg/g	3.3	0.007	<0.007	0.44	0.37	<0.007	0.10	0.26	0.049	< 0.007
DDT	μg/g	1.4	0.007	< 0.007	0.94	0.92	< 0.007	1.5	1.0	0.53	< 0.007
Dieldrin	μg/g	0.05	0.005	< 0.005	0.021	0.007	< 0.005	0.010	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	22.8	34.3	27.6	5.8	33.9	23.4	29.5	18.3
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	50	58	103	85	54	91	72	69

Cer	·+if	boi	B,	, -
\bigcirc	UII	ıcu	υı	/ .

Decachlorobiphenyl

76

107

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				O. Reg. 15	3(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2013-01-17								Г	DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	BC-34-A	BC-34-B	CD-34-A	CD-34-B	DE-34-A	DE-34-B	EF-34-A	AB-45-A
		SAM	SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4075698	4075700	4075706	4075708	4075714	4075716	4075722	4075730
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	5.6	0.80	8.0	1.2	1.6	0.015	1.4	6.0
DDD	μg/g	3.3	0.007	0.77	0.036	1.5	0.099	0.047	< 0.007	0.17	0.16
DDT	μg/g	1.4	0.007	3.8	0.31	2.5	0.29	0.71	< 0.007	0.88	1.7
Dieldrin	μg/g	0.05	0.005	0.017	< 0.005	0.033	< 0.005	< 0.005	< 0.005	< 0.005	0.014
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.011	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	33.0	31.1	35.6	28.6	29.9	15.1	30.7	28.3
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	76	91	72	96	50	72	86	76
Decachlorobiphenyl	%	60-	130	60	100	80	91	60	97	100	60

^				
(`∧rt		\sim	\square	, -
Cert	ш	ıeu	יט	<i>'</i> .

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				O. Reg. 15	3(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2013-01-17								[DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	AB-45-B	BC-45-A	BC-45-B	DE-45-A	DE-45-B	EF-45-A	AB-56-C	BC-56-C
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4075732	4075738	4075740	4075999	4076000	4076003	4076010	4076014
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	0.73	1.7	4.4	2.3	0.059	1.0	0.016	0.049
DDD	μg/g	3.3	0.007	0.020	0.13	0.73	0.17	< 0.007	0.062	< 0.007	< 0.007
DDT	μg/g	1.4	0.007	0.35	0.56	3.3	0.63	0.026	0.29	< 0.007	0.025
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.031	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	26.9	25.6	26.2	30.3	19.3	36.1	20.7	23.8
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	72	52	87	62	80	69	62	50
Decachlorobiphenyl	%	60-	130	104	60	90	60	106	84	70	60

^				
(`∧rt		\sim	\square	, -
Cert	ш	ıeu	יט	<i>'</i> .

60-130

60

CLIENT NAME: TERRAPROBE INC.

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				O. Reg. 15	53(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2013-01-17								Γ	DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	CD-56-A	DE-56-A	DE-56-B	EF-56-A	AB-67-C	BC-67-B	BC-67-C	CD-67-A
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4076016	4076020	4076021	4076024	4076030	4076033	4076034	4076036
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	2.8	3.4	0.60	0.87	0.13	2.7	0.16	9.2
DDD	μg/g	3.3	0.007	0.41	0.29	0.063	0.14	<0.007	0.055	0.009	0.29
DDT	μg/g	1.4	0.007	0.59	1.6	0.40	0.31	0.074	0.88	0.054	2.6
Dieldrin	μg/g	0.05	0.005	0.012	0.011	< 0.005	< 0.005	< 0.005	0.012	< 0.005	0.019
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	<0.005	< 0.005	<0.005	0.018	< 0.005	< 0.005	< 0.005	<0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	34.2	33.8	31.5	29.5	17.9	16.9	24.6	38.4
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	53	56	96	72	56	56	70	60

\sim					
1 '^r	+ 1	t ı	\sim	\square	
Cer	u	11	СU	D١	<i>'</i> .

101

Decachlorobiphenyl

62

103

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				O. Reg. 15	3(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2013-01-17								Г	DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	DE-67-A	DE-67-B	EF-67-A	AB-78-A	CD-78-C	DE-78-A	DE-78-B	EF-78-A
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4076040	4076041	4076044	4076048	4076058	4076060	4076061	4076064
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	2.0	0.031	0.30	18	0.036	2.6	0.58	1.2
DDD	μg/g	3.3	0.007	0.16	< 0.007	0.034	0.31	< 0.007	0.10	0.17	0.27
DDT	μg/g	1.4	0.007	1.1	0.011	0.094	6.4	0.017	1.1	0.27	0.79
Dieldrin	μg/g	0.05	0.005	0.015	< 0.005	< 0.005	0.022	< 0.005	0.024	0.010	0.022
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.019
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	36.4	22.2	32.3	26.4	25.4	32.7	31.1	33.8
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	54	73	85	59	54	61	72	99
Decachlorobiphenyl	%	60-	130	83	111	94	66	94	74	89	114

\sim		•	•			
1.0	rt	п	t ı	Δ	H٧	<i>,</i> -
Ce	ıι	ı	H	СU	υı	<i>'</i> .

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

				O. Reg. 15	3(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2013-01-17								[DATE REPORTE	ED: 2013-01-23	
		SAMPLE DES	CRIPTION:	AB-89-A	AB-89-D	CD-89-A	CD-89-B	DE-89-A	DE-89-B	EF-89-A	Dup#4
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013
Parameter	Unit	G/S	RDL	4076068	4076071	4076076	4076077	4076080	4076081	4076085	4076093
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	µg/g	0.26	0.007	4.0	< 0.007	5.1	0.43	1.2	0.034	1.9	2.7
DDD	μg/g	3.3	0.007	0.061	< 0.007	0.15	0.015	0.13	< 0.007	0.54	0.12
DDT	µg/g	1.4	0.007	0.81	< 0.007	0.29	0.083	0.54	0.026	0.62	1.6
Dieldrin	µg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.031	< 0.005	0.073	< 0.005
Endrin	µg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	µg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.009	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	µg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	19.4	11.9	37.2	26.4	32.9	22.6	37.2	39.2
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	50	60	54	95	60	70	103	56
Decachlorobiphenyl	%	60-	130	60	79	60	113	61	78	100	68

\sim					
1 '^r	+ 1	t ı	\sim	\square	
Cer	u	11	СU	D١	<i>'</i> .

Certificate of Analysis

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO BUILDING.										
				O. Reg. 15	53(511) - OC	Pesticides	(Soil)			
DATE RECEIVED: 2013-01-17								[DATE REPORTE	D: 2013-01-23
		SAMPLE DES	CRIPTION:	Dup#5	Dup#6	Dup#7	Dup#9	Dup#10	Dup#14	
		SAM	SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	1/15/2013	
Parameter	Unit	G/S	RDL	4076094	4076095	4076096	4076098	4076099	4076103	
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Aldrin	μg/g	0.05	0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	
DDE	μg/g	0.26	0.007	1.4	3.1	11	0.55	1.4	3.3	
DDD	μg/g	3.3	0.007	0.37	0.12	1.4	0.056	0.27	0.051	
DDT	μg/g	1.4	0.007	1.2	2.2	5.7	0.22	0.48	2.6	
Dieldrin	μg/g	0.05	0.005	0.015	< 0.005	0.022	< 0.005	0.015	0.015	
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	0.014	< 0.005	< 0.005	
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Moisture Content	%		0.1	27.4	24.1	31.2	30.3	27.6	28.0	
Surrogate	Unit	Acceptab	le Limits							
TCMX	%	50-	140	78	50	52	100	85	52	
Decachlorobiphenyl	%	60-	130	94	64	60	97	107	62	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T3(RPI) - Current 4075654-4076103 Results are based on the dry weight of the soil.

Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and DDE applies to the total of op'DDE. Endosulfan applies to the total of Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

\sim			
('\)	rtıt	יום	$\mathbf{H}^{\prime\prime}$
\mathcal{C}	וווו	ıcu	By:

Guideline Violation

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC. ATTENTION TO: David Hill

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
4075649	AB-23-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	23
4075658	BC-23-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	26
4075658	BC-23-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.7
4075660	BC-23-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.9
4075666	CD-23-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	23
4075674	DE-23-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	22
4075674	DE-23-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	3.3
4075674	DE-23-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	1.5
4075676	DE-23-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.3
4075682	EF-23-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.80
4075698	BC-34-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	27
4075698	BC-34-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	5.6
4075698	BC-34-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	3.8
4075700	BC-34-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.80
4075706	CD-34-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	8.0
4075706	CD-34-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	2.5
4075708	CD-34-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.2
4075714	DE-34-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	19
4075714	DE-34-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.6
4075722	EF-34-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	20
4075722	EF-34-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.4
4075730	AB-45-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	35
4075730	AB-45-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	6.0
4075730	AB-45-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	1.7
4075732	AB-45-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.73
4075738	BC-45-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	33
4075738	BC-45-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.7
4075740	BC-45-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	4.4
4075740	BC-45-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	3.3
4075999	DE-45-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	24
4075999	DE-45-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.3
4076003	EF-45-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	19
4076003	EF-45-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.0
4076012	BC-56-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	31
4076016	CD-56-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	29
4076016	CD-56-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.8
4076020	DE-56-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	36
4076020	DE-56-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	3.4
4076020	DE-56-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	1.6
4076021	DE-56-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.60
4076024	EF-56-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.87
4076024	AB-67-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	61
4076028	AB-67-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Lead	120	143

Guideline Violation

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
4076033	BC-67-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.7
4076036	CD-67-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	9.2
4076036	CD-67-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	2.6
4076040	DE-67-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	19
4076040	DE-67-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.0
4076044	EF-67-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	22
4076044	EF-67-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.30
4076048	AB-78-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	44
4076048	AB-78-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	18
4076048	AB-78-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	6.4
4076052	BC-78-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	68
4076052	BC-78-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Lead	120	145
4076056	CD-78-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	41
4076060	DE-78-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	25
4076060	DE-78-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.6
4076061	DE-78-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.58
4076064	EF-78-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.2
4076068	AB-89-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	19
4076068	AB-89-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	4.0
4076072	BC-89-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	42
4076076	CD-89-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	36
4076076	CD-89-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	5.1
4076077	CD-89-B	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.43
4076080	DE-89-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
4076080	DE-89-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.2
4076085	EF-89-A	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
4076085	EF-89-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.9
4076085	EF-89-A	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	Dieldrin	0.05	0.073
4076093	Dup#4	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	23
4076093	Dup#4	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.7
4076093	Dup#4	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	1.6
4076094	Dup#5	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.4
4076095	Dup#6	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	30
4076095	Dup#6	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	3.1
4076095	Dup#6	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	2.2
4076096	Dup#7	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	48
4076096	Dup#7	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	11
4076096	Dup#7	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	5.7
4076098	Dup#9	T3(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
4076098	Dup#9	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.55
4076099	Dup#10	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.4
4076103	Dup#14	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	3.3
4076103	Dup#14	T3(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDT	1.4	2.6

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579
PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

				Soi	l Ana	alysis	3								
RPT Date: Jan 23, 2013			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Accep Lim	ptable	Recovery	Acceptable Limits		Recovery		eptable mits
		"					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Compre	hensive)	(Soil)													
Antimony	1	4075649	< 0.8	< 0.8	0.0%	< 0.8	101%	70%	130%	95%	80%	120%	80%	70%	130%
Arsenic	1	4075649	23	23	0.0%	< 1	112%	70%	130%	110%	80%	120%	92%	70%	130%
Boron	1	4075649	11	12	8.7%	< 5	76%	70%	130%	109%	80%	120%	103%	70%	130%
Barium	1	4075649	48	49	2.1%	< 2	99%	70%	130%	98%	80%	120%	94%	70%	130%
Beryllium	1	4075649	< 0.5	< 0.5	0.0%	< 0.5	90%	70%	130%	99%	80%	120%	101%	70%	130%
Cadmium	1	4075649	< 0.5	< 0.5	0.0%	< 0.5	103%	70%	130%	99%	80%	120%	97%	70%	130%
Chromium	1	4075649	16	17	6.1%	< 2	99%		130%	110%	80%	120%	106%	70%	130%
Cobalt	1	4075649	5.6	5.9	5.2%	< 0.5	98%		130%	106%	80%	120%	104%	70%	
Copper	1	4075649	36	37	2.7%	< 1	100%		130%	109%	80%	120%	92%	70%	
Lead		4075649	56	56	0.0%	< 1	100%		130%	97%	80%	120%	93%	70%	
Molybdenum	1	4075649	< 0.5	< 0.5	0.0%	< 0.5	100%	70%	130%	100%	80%	120%	99%	70%	130%
Nickel		4075649	12	13	8.0%	< 1	106%		130%	105%	80%	120%	99%	70%	
Selenium		4075649	< 0.4	< 0.4	0.0%	< 0.4	89%		130%	99%	80%	120%	96%	70%	
Silver		4075649	< 0.4	< 0.4	0.0%	< 0.4	83%		130%	108%	80%	120%	100%	70%	
Thallium	1	4075649	< 0.4	< 0.4	0.0%	< 0.2	104%		130%	102%	80%	120%	101%	70%	
mamam		4070043	₹ 0.4	₹ 0.4	0.070	₹ 0.4	10470	1070	10070	10270	0070	12070	10170	7070	10070
Uranium	1	4075649	0.5	0.5	0.0%	< 0.5	87%	70%	130%	85%	80%	120%	85%	70%	130%
Vanadium	1	4075649	21	22	4.7%	< 1	99%	70%	130%	108%	80%	120%	106%	70%	130%
Zinc	1	4075649	54	56	3.6%	< 5	97%	70%	130%	106%	80%	120%	95%	70%	130%
O. Reg. 153(511) - Metals (Compre	hensive)	(Soil)													
Antimony	1	4076012	< 0.8	< 0.8	0.0%	< 0.8	102%	70%	130%	93%	80%	120%	81%	70%	130%
Arsenic		4076012	31	29	6.7%	< 1	117%		130%	107%	80%	120%	91%	70%	130%
Boron		4076012	11	11	0.0%	< 5	80%		130%	111%	80%	120%	102%	70%	130%
Barium	1	4076012	72	72	0.0%	< 2	100%		130%	100%	80%	120%	109%	70%	130%
Beryllium	1	4076012	0.6	0.6	0.0%	< 0.5	91%		130%	101%	80%	120%	94%	70%	
Cadmium	1	4076012	< 0.5	< 0.5	0.0%	- O E	102%	70%	130%	100%	80%	120%	98%	70%	130%
Chromium	1	4076012		18	5.4%	< 0.5 < 2	98%			114%	80%	120%		70%	130%
Cobalt			19 6.6			< 0.5	105%		130% 130%	109%			109%		
		4076012 4076012	6.6 42	6.4 40	3.1% 4.9%	< 0.5 < 1	105%		130%	111%	80% 80%	120% 120%	99% 97%	70% 70%	130%
Copper Lead	1	4076012	72	70	2.8%	< 1	105%		130%	99%	80%	120%	95%	70%	130%
Leau	'	4070012	12	70	2.0%	< 1	105%	70%	130%	9976	60%	120%	95%	70%	130%
Molybdenum		4076012	< 0.5	< 0.5	0.0%	< 0.5	106%	70%		99%		120%	103%		130%
Nickel	1	4076012	14	14	0.0%	< 1	94%		130%	108%	80%	120%	95%		130%
Selenium	1	4076012	1.5	1.5	0.0%	< 0.4	117%	70%		97%		120%	94%		130%
Silver	1	4076012	< 0.2	< 0.2	0.0%	< 0.2	87%	70%		106%		120%	103%		130%
Thallium	1	4076012	< 0.4	< 0.4	0.0%	< 0.4	94%	70%	130%	103%	80%	120%	101%	70%	130%
Uranium	1	4076012	0.7	0.7	0.0%	< 0.5	90%	70%	130%	86%	80%	120%	86%	70%	130%
Vanadium	1	4076012	31	29	6.7%	< 1	100%	70%	130%	111%	80%	120%	107%	70%	130%

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

AGAT QUALITY ASSURANCE REPORT (V2)

Page 18 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

FROJECT NO. 13-11-0130			<u> </u>			·			TION	TO. Dav	, ,	•			
			Soil	Analy	ysis ((Con	tinue	d)							
RPT Date: Jan 23, 2013		DUPLICATE				REFERE			METHOD			MAT	RIX SP		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1	eptable mits	Recovery		eptable mits
		14					Value	Lower	Upper		Lower	Upper		Lower	Uppe
Antimony		4075660	< 0.8	< 0.8	0.0%	< 0.8	115%	70%	130%	104%	80%	120%	103%	70%	
Arsenic		4075660	7	7	0.0%	< 1	118%	70%	130%	108%	80%	120%	112%	70%	130%
Boron	1	4075660	14	14	0.0%	< 5	84%	70%	130%	115%	80%	120%	107%	70%	130%
Barium	1	4075660	70	71	1.4%	< 2	100%	70%	130%	112%	80%	120%	117%	70%	130%
Beryllium	1	4075660	0.7	8.0	13.3%	< 0.5	102%	70%	130%	97%	80%	120%	104%	70%	130%
Cadmium	1	4075660	< 0.5	< 0.5	0.0%	< 0.5	95%	70%	130%	110%	80%	120%	111%	70%	130%
Chromium	1	4075660	24	24	0.0%	< 2	101%	70%	130%	111%	80%	120%	112%	70%	130%
Cobalt	1	4075660	8.8	8.7	1.1%	< 0.5	109%	70%	130%	111%	80%	120%	111%	70%	130%
Copper	1 -	4075660	32	32	0.0%	< 1	98%	70%	130%	101%	80%	120%	102%	70%	130%
Lead	1	4075660	14	14	0.0%	< 1	103%	70%	130%	100%	80%	120%	95%	70%	130%
Molybdenum	1	4075660	< 0.5	< 0.5	0.0%	< 0.5	114%	70%	130%	110%	80%	120%	115%	70%	130%
Nickel		4075660	20	21	4.9%	< 1	112%	70%	130%	113%	80%	120%	113%	70%	130%
Selenium		4075660	1.8	1.5	18.2%	< 0.4	123%	70%	130%	106%	80%	120%	106%	70%	130%
Silver		4075660	< 0.2	< 0.2	0.0%	< 0.2	78%	70%	130%	110%	80%	120%	109%	70%	130%
Thallium		4075660	< 0.4	< 0.4	0.0%	< 0.4	96%	70%	130%	114%	80%	120%	115%	70%	
Uranium		4075660	0.8	0.9	11.8%	< 0.5	101%	70%	130%	102%	80%	120%	99%	70%	130%
Vanadium		4075660	32	33	3.1%	< 1	112%	70%	130%	115%	80%	120%	117%	70%	130%
Zinc	1	4075660	78	78	0.0%	< 5	109%	70%	130%	111%	80%	120%	122%	70%	130%
O. Reg. 153(511) - Metals (Comp	rehensive)	(Soil)													
Antimony	1	4076003	< 0.8	< 0.8	0.0%	< 0.8	115%	70%	130%	104%	80%	120%	101%	70%	130%
Arsenic	1	4076003	19	19	0.0%	< 1	121%	70%	130%	106%	80%	120%	102%	70%	130%
Boron	1	4076003	15	15	0.0%	< 5	91%	70%	130%	113%	80%	120%	102%	70%	130%
Barium	1	4076003	64	61	4.8%	< 2	101%	70%	130%	95%	80%	120%	112%	70%	130%
Beryllium		4076003	0.7	0.6	15.4%	< 0.5	108%	70%	130%	105%	80%	120%	97%	70%	130%
Cadmium	1	4076003	< 0.5	< 0.5	0.0%	< 0.5	104%	70%	130%	108%	80%	120%	105%	70%	130%
Chromium		4076003	23	22	4.4%	< 2	101%	70%	130%	105%	80%	120%	98%	70%	130%
Cobalt		4076003	8.8	8.5	3.5%	< 0.5	108%	70%	130%	106%	80%	120%	103%	70%	130%
Copper		4076003	36	35	2.8%	< 1	102%	70%	130%	99%	80%	120%	88%	70%	130%
Lead		4076003	18	19	5.4%	< 1	105%	70%	130%	98%	80%	120%	90%	70%	130%
Maluhdanum	4	4076000	. O E	.0.5	0.00/	.05	1120/	700/	1200/	1000/	900/	1200/	1110/	700/	1200
Molybdenum		4076003	< 0.5	< 0.5	0.0%	< 0.5	113%		130%	108%	80%	120%	111%	70%	
Nickel		4076003	20	20	0.0%	< 1	108%		130%	109%		120%	98%		130%
Selenium		4076003	1.7	1.7	0.0%	< 0.4	110%		130%	102%	80%	120%	100%		130%
Silver		4076003	< 0.2	< 0.2	0.0%	< 0.2	75%		130%	104%		120%	103%		130%
Thallium	1	4076003	< 0.4	< 0.4	0.0%	< 0.4	100%	70%	130%	114%	80%	120%	107%	70%	130%
Uranium	1	4076003	1.0	1.0	0.0%	< 0.5	107%	70%	130%	99%	80%	120%	96%	70%	130%
Vanadium	1	4076003	33	32	3.1%	< 1	113%	70%	130%	109%	80%	120%	108%	70%	130%
Zinc	1	4076003	71	69	2.9%	< 5	107%	70%	130%	119%	80%	120%	104%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 19 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

Soil Analysis (Continued)															
RPT Date: Jan 23, 2013				DUPLICATE			REFERENCE MATERIA			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Lin	ptable nits			ptable nits
	Id Batch Id	l la	'		_		Value	Lower	Upper		Lower	Upper		Lower Uppe	

Certified By:

Mile Muneman

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579
PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

PROJECT NO. 13-11-0130 ATTENTION TO. DAVID HIII															
			Trac	e Org	ganio	s Ar	alys	is							
RPT Date: Jan 23, 2013				DUPLICATI	≣		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery		ptable nits	Recovery		eptable nits
		lu lu					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - OC Pesticides (5	Soil)														
Gamma-Hexachlorocyclohexane	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	86%	50%	140%	60%	50%	140%	69%	50%	140%
Heptachlor	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	83%	50%	140%	58%	50%	140%	76%	50%	140%
Aldrin	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	78%	50%	140%	54%	50%	140%	73%	50%	140%
Heptachlor Epoxide	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	78%	50%	140%	60%	50%	140%	70%	50%	140%
Endosulfan	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	75%	50%	140%	58%	50%	140%	69%	50%	140%
Chlordane	1	4076016	< 0.007	< 0.007	0.0%	< 0.007	76%	50%	140%	58%	50%	140%	74%	50%	140%
DDE	1	4076016	2.8	2.8	0.0%	< 0.007	71%	50%	140%	60%	50%	140%	75%	50%	140%
DDD		4076016	0.41	0.55	29.2%	< 0.007	71%	50%	140%	58%	50%	140%	67%	50%	140%
DDT	1	4076016	0.59	0.86	37.2%	< 0.007	68%	50%	140%	58%	50%	140%	78%	50%	140%
Dieldrin	1	4076016	0.012	0.017	34.5%	< 0.005	75%	50%	140%	55%	50%	140%	68%	50%	140%
															4.4007
Endrin	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	74%	50%	140%	64%	50%	140%	68%	50%	140%
Methoxychlor	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	73%	50%	140%	72%	50%	140%	81%	50%	140%
Hexachlorobenzene	1	4076016	< 0.005	< 0.005	0.0%	< 0.005	80%	50%	140%	58%	50%	140%	77%	50%	140%
Hexachlorobutadiene	1 1	4076016	< 0.01	< 0.01	0.0%	< 0.01	71%	50%	140%	68% 85%	50%	140%	74%	50%	140%
Hexachloroethane	'	4076016	< 0.01	< 0.01	0.0%	< 0.01	71%	50%	140%	65%	50%	140%	82%	50%	140%
O. Reg. 153(511) - OC Pesticides (\$	Soil)														
Gamma-Hexachlorocyclohexane	1		< 0.005	< 0.005	0.0%	< 0.005	93%	50%	140%	54%	50%	140%	60%	50%	140%
Heptachlor	1		< 0.005	< 0.005	0.0%	< 0.005	93%	50%	140%	62%	50%	140%	58%	50%	140%
Aldrin	1		< 0.005	< 0.005	0.0%	< 0.005	102%	50%	140%	66%	50%	140%	70%	50%	140%
Heptachlor Epoxide	1		< 0.005	< 0.005	0.0%	< 0.005	94%	50%	140%	66%	50%	140%	72%	50%	140%
Endosulfan	1		< 0.005	< 0.005	0.0%	< 0.005	97%	50%	140%	64%	50%	140%	80%	50%	140%
Chlordane	1		0.020	0.014	35.3%	< 0.007	98%	50%	140%	64%	50%	140%	79%	50%	140%
DDE	1		< 0.020	< 0.007	0.0%	< 0.007	99%	50%	140%	69%	50%	140%	76%	50%	140%
DDD	1		< 0.007	< 0.007	0.0%	< 0.007	88%	50%	140%	67%	50%	140%	62%	50%	140%
DDT	1		< 0.007	< 0.007	0.0%	< 0.007	87%	50%	140%	64%	50%	140%	62%	50%	140%
Dieldrin	1		< 0.005	< 0.005	0.0%	< 0.005	128%	50%	140%	64%	50%	140%	57%	50%	140%
Endrin	1		< 0.005	< 0.005	0.0%	< 0.005	92%	50%	140%	58%	50%	140%	62%	50%	140%
Methoxychlor	1		< 0.005	< 0.005	0.0%	< 0.005	74%	50%	140%	86%	50%	140%	76%	50%	140%
Hexachlorobenzene	1		< 0.005	< 0.005	0.0%	< 0.005	101%	50%	140%	64%	50%	140%	68%	50%	140%
Hexachlorobutadiene	1		< 0.01	< 0.01	0.0%	< 0.01	85%	50%	140%	56%	50%	140%	68%	50%	
Hexachloroethane	1		< 0.01	< 0.01	0.0%	< 0.01	89%	50%	140%	50%	50%	140%	96%	50%	140%
O. Reg. 153(511) - OC Pesticides (\$	Soil)														
Gamma-Hexachlorocyclohexane	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Heptachlor		4075654		< 0.005	0.0%	< 0.005		50%				140%		50%	
Aldrin		4075654	< 0.005	< 0.005	0.0%	< 0.005		50%				140%		50%	
Heptachlor Epoxide	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Endosulfan	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Chlandara		407505 (0.00=	0.00=	0.007			F00/	4.4001		F00/	4.4007		E00/	4.4007
Chlordane	1	4075654	< 0.007	< 0.007	0.0%	< 0.007			140%			140%			140%
DDE	1	4075654	0.010	0.014	33.3%	< 0.007		50%	140%		50%	140%		50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 21 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579

PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

Trace Organics Analysis (Continued)															
RPT Date: Jan 23, 2013				UPLICATE	<u> </u>		REFERE	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		eptable nits	Recovery		ptable
TANAMETER	Datein	ld	Jup	2 up "2	2		Value	Lower	Upper		Lower	Upper		Lower	Upper
DDD	1	4075654	< 0.007	< 0.007	0.0%	< 0.007		50%	140%		50%	140%		50%	140%
DDT	1	4075654	< 0.007	< 0.007	0.0%	< 0.007		50%	140%		50%	140%		50%	140%
Dieldrin	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Endrin	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Methoxychlor	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Hexachlorobenzene	1	4075654	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Hexachlorobutadiene	1	4075654	< 0.01	< 0.01	0.0%	< 0.01		50%	140%		50%	140%		50%	140%
Hexachloroethane	1	4075654	< 0.01	< 0.01	0.0%	< 0.01		50%	140%		50%	140%		50%	140%
O. Reg. 153(511) - OC Pesticides (Sc	oil)														
Gamma-Hexachlorocyclohexane	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Heptachlor	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Aldrin	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Heptachlor Epoxide	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Endosulfan	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Chlordane	1	4076096	< 0.007	< 0.007	0.0%	< 0.007		50%	140%		50%	140%		50%	140%
DDE	1	4076096	11	12	8.7%	< 0.007		50%	140%		50%	140%		50%	140%
DDD	1	4076096	1.4	1.2	15.4%	< 0.007		50%	140%		50%	140%		50%	140%
DDT	1	4076096	5.7	6.2	8.4%	< 0.007		50%	140%		50%	140%		50%	140%
Dieldrin	1	4076096	0.022	0.027	20.4%	< 0.005		50%	140%		50%	140%		50%	140%
Endrin	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Methoxychlor	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Hexachlorobenzene	1	4076096	< 0.005	< 0.005	0.0%	< 0.005		50%	140%		50%	140%		50%	140%
Hexachlorobutadiene	1	4076096	< 0.01	< 0.01	0.0%	< 0.01		50%	140%		50%	140%		50%	140%
Hexachloroethane	1	4076096	< 0.01	< 0.01	0.0%	< 0.01		50%	140%		50%	140%		50%	140%
O. Reg. 153(511) - OC Pesticides (Sc	oil)														
Gamma-Hexachlorocyclohexane	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	96%	50%	140%	90%	50%	140%	NA	50%	140%
Heptachlor	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	97%	50%	140%	85%	50%	140%	NA	50%	140%
Aldrin	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	95%	50%	140%	81%	50%	140%	NA	50%	140%
Heptachlor Epoxide	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	102%	50%	140%	82%	50%	140%	NA	50%	140%
Endosulfan	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	102%	50%	140%	80%	50%	140%	NA	50%	140%
Chlordane	1	4076071	< 0.007	< 0.007	0.0%	< 0.007	104%	50%	140%	81%	50%	140%	NA	50%	140%
DDE	1	4076071	< 0.007	< 0.007	0.0%	< 0.007	98%	50%	140%	81%	50%	140%	NA	50%	140%
DDD	1	4076071	< 0.007	< 0.007	0.0%	< 0.007	92%	50%	140%	79%	50%	140%	NA	50%	140%
DDT	1	4076071	< 0.007	< 0.007	0.0%	< 0.007	92%	50%	140%	80%	50%	140%	NA	50%	140%
Dieldrin	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	102%	50%	140%	90%	50%	140%	NA	50%	140%
Endrin	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	97%	50%	140%	78%	50%	140%	NA	50%	140%
Methoxychlor	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	106%	50%	140%	82%	50%	140%	NA	50%	140%
Hexachlorobenzene	1	4076071	< 0.005	< 0.005	0.0%	< 0.005	106%	50%	140%	84%	50%	140%	NA	50%	140%
Hexachlorobutadiene	1	4076071	< 0.01	< 0.01	0.0%	< 0.01	98%	50%	140%	85%	50%	140%	NA	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 22 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579
PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

	Trace Organics Analysis (Continued)														
RPT Date: Jan 23, 2013				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable	Recovery	Lin	ptable nits	Recovery		ptable nits
		la					value	Lower	Upper	,	Lower	Upper	·	Lower	Upper
Hexachloroethane	1	4076071	< 0.01	< 0.01	0.0%	< 0.01	96%	50%	140%	91%	50%	140%	NA	50%	140%
O. Reg. 153(511) - OC Pesticides (Soil)														
Gamma-Hexachlorocyclohexane	1	4075716				< 0.005		50%	140%		50%	140%	66%	50%	140%
Heptachlor	1	4075716				< 0.005		50%	140%		50%	140%	60%	50%	140%
Aldrin	1	4075716				< 0.005		50%	140%		50%	140%	68%	50%	140%
Heptachlor Epoxide	1	4075716				< 0.005		50%	140%		50%	140%	73%	50%	140%
Endosulfan	1	4075716				< 0.005		50%	140%		50%	140%	73%	50%	140%
Chlordane	1	4075716				< 0.007		50%	140%		50%	140%	74%	50%	140%
DDE	1	4075716				< 0.007		50%	140%		50%	140%	74%	50%	140%
DDD	1	4075716				< 0.007		50%	140%		50%	140%	85%	50%	140%
DDT	1	4075716				< 0.007		50%	140%		50%	140%	76%	50%	140%
Dieldrin	1	4075716				< 0.005		50%	140%		50%	140%	73%	50%	140%
Endrin	1	4075716				< 0.005		50%	140%		50%	140%	72%	50%	140%
Methoxychlor	1	4075716				< 0.005		50%	140%		50%	140%	83%	50%	140%
Hexachlorobenzene	1	4075716				< 0.005		50%	140%		50%	140%	76%	50%	140%
Hexachlorobutadiene	1	4075716				< 0.01		50%	140%		50%	140%	60%	50%	140%
Hexachloroethane	1	4075716				< 0.01		50%	140%		50%	140%	60%	50%	140%

Cert	ifi	ed	By:

Method Summary

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 13T680579
PROJECT NO: 13-11-6138

ATTENTION TO: David Hill

PROJECT NO. 13-11-0130		ATTENTION TO: David Hill							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Soil Analysis	-	1							
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Trace Organics Analysis									
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD						
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD						
Moisture Content		MOE E3139	BALANCE						

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE

BRAMPTON, ON L6T3Y3

(905) 796-2650

ATTENTION TO: David Hill

PROJECT: 13-11-6138-1

AGAT WORK ORDER: 14T928118

SOIL ANALYSIS REVIEWED BY: Anthony Dapaah, PhD (Chem), Inorganic Lab Manager

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Dec 22, 2014

PAGES (INCLUDING COVER): 17

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 17

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

			O. Re	eg. 153(51 ⁻	1) - Metals (Compreher	nsive) (Soil)				
DATE RECEIVED: 2014-12-15								[DATE REPORTE	ED: 2014-12-18	
	,	SAMPLE DES	CRIPTION:	FG-23-A	FG-34-A	FG-45-A	FG-56-A	FG-67-A	FG-78-A	FG-89-A	GH-12-A
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:								
Parameter	Unit	G/S	RDL	6182367	6182376	6182378	6182380	6182383	6182385	6182387	6182390
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	11	13	17	21	13	15	18	11
Boron	μg/g	120	5	10	9	12	15	14	21	25	14
Barium	μg/g	390	2	29	26	56	60	43	69	82	47
Beryllium	μg/g	4	0.5	<0.5	<0.5	0.7	0.9	0.6	0.9	0.9	0.6
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5
Chromium	μg/g	160	2	10	10	17	20	15	20	21	14
Cobalt	μg/g	22	0.5	4.3	3.8	6.9	8.4	5.6	7.4	7.9	5.9
Copper	μg/g	140	1	17	16	35	33	24	33	39	28
Lead	μg/g	120	1	12	12	18	17	12	16	20	14
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	7	7	15	17	11	17	19	13
Selenium	μg/g	2.4	0.4	0.5	0.6	1.2	1.1	1.0	1.5	2.3	1.0
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	23	0.5	<0.5	0.5	0.8	0.9	0.7	1.0	1.5	0.6
Vanadium	µg/g	86	1	14	13	21	30	20	25	27	20
Zinc	μg/g	340	5	31	32	54	61	44	67	71	41

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

DATE RECEIVED: 2014-12-15								[DATE REPORTE	ED: 2014-12-18	
		SAMPLE DES	CRIPTION:	GH-34-A	GH-45-A	GH-56-A	GH-67-A	GH-78-A	HI-12-A	HI-23-A	HI-34-A
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:								
Parameter	Unit	G/S	RDL	6182418	6182454	6182467	6182470	6182473	6182476	6182478	6182480
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	15	26	27	26	21	13	17	17
Boron	μg/g	120	5	15	18	20	23	24	11	17	15
Barium	μg/g	390	2	45	71	62	84	81	33	54	49
Beryllium	μg/g	4	0.5	0.6	0.9	0.8	1.2	1.1	<0.5	0.7	0.6
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	0.6	0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	14	21	19	24	22	11	16	15
Cobalt	μg/g	22	0.5	5.2	7.8	7.6	8.8	8.2	4.2	6.7	5.7
Copper	μg/g	140	1	32	44	33	48	46	19	35	31
_ead	μg/g	120	1	15	21	16	19	17	13	17	17
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	µg/g	100	1	11	19	17	22	20	8	16	13
Selenium	μg/g	2.4	0.4	1.5	1.7	1.8	2.2	2.2	<0.4	1.4	1.4
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Γhallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Jranium	μg/g	23	0.5	0.9	1.0	0.9	1.3	1.1	0.5	0.7	0.9
/anadium	μg/g	86	1	18	26	24	32	29	16	24	21
Zinc	μg/g	340	5	38	56	57	75	67	29	44	45

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

DATE RECEIVED: 2014-12-15								Ι	DATE REPORTE	ED: 2014-12-18	
		SAMPLE DES		HI-45-A	HI-56-A	HI-67-A	HI-78-A	HI-89-A	IJ-12-A	IJ-23-A	IJ-34-A
			PLE TYPE: SAMPLED:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Parameter	Unit	G/S	RDL	6182482	6182484	6182486	6182489	6182492	6182494	6182496	6182498
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	21	34	22	22	24	3	10	13
Boron	μg/g	120	5	16	19	18	20	21	10	11	11
Barium	μg/g	390	2	59	87	82	61	69	25	36	31
Beryllium	μg/g	4	0.5	8.0	1.1	0.9	8.0	0.9	<0.5	<0.5	<0.5
Cadmium	μg/g	1.2	0.5	<0.5	0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	17	24	22	19	20	10	12	11
Cobalt	μg/g	22	0.5	6.8	8.9	8.1	7.1	7.5	4.7	4.2	4.2
Copper	μg/g	140	1	39	49	44	38	43	12	19	20
Lead	μg/g	120	1	17	20	17	16	18	5	12	14
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	16	21	18	16	17	6	7	8
Selenium	μg/g	2.4	0.4	1.7	2.8	2.4	2.0	2.0	<0.4	0.5	0.5
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Γhallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4
Jranium	μg/g	23	0.5	0.9	1.2	1.3	0.8	0.9	<0.5	0.5	0.6
Vanadium	μg/g	86	1	25	33	29	24	28	14	17	17
Zinc	μg/g	340	5	47	67	59	57	57	19	29	29

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

DATE RECEIVED: 2014-12-15								[DATE REPORT	ED: 2014-12-18	
		SAMPLE DES	CRIPTION:	IJ-45-A	IJ-56-A	IJ-67-A	IJ-78-A	IJ-89-A	JK-67-A	JK-78-A	JK-89-A
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:								
Parameter	Unit	G/S	RDL	6182500	6182502	6182504	6182506	6182509	6182511	6182514	6182517
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	15	29	25	20	19	31	21	25
Boron	μg/g	120	5	12	23	27	21	17	24	19	20
Barium	μg/g	390	2	31	77	85	65	46	81	56	66
Beryllium	μg/g	4	0.5	<0.5	1.0	1.1	0.9	<0.5	<0.5	0.7	1.0
Cadmium	μg/g	1.2	0.5	<0.5	0.5	0.5	<0.5	<0.5	0.6	<0.5	<0.5
Chromium	μg/g	160	2	10	22	24	20	15	23	18	20
Cobalt	µg/g	22	0.5	4.1	8.1	9.4	7.8	6.1	9.2	7.6	8.2
Copper	μg/g	140	1	20	49	53	44	33	51	38	54
_ead	μg/g	120	1	13	22	18	16	15	21	17	21
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	µg/g	100	1	8	20	23	19	13	23	17	20
Selenium	μg/g	2.4	0.4	0.8	2.5	2.7	2.3	1.6	3.0	1.8	2.0
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Γhallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Jranium	μg/g	23	0.5	0.6	1.4	1.0	1.2	0.7	1.2	0.9	1.0
/anadium	μg/g	86	1	16	30	34	28	23	31	25	29
Zinc	μg/g	340	5	27	63	74	59	42	68	53	58

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Doa	150/511\ Matala	(Comprehensive) (Soil)
O. Rea.	. 155(511) - Metais	(Comprehensive) (Som

			0.110	<i>y</i> g. 100(01	i) Wictars (Comprehensi	13140) (3011)
DATE RECEIVED: 2014-12-15							DATE REPORTED: 2014-12-18
		SAMPLE DES	CRIPTION:	KL-67-A	LM-67-A	GH-23-A	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATES	SAMPLED:				
Parameter	Unit	G/S	RDL	6182521	6182524	6182536	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	10	7	11	
Boron	μg/g	120	5	14	13	12	
Barium	μg/g	390	2	44	43	37	
Beryllium	μg/g	4	0.5	0.6	<0.5	<0.5	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	2	15	14	12	
Cobalt	μg/g	22	0.5	7.4	6.2	5.1	
Copper	μg/g	140	1	23	22	24	
Lead	μg/g	120	1	10	10	13	
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	
Nickel	μg/g	100	1	13	12	10	
Selenium	μg/g	2.4	0.4	0.5	0.5	0.9	
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	
Uranium	μg/g	23	0.5	0.6	0.5	0.5	
Vanadium	μg/g	86	1	21	19	17	
Zinc	μg/g	340	5	39	39	35	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T2(RPI) - Current

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - OC Pesticides (Soil)

				O. rag. id	0(011)	, i cottolaco	(0011)				
DATE RECEIVED: 2014-12-15								[DATE REPORTI	ED: 2014-12-19	
		SAMPLE DES	CRIPTION:	FG-23-A	FG-34-A	FG-45-A	FG-56-A	FG-67-A	FG-78-A	FG-89-A	GH-12-A
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:								
Parameter	Unit	G/S	RDL	6182367	6182376	6182378	6182380	6182383	6182385	6182387	6182390
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	0.013	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	0.73	0.79	0.72	1.3	0.87	1.2	1.4	0.74
DDD	μg/g	3.3	0.007	0.23	0.21	0.11	0.26	0.25	0.17	0.43	0.24
DDT	μg/g	1.4	0.007	0.23	0.2	0.20	0.27	0.24	0.17	0.26	0.28
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	0.017	0.037	0.015	0.013	0.019	0.035	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	31.2	31.8	35.4	34.5	34.4	34.8	34.5	29.5
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	94	116	120	116	106	120	86	68
Decachlorobiphenyl	%	60-	130	110	84	116	92	90	106	110	92

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

50-140

60-130

%

78

88

CLIENT NAME: TERRAPROBE INC.

O. Reg. 153(511) - OC Pesticides (Soil) DATE RECEIVED: 2014-12-15 **DATE REPORTED: 2014-12-19** SAMPLE DESCRIPTION: GH-34-A GH-45-A GH-56-A GH-67-A GH-78-A HI-12-A HI-23-A HI-34-A SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: G/S **RDL** 6182418 6182454 6182467 6182470 6182473 6182476 6182478 6182480 Parameter Unit Gamma-Hexachlorocyclohexane 0.056 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 μg/g Heptachlor 0.15 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 μg/g Aldrin < 0.005 < 0.005 < 0.005 < 0.005 μg/g 0.05 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Heptachlor Epoxide < 0.005 < 0.005 μg/g 0.05 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Endosulfan μg/g 0.04 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <0.005 Chlordane μg/g 0.05 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 DDE μg/g 0.26 0.007 0.79 0.89 0.95 1.1 1.3 0.69 0.86 0.67 DDD μg/g 3.3 0.007 0.26 0.32 0.31 0.25 0.58 0.11 0.35 0.28 DDT 1.4 0.007 0.19 0.31 0.20 0.24 0.20 0.13 0.23 0.19 μg/g Dieldrin < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <0.005 μg/g 0.05 0.005 Endrin μg/g 0.04 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Methoxychlor 0.13 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 μg/g < 0.005 0.52 < 0.005 0.019 0.053 < 0.005 Hexachlorobenzene 0.005 < 0.005 0.009 < 0.005 < 0.005 μg/g Hexachlorobutadiene μg/g 0.012 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Hexachloroethane 0.089 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 µg/g Moisture Content % 0.1 27.6 30.1 33.8 35.1 33.6 24.5 33.0 24.8 Unit Surrogate Acceptable Limits TCMX % 84

120

84

Certified By:

100

96

86

114

110

100

92

82

92

Decachlorobiphenyl

120

104

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - OC Pesticides (Soil)

				O. Neg. 10	<i>(</i> 311) - CC	, i esticides	(0011)				
DATE RECEIVED: 2014-12-15								[DATE REPORTE	D: 2014-12-19	
		SAMPLE DES	CRIPTION:	HI-45-A	HI-56-A	HI-67-A	HI-78-A	HI-89-A	IJ-12-A	IJ-23-A	IJ-34-A
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:								
Parameter	Unit	G/S	RDL	6182482	6182484	6182486	6182489	6182492	6182494	6182496	6182498
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	<0.007	< 0.007	<0.007	0.022	< 0.007	<0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	0.51	1.3	0.86	1.1	1.7	<0.007	0.51	0.72
DDD	μg/g	3.3	0.007	0.12	0.63	0.35	0.47	1.1	<0.007	0.084	0.27
DDT	μg/g	1.4	0.007	0.13	0.46	0.28	0.28	0.23	<0.007	0.2	0.34
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	0.014	< 0.005	< 0.005	0.037	0.009	< 0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	33.1	36.5	38.3	37.6	35.9	13.1	19.1	28.4
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	120	110	94	75	88	78	68	52
Decachlorobiphenyl	%	60-	130	84	96	96	95	106	74	76	88

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - OC Pesticides (Soil)

				O	(3.1)		(33)				
DATE RECEIVED: 2014-12-15								[DATE REPORT	ED: 2014-12-19	
		SAMPLE DES	CRIPTION:	IJ-45-A	IJ-56-A	IJ-67-A	IJ-78-A	IJ-89-A	JK-67-A	JK-78-A	JK-89-A
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:								
Parameter	Unit	G/S	RDL	6182500	6182502	6182504	6182506	6182509	6182511	6182514	6182517
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	0.008	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	0.011	< 0.007	0.036	0.033	0.046	0.008	0.062
DDE	μg/g	0.26	0.007	0.75	0.29	0.44	1.2	1.1	0.87	0.45	2.0
DDD	μg/g	3.3	0.007	0.26	0.12	0.35	0.94	0.77	0.9	0.42	2.3
DDT	μg/g	1.4	0.007	0.74	0.18	0.2	0.68	0.31	1.3	0.18	1.0
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	0.022	0.030	< 0.005	< 0.005	0.056
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	0.036	0.01	< 0.005	0.043	0.014	0.008	0.006	0.009
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Moisture Content	%		0.1	28.6	39.0	32.8	35.0	28.6	38.5	32.9	34.2
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	96	106	70	60	100	76	84	86
Decachlorobiphenyl	%	60-1	130	110	82	120	78	72	76	64	74

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

\cap Pos	150/511)	- OC Pesticides (Soil)
O. Rea.	103(011)	- OC Pesticides (Soil)

					(3)		()
DATE RECEIVED: 2014-12-15							DATE REPORTED: 2014-12-19
		SAMPLE DESC	CRIPTION:	KL-67-A	LM-67-A	GH-23-A	
		SAMF	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:				
Parameter	Unit	G/S	RDL	6182521	6182524	6182536	
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	< 0.005	<0.005	< 0.005	
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	<0.005	
Aldrin	μg/g	0.05	0.005	<0.005	< 0.005	<0.005	
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	<0.005	
Chlordane	μg/g	0.05	0.007	0.012	<0.007	0.009	
DDE	μg/g	0.26	0.007	0.47	0.35	0.47	
DDD	μg/g	3.3	0.007	0.12	0.052	0.13	
DDT	μg/g	1.4	0.007	0.22	0.27	0.27	
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	
Hexachlorobenzene	μg/g	0.52	0.005	<0.005	< 0.005	<0.005	
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	
Moisture Content	%		0.1	27.2	25.9	22.1	
Surrogate	Unit	Acceptabl	le Limits				
TCMX	%	50-1	40	88	120	70	
Decachlorobiphenyl	%	60-1	30	68	78	68	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T2(RPI) - Current

6182367-6182536 Results are based on the dry weight of the soil.

Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and DDE applies to the total of op'DDE and pp'DDE. Endosulfan applies to the total of Endosulfan I and Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Guideline Violation

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

OLILIAI IA/ (IVIL	. TERRAI ROBE INC.			TTENTION TO. David Tilli		
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6182367	FG-23-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.73
6182376	FG-34-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.79
6182378	FG-45-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.72
6182380	FG-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
6182380	FG-56-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.3
6182383	FG-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.87
6182385	FG-78-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.2
6182387	FG-89-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.4
6182390	GH-12-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.74
6182418	GH-34-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.79
6182454	GH-45-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	26
6182454	GH-45-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.89
6182467	GH-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	27
6182467	GH-56-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.95
6182470	GH-67-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	26
6182470	GH-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.1
6182473	GH-78-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
6182473	GH-78-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.3
6182476	HI-12-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.69
6182478	HI-23-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.86
6182480	HI-34-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.67
6182482	HI-45-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
6182482	HI-45-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.51
6182484	HI-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	34
6182484	HI-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Selenium	2.4	2.8
6182484	HI-56-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.3
6182486	HI-67-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	22
6182486	HI-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.86
6182489	HI-78-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	22
6182489	HI-78-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.1
6182492	HI-89-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	24
6182492	HI-89-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.7
6182496	IJ-23-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.51
6182498	IJ-34-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.72
6182500	IJ-45-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.75
6182502	IJ-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	29
6182502	IJ-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Selenium	2.4	2.5
6182502	IJ-56-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (301)	DDE	0.26	0.29
6182504	IJ-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil) O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	25
6182504	IJ-67-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Selenium	2.4	2.7
6182504	IJ-67-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil) O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.44
6182506	IJ-78-A	T2(RPI) - Current			18	20
		, ,	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic DDE		
6182506	IJ-78-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.2

Guideline Violation

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC. ATTENTION TO: David Hill

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6182509	IJ-89-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	19
6182509	IJ-89-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	1.1
6182511	JK-67-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	31
6182511	JK-67-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Selenium	2.4	3.0
6182511	JK-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.87
6182514	JK-78-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	21
6182514	JK-78-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.45
6182517	JK-89-A	T2(RPI) - Current	O. Reg. 153(511) - Metals (Comprehensive) (Soil)	Arsenic	18	25
6182517	JK-89-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	Chlordane	0.05	0.062
6182517	JK-89-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	2.0
6182517	JK-89-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	Dieldrin	0.05	0.056
6182521	KL-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.47
6182524	LM-67-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.35
6182536	GH-23-A	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.47

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 14T928118 PROJECT: 13-11-6138-1 ATTENTION TO: David Hill

SAMPLING SITE: SAMPLED BY:

RPT Date:			С	UPLICATI	 E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable	Recovery	Lie	ptable nits	Recovery		ptable nits
		ld	'				Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Compr	ehensive)	(Soil)				,									
Antimony	6182367	6182367	<0.8	<0.8	0.0%	< 0.8	92%	70%	130%	100%	80%	120%	103%	70%	130%
Arsenic	6182367	6182367	11	11	0.0%	< 1	104%	70%	130%	99%	80%	120%	101%	70%	130%
Boron	6182367	6182367	10	10	0.0%	< 5	81%	70%	130%	105%	80%	120%	106%	70%	130%
Barium	6182367	6182367	29	29	0.0%	< 2	100%	70%	130%	99%	80%	120%	100%	70%	130%
Beryllium	6182367	6182367	<0.5	<0.5	0.0%	< 0.5	112%	70%	130%	111%	80%	120%	116%	70%	130%
Cadmium	6182367	6182367	<0.5	<0.5	0.0%	< 0.5	102%	70%	130%	102%	80%	120%	97%	70%	130%
Chromium					0.0%	< 2	88%	70%	130%	98%	80%	120%	99%	70%	130%
Cobalt	6182367	6182367	4.3	4.3	0.0%	< 0.5	95%	70%	130%	103%	80%	120%	100%	70%	130%
Copper	6182367	6182367	17	17	0.0%	< 1	93%	70%	130%	103%	80%	120%	95%	70%	130%
Lead	6182367	6182367	12	12	0.0%	< 1	101%	70%	130%	102%	80%	120%	97%	70%	130%
Molybdenum	6182367	6182367	<0.5	<0.5	0.0%	< 0.5	98%	70%	130%	101%	80%	120%	106%	70%	130%
Nickel	6182367	6182367	7	7	0.0%	< 1	96%	70%	130%	105%	80%	120%	100%	70%	130%
Selenium	6182367	6182367	0.5	0.5	0.0%	< 0.4	75%	70%	130%	104%	80%	120%	104%	70%	130%
Silver	6182367	6182367	< 0.2	<0.2	0.0%	< 0.2	80%	70%	130%	104%	80%	120%	94%	70%	130%
Thallium	6182367	6182367	<0.4	<0.4	0.0%	< 0.4	94%	70%	130%	99%	80%	120%	96%	70%	130%
Uranium	6182367	6182367	<0.5	<0.5	0.0%	< 0.5	92%	70%	130%	101%	80%	120%	99%	70%	130%
Vanadium	6182367		14	13	7.4%	< 1	90%	70%	130%	98%	80%	120%	100%	70%	130%
Zinc	6182367		31	32	3.2%	< 5	102%	70%	130%	103%	80%	120%	101%		130%
O. Don 453/544). Metala (Compa		(Ca:I)													
O. Reg. 153(511) - Metals (Compr	•	` '	-0.0	٠٠.٥	0.00/	.00	89%	700/	1200/	1020/	000/	1200/	1000/	700/	130%
Antimony Arsenic	6182484		<0.8 34	<0.8	0.0% 0.0%	< 0.8 < 1	103%	70% 70%	130% 130%	103% 98%	80% 80%	120% 120%	102% 99%	70% 70%	130%
Boron	6182484 6182484		3 4 19	34 22	14.6%	< 1 < 5	85%	70%	130%	96% 116%	80%	120%	99% 114%	70%	130%
Barium	6182484		87	88	1.1%	< 2	100%	70%	130%	100%	80%	120%	106%	70%	130%
Beryllium	6182484		1.1	1.0	9.5%	< 0.5	113%	70%	130%	118%	80%	120%	122%	70%	130%
•															
Cadmium	6182484		0.5	0.5	0.0%	< 0.5	105%	70%	130%	101%	80%	120%	98%	70%	130%
Chromium	6182484		24	25	4.1%	< 2	89%	70%	130%	98%	80%	120%	112%	70%	130%
Cobalt	6182484		8.9	9.3	4.4%	< 0.5	95%	70%	130%	101%	80%	120%	101%	70%	130%
Copper	6182484		49	49	0.0%	< 1	92%	70%	130%	103%	80%	120%	116%	70%	130%
Lead	6182484	6182484	20	21	4.9%	< 1	100%	70%	130%	101%	80%	120%	99%	70%	130%
Molybdenum	6182484	6182484	<0.5	<0.5	0.0%	< 0.5	100%	70%	130%	101%	80%	120%	103%	70%	130%
Nickel	6182484	6182484	21	22	4.7%	< 1	98%	70%	130%	104%	80%	120%	102%	70%	130%
Selenium	6182484	6182484	2.8	2.7	3.6%	< 0.4	77%	70%	130%	104%	80%	120%	100%	70%	130%
Silver	6182484	6182484	<0.2	<0.2	0.0%	< 0.2	85%	70%	130%	105%	80%	120%	93%	70%	130%
Thallium	6182484	6182484	<0.4	<0.4	0.0%	< 0.4	94%	70%	130%	100%	80%	120%	92%	70%	130%
Uranium	6182484	6182484	1.2	1.2	0.0%	< 0.5	94%	70%	130%	101%	80%	120%	97%	70%	130%
Vanadium	6182484	6182484	33	34	3.0%	< 1	90%	70%	130%	99%	80%	120%	105%	70%	130%
Zinc	6182484	6182484	67	68	1.5%	< 5	102%	70%	130%	103%	80%	120%	NA	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: TERRAPROBE INC. AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1 ATTENTION TO: David Hill SAMPLING SITE: SAMPLED BY:

Soil Analysis (Continued)															
RPT Date:		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE					
PARAMETER	PARAMETER Batch Sampl						Measured		otable nits	Recovery	Lin	otable nits	Recovery		ptable nits
		ld	·	ı i			Value	Lower	Upper		Lower	Upper		Lower	Upper

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 14T928118

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis															
RPT Date:			D	UPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery		ptable nits
		la					value	Lower	Upper	·	Lower	Upper	•	Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Gamma-Hexachlorocyclohexane	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	96%	50%	140%	85%	50%	140%	62%	50%	140%
Heptachlor	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	130%	50%	140%	109%	50%	140%	135%	50%	140%
Aldrin	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	108%	50%	140%	88%	50%	140%	108%	50%	140%
Heptachlor Epoxide	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	101%	50%	140%	87%	50%	140%	100%	50%	140%
Endosulfan	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	99%	50%	140%	72%	50%	140%	94%	50%	140%
Chlordane	6182494	6182494	< 0.007	< 0.007	0.0%	< 0.007	107%	50%	140%	87%	50%	140%	109%	50%	140%
DDE	6182494	6182494	< 0.007	< 0.007	0.0%	< 0.007	106%	50%	140%	96%	50%	140%	107%	50%	140%
DDD	6182494	6182494	< 0.007	< 0.007	0.0%	< 0.007	106%	50%	140%	82%	50%	140%	92%	50%	140%
DDT	6182494	6182494	< 0.007	< 0.007	0.0%	< 0.007	102%	50%	140%	98%	50%	140%	113%	50%	140%
Dieldrin	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	93%	50%	140%	85%	50%	140%	95%	50%	140%
Endrin	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	89%	50%	140%	82%	50%	140%	96%	50%	140%
Methoxychlor	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	115%	50%	140%	125%	50%	140%	130%	50%	140%
Hexachlorobenzene	6182494	6182494	< 0.005	< 0.005	0.0%	< 0.005	103%	50%	140%	99%	50%	140%	77%	50%	140%
Hexachlorobutadiene	6182494	6182494	< 0.01	< 0.01	0.0%	< 0.01	123%	50%	140%	118%	50%	140%	84%	50%	140%
Hexachloroethane	6182494	6182494	< 0.01	< 0.01	0.0%	< 0.01	120%	50%	140%	130%	50%	140%	109%	50%	140%

Certified By:

Jung

Method Summary

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 14T928118
PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		-	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Trace Organics Analysis			
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE

5835 Coopers Avenue Mississauga, ON L4Z 1Y2 Acrival Temperature: 147

Mississauga, ON L4Z 1Y2 AGA
agatlabs.com · webearth.agatlabs.com

Samples Relinquished By (Print Name and Sign):	H- 1	3H~ 4S~ A	H - 23 -	GH-12-A	Fa-89-A	78-1	-67-	FG-S6-A	FG-45-A	_	7	Sample Identification Date Time Sampled Ma	SD Sediment S Soil C. Name: Email:	Email: Aww.	the last	end Matrix Report Information -	Address:	Contact:	Invoice To Same: Yes 🔽 N	client will be billed full price for analysis.	Please note, if quotation number is not provided,	AGAT Quotation #:	Project: 13-11-6138-1 PO:	Brampton) {	contact: Dave Hill	Client Information	Chain of Custody Record	
Date/Time Samples Rocewed By Print Name and Signit Roc 12/14 Ship Samples Received By Print Name and Signit Date/Time		>					U U				2 JIOS	Sample # or Comments Matrix Containers Site/Sample Information		Cliabloso: Coc	1	reports to be sent to:	Drinking Water Chain of Custody Form	res	No is this a drinking water sample? (potable water intended for humap consumption)	Coarse	Soil Texture (check one)	Agriculture	M Res/Park	Indicate one	Table 2	Regulation 153/04:	Regulatory Requirements	P: 905.71	Lauoratories
and Sign: Dec 13 14 Date/Time and Sign: Date/Time) &										×	Metals Hydride Client (ORPs: FOC NO3 Nutriel NO3 VOC:	e Formil Custom B-HW Custom Custom B-HW NO ₂ NO ₂	ng Meta WS [r+6- □ N- TP O ₂	etals CI CI Tota	I- CN SAR BI Hg H ₃ C	- E	C	ption) Is this submission for Record of Site Condition?		None	Storm Objectives (PWQO)	Sanitary Dear What Condition	Indicate one Other (specify)	Region CCME	Sewer Use Regulation 558		P: 905.712.5100 · F: 905.712.5122 · TF: 800.856.6261	www.agatlabs.com · webearth.agatlabs.com
Pink Copy - Client Page of 3 white Copy - AGAT N°: 192107	V										×	PAHs Chloro PCBs Organo TCLP N Sewer	_	e Pes	anics	_	es			OR Date Required (Rush surcharges may apply):	I working day	2 Working Days	3 Working Days	Rush TAT (please provide prior notification) Rush Surcharges Apply	Working Days	200	Turnaround Time Required (TAT) Required*	Notes:	AGAT WO #: AGAT WO #: AGAT WO #:

Samples Relinquished By (Print Name and Sign);	Samples Relinquia (ed.) y 1997 (Mirme and Sign):	IT- 12-A	N-68-IH	HI-78- A	HI-67- A	HI- 56- A	N-54-IH	N-45-IH	HI-23-A	HT- 12-A	-4-98-HB	GH-78-A	GH-67-A	Sample Identification	or Sequillette 3 South	Surface Water P	Ground water U	,	Address:	Contact:	Invoice To	client will be bille	Please note, if quotat	010	2-11-613	plamb.	Address:	Company: Let rapec	Client Information	Chain of Custody		10		V 3000
Jacy/ime	Date/Time		N IN N					1 9	2			1	OH -	Date Time Sample Sampled Sampled Matrix Co		5	4 110 t	Report Information – reports to be sent to: 1. Name:		(u	Same: Yes A No	client will be billed full price for analysis.	Please note, if quotation number is not provided,	PO	Fax:	ton on.		Fill Line	1	Record		5	1	
Samples Received by (Print Name and Sig	Samples Received by (Print Name and Sign)												2	# of Comments Containers Site/Sample Information			proportion of	be sent to:	If "Yes", please use the Drinking Water Chain of Custody Form	Yes No	Is this a drinking water sample? (potable water intended for human consumption)	Coarse Fine	Soil Texture (check one)		Res/Park	Ind/Com	Table 2	Regulation 153/04	Regulatory Requirements	P: 905.712.5		ahoratorios		
gn): Date/Time	gni: Date/Time	V	ν/										<	☐ FOC ☐ NO ₃	Scan e Form Custor B-H () 0 /NO2 nts: 0 1 VOC	m Met WS Cr+6- NO2	eletai	Is CI- CNCISAR ISAR ISAI HE I	ţ □ pH ſKN	C 4	Is this submission for Record of Site Condition?		None	Storm Prov. Water Quality	Sanitary	Other (specify)	Region CCME	Sewer Use Regulation 558		P: 905.712.5100 · F: 905.712.5122 · TF: 800.856.6261	www.agatlabs.com · webearth.agatlabs.com	L4Z	5835 Coopers Avenue Mississauga, ON	1)))
White Copy- AGAT No: 192108	Pink Copy - Client Page 2 of 3												<	ABNs PAHs Chloro PCBs Organd TCLP N Sewer	ochlori Vetals, Use	ne Pe /Inorg	anio		les	in is evaluate of meevering and statutory noticely		OR Date Required (Rush surcharges may apply):	1 Working Day		3 Working Days	Rush Surcharges Apply	working Days		Turnaround Time Required (TAT) Required*			L4Z 1Y2 AGAT WO #:		-1

5835 Coopers Avenue Mississauga, ON

www.agatlabs.com · webearth.agatlabs.com L4Z 1Y2

P: 905.712.5100 · F: 905.712.5122 · TF: 800.856.6261

Notes:

Lab Temperature:

Chain of Custody Record

Regulatory Requirements

Client Information	Regulatory Requirements		Turnaround Time Required (TAT) Required*	uired (TAT) Required*
Company: Crimordoc Line.	Regulation 153/04	Sewer Use Regulation 558	558 Regular TAT	
Address: Drampton	Table Islands on	Region CCME	5 to 7 Working Days	
	Ind/Com	Indicate one	fy) Rush TAT (please provide prior notification) Rush Surcharges Apply	ior notification)
Project: (3-11-6130- po:	Res/Park	Sanitary Prov. Water Quality		
AGAT Quotation #:	Agriculture	Storm Objectives (PWQ0)		
Please note, if quotation number is not provided,	Soil Texture (check one)	None		
client will be billed full price for analysis.	Coarse Fine		OR	**************************************
Invoice To Same: Yes 🗹 No 🗆	Is this a drinking water sample?	Is this submission for a Rec	Condition?	i ges may appry).
Company:	Yes No		*TAT is exclusive of weekends and statutory holidays	ds and statutory holidays
Address:	If "Yes", please use the Drinking Water Chain of Custody Form	□ EC		
Report Information – reports to	be sent to:	SI- CN- SAR al Hg NH ₃ D1 NO ₃ /NO ₂	des	
	sprobe-ca	g Metals Metals General Section 1	1 to 4	
SD Sediment S Soil 2. Name: Email:		Formin, ustom M B-HW3 Cr+ NO2 TF NO2	ractions nenols chlorine	
Sample Identification Date Time Sample Sampled Matrix C	# of Comments Containers Site/Sample Information	☐ FOC ☐ NO ₃	ABNs PAHs Chlorop PCBs Organo TCLP M Sewer	
IJ-23-A DC 2014 SOIL	2	×	×	
IJ-34-A				
TJ: 45-A				
II SO-A				
12.60	•		<	
IJ 89-A				
次-67-A				
JK-78-A				
TK-83-A				
3KL-67-A				
*LM-67-A U)			
Samples Reinquishoo, 6) (Piper of the and Sign); Districtions Complete Reinquishoo, 6) (Piper of the and Sign);	Samples Received By Pring Name and Signi		Pink Copy - Client	Page 3 of 3
Samples Relinquished by (Print Name and Sign): Uate/Time			Date/Time Yellow Copy - AGAT	

Laboratory Use Only

AGAT WO #:	Arrival Temperature:

ired*

3	-
	\equiv
	3
7	2
	3
1	2
	3
	a
	\neg
	=
	3
	е
	ZJ.
	9
	9
	Ξ.
	ire
	ď.
	$\overline{}$
	\rightarrow
	2
	\supset
	Z
	e
	=

White Copy- AGAT No: 1921U9

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: David Hill

PROJECT: 13-11-6138-1

AGAT WORK ORDER: 14T928120

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jan 06, 2015

PAGES (INCLUDING COVER): 13

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

	*NOTES
	VERSION 2:Report revised and re-issued on Jan 9,2015.
1	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Page 1 of 13

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE: O. Reg. 153(511) - Metals (Comprehensive) (Soil)

DATE RECEIVED: 2014-12-15									DATE REPORT	ED: 2015-01-06	
		SAMPLE DES	CRIPTION:	FG-56-B	GH-45-B	GH-56-B	GH-67-B	GH-78-B	HI-45-B	HI-56-B	HI-67-B
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014
Parameter	Unit	G/S	RDL	6182397	6182411	6182413	6182415	6182417	6182427	6182429	6182431
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	2	3	3	2	2	3	3	3
Barium	μg/g	390	2	8	9	13	8	8	10	14	10
Beryllium	μg/g	4	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron	μg/g	120	5	<5	<5	<5	<5	<5	<5	6	<5
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	5	5	6	5	5	6	8	5
Cobalt	μg/g	22	0.5	2.3	2.6	3.0	2.5	2.8	2.7	3.5	2.6
Copper	μg/g	140	1	12	9	12	11	12	8	11	10
Lead	μg/g	120	1	5	5	6	5	5	5	6	5
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	4	4	5	4	5	5	7	4
Selenium	μg/g	2.4	0.4	0.5	<0.4	<0.4	<0.4	<0.4	0.6	0.4	<0.4
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4
Uranium	μg/g	23	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vanadium	μg/g	86	1	11	9	10	8	8	10	13	10
Zinc	μg/g	340	5	16	15	18	15	16	14	19	16

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE: SAM

			O. Re	eg. 153(51 ⁷	1) - Metals (Compreher	nsive) (Soil)				
DATE RECEIVED: 2014-12-15								[DATE REPORTI	ED: 2015-01-06	
		SAMPLE DES	CRIPTION:	HI-78-B	HI-89-B	IJ-56-B	IJ-67-B	IJ-78-B	IJ-89-B	JK-67-B	JK-78-B
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014
Parameter	Unit	G/S	RDL	6182434	6182436	6182446	6182526	6182527	6182528	6182529	6182530
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	2	4	5	3	3	2	3	3
Barium	μg/g	390	2	8	18	34	15	16	9	13	14
Beryllium	μg/g	4	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron	μg/g	120	5	<5	6	10	6	5	<5	5	6
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	2	6	8	13	7	6	4	6	7
Cobalt	μg/g	22	0.5	2.5	3.3	6.4	3.4	2.7	2.4	3.4	4.2
Copper	μg/g	140	1	11	15	22	10	9	9	11	13
Lead	μg/g	120	1	5	7	14	6	5	5	5	7
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	100	1	4	6	14	6	5	4	6	7
Selenium	μg/g	2.4	0.4	0.4	0.5	1.5	0.4	<0.4	<0.4	<0.4	<0.4
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	23	0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5
Vanadium	μg/g	86	1	12	13	19	11	10	8	10	11
Zinc	μg/g	340	5	17	20	33	20	17	14	17	21

Certified By:

Winte Muneman

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive)) (Soil)
---	----------

DATE RECEIVED: 2014-12-1	5				DATE REPORTED: 2015-01-06
	8	AMPLE DES	CRIPTION:	JK-89-B	
		SAM	PLE TYPE:	Soil	
		DATE:	SAMPLED:	12/12/2014	
Parameter	Unit	G/S	RDL	6182531	
Antimony	μg/g	7.5	8.0	<0.8	
Arsenic	μg/g	18	1	3	
Barium	μg/g	390	2	14	
Beryllium	μg/g	4	0.5	<0.5	
Boron	μg/g	120	5	5	
Cadmium	μg/g	1.2	0.5	<0.5	
Chromium	μg/g	160	2	6	
Cobalt	μg/g	22	0.5	3.8	
Copper	μg/g	140	1	12	
_ead	μg/g	120	1	7	
Molybdenum	μg/g	6.9	0.5	<0.5	
Nickel	μg/g	100	1	6	
Selenium	μg/g	2.4	0.4	<0.4	
Silver	μg/g	20	0.2	<0.2	
Γhallium	μg/g	1	0.4	<0.4	
Jranium	μg/g	23	0.5	<0.5	
Vanadium	μg/g	86	1	11	
Zinc	μg/g	340	5	20	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T2(RPI) - Current

6182397-6182531 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. Revised Jan 08,2015.

Revision: This report replaces the Certificate of Analysis issued on Jan 06, 2015 - Package was changed from "O. Reg. 153(511) - Metals & Inorganics (Soil)" to "O. Reg. 153(511) - Metals (Comprehensive) (Soil)" and the list of parameters adjusted accordingly.

Certified By:

Make Muneman

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.
SAMPLING SITE:

AMPLING SITE:

				O. Reg. 15	53(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2014-12-15								[DATE REPORTE	ED: 2015-01-06	
	:	SAMPLE DES	CRIPTION:	FG-23-B	FG-34-B	FG-45-B	FG-56-B	FG-67-B	FG-78-B	FG-89-B	GH-12-B
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014
Parameter	Unit	G/S	RDL	6182382	6182394	6182395	6182397	6182399	6182401	6182403	6182405
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	μg/g	0.15	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	0.011	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	0.29	0.61	< 0.007	0.050	< 0.007	< 0.007	< 0.007	0.017
DDD	μg/g	3.3	0.007	0.097	0.21	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDT	μg/g	1.4	0.007	0.11	0.29	< 0.007	0.012	0.007	< 0.007	< 0.007	0.033
Dieldrin	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	19.1	18.8	20.6	21.5	20.2	17.9	19.8	18.6
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	50	84	72	72	64	58	62	50
Decachlorobiphenyl	%	60-1	130	60	78	86	100	74	80	108	60

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2014-12-15									DATE REPORTE	ED: 2015-01-06	
		SAMPLE DES	CRIPTION:	GH-23-B	GH-34-B	GH-45-B	GH-56-B	GH-67-B	GH-78-B	HI-12-B	HI-23-B
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014
Parameter	Unit	G/S	RDL	6182407	6182409	6182411	6182413	6182415	6182417	6182420	6182423
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	< 0.007	< 0.007	0.10	0.007	0.024	< 0.007	< 0.007	< 0.007
DDD	μg/g	3.3	0.007	< 0.007	< 0.007	0.23	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDT	μg/g	1.4	0.007	< 0.007	< 0.007	0.068	< 0.007	0.009	< 0.007	< 0.007	< 0.007
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	19.6	19.1	21.7	20.1	19.4	20.2	14.6	14.3
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	72	60	80	50	50	50	51	62
Decachlorobiphenyl	%	60-	130	82	68	66	66	94	60	76	70

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

				O. Reg. 15	3(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2014-12-15								Γ	DATE REPORT	ED: 2015-01-06	
		SAMPLE DES	CRIPTION:	HI-34-B	HI-45-B	HI-56-B	HI-67-B	HI-78-B	HI-89-B	IJ-23-B	IJ-34-B
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014
Parameter	Unit	G/S	RDL	6182425	6182427	6182429	6182431	6182434	6182436	6182440	6182442
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	<0.007	<0.007	<0.007	< 0.007	0.012	<0.007	< 0.007
DDE	μg/g	0.26	0.007	0.007	0.019	0.029	0.082	0.034	0.56	<0.007	<0.007
DDD	μg/g	3.3	0.007	< 0.007	<0.007	<0.007	0.023	0.018	0.26	<0.007	< 0.007
DDT	μg/g	1.4	0.007	0.012	0.009	0.026	0.04	0.020	0.12	< 0.007	< 0.007
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.008	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	22.5	19.7	19.8	21.9	17.9	23.9	7.4	10.7
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	60	68	86	86	84	68	62	74
Decachlorobiphenyl	%	60-	130	62	110	88	62	104	66	104	74

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - OC Pesticides (Soil)

				_							
DATE RECEIVED: 2014-12-15								[DATE REPORTI	ED: 2015-01-06	
		SAMPLE DES	CRIPTION:	IJ-45-B	IJ-56-B	IJ-67-B	IJ-78-B	IJ-89-B	JK-67-B	JK-78-B	JK-89-B
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE:	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014	12/12/2014
Parameter	Unit	G/S	RDL	6182444	6182446	6182526	6182527	6182528	6182529	6182530	6182531
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	0.007	< 0.007	0.007	< 0.007	0.048	0.038	0.015	< 0.007	< 0.007
DDD	μg/g	3.3	0.007	< 0.007	< 0.007	< 0.007	0.032	0.017	0.017	< 0.007	< 0.007
DDT	μg/g	1.4	0.007	< 0.007	< 0.007	< 0.007	0.024	0.012	0.016	< 0.007	< 0.007
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	19.1	19.1	19.4	21.7	20.8	19.4	18.6	18.9
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	50	64	61	50	96	102	92	92
Decachlorobiphenyl	%	60-	130	86	86	94	62	102	78	92	74

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Rea	153(511)	- OC Pesticides	(Soil)
O. INEG.	100011	1 - OO F 631101063	(SOII)

				0	(0.1)	
DATE RECEIVED: 2014-12-15						DATE REPORTED: 2015-01-06
		SAMPLE DES	CRIPTION:	KL-67-B	LM-67-B	
		SAMI	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	12/12/2014	12/12/2014	
Parameter	Unit	G/S	RDL	6182532	6182533	
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	<0.005	< 0.005	
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	
Aldrin	μg/g	0.05	0.005	<0.005	< 0.005	
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	< 0.005	
Endosulfan	μg/g	0.04	0.005	<0.005	< 0.005	
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	
DDE	μg/g	0.26	0.007	< 0.007	< 0.007	
DDD	μg/g	3.3	0.007	< 0.007	< 0.007	
DDT	μg/g	1.4	0.007	< 0.007	< 0.007	
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	
Hexachlorobenzene	μg/g	0.52	0.005	<0.005	< 0.005	
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	
Moisture Content	%		0.1	14.4	3.8	
Surrogate	Unit	Acceptab	le Limits			
ГСМХ	%	50-1	140	60	78	
Decachlorobiphenyl	%	60-1	130	84	106	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T2(RPI) - Current

6182382-6182533 Results are based on the dry weight of the soil.

Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and DDE applies to the total of op'DDE and pp'DDE. Endosulfan applies to the total of Endosulfan I and Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Guideline Violation

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC. ATTENTION TO: David Hill

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6182382	FG-23-B	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.29
6182394	FG-34-B	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.61
6182436	HI-89-B	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.56

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 14T928120

PROJECT: 13-11-6138-1

ATTENTION TO: David Hill

SAMPLING SITE: SAMPLED BY:

Soil Analysis														
RPT Date: Jan 06, 2015			DUPLICATE #1 Dup #2 RPD			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
Batch	Sample	Dup #1	Dup #2	RPD	Method Blank				Recovery	سنا ا		Recovery		ptable nits
	Id	·	,			value	Lower	Upper		Lower	Upper		Lower	Upper
ehensive)	(Soil)													
6182397	6182397	< 0.8	<0.8	0.0%	< 0.8	106%	70%	130%	92%	80%	120%	91%	70%	130%
6182397	6182397	2	2	0.0%	< 1	106%	70%	130%	101%	80%	120%	94%	70%	130%
6182397	6182397	8	8	0.0%	< 2	121%	70%	130%	111%	80%	120%	110%	70%	130%
6182397	6182397	< 0.5	<0.5	0.0%	< 0.5	91%	70%	130%	104%	80%	120%	94%	70%	130%
6182397	6182397	< 5	<5	0.0%	< 5	83%	70%	130%	105%	80%	120%	95%	70%	130%
6182397	6182397	< 0.5	<0.5	0.0%	< 0.5	109%	70%	130%	105%	80%	120%	102%	70%	130%
6182397	6182397	5	5	0.0%	< 2	90%	70%	130%	104%	80%	120%	95%	70%	130%
6182397	6182397	2.3	2.3	0.0%	< 0.5	93%	70%	130%	99%	80%	120%	88%	70%	130%
6182397	6182397	12	12	0.0%	< 1	98%	70%	130%	112%	80%	120%	90%	70%	130%
6182397	6182397	5	5	0.0%	< 1	116%	70%	130%	109%	80%	120%	104%	70%	130%
6182397	6182397	< 0.5	<0.5	0.0%	< 0.5	97%	70%	130%	99%	80%	120%	96%	70%	130%
6182397	6182397	4	4	0.0%	< 1	98%	70%	130%	105%	80%	120%	87%	70%	130%
6182397	6182397	0.5	0.5	0.0%	< 0.4	81%	70%	130%	103%	80%	120%	92%	70%	130%
6182397	6182397	< 0.2	<0.2	0.0%	< 0.2	99%	70%	130%	106%	80%	120%	99%	70%	130%
6182397	6182397	< 0.4	<0.4	0.0%	< 0.4	109%	70%	130%	105%	80%	120%	103%	70%	130%
6182397	6182397	< 0.5	<0.5	0.0%	< 0.5	130%	70%	130%	106%	80%	120%	112%	70%	130%
6182397	6182397	11	11	0.0%	< 1	93%	70%	130%	100%	80%	120%	94%	70%	130%
6182397	6182397	16	17	6.1%	< 5	100%	70%	130%	111%	80%	120%	90%	70%	130%
	ehensive) 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397 6182397	Batch Sample Id Phensive) (Soil) 6182397	Batch Sample Dup #1 Shensive) (Soil) 6182397 6182397 < 0.8 6182397 6182397 2 6182397 6182397 < 0.5 6182397 6182397 < 5 6182397 6182397 < 5 6182397 6182397 5 6182397 6182397 5 6182397 6182397 12 6182397 6182397 5 6182397 6182397 5 6182397 6182397 5 6182397 6182397 0.5 6182397 6182397 4 6182397 6182397 < 0.2 6182397 6182397 < 0.4 6182397 6182397 < 0.5 6182397 6182397 < 0.4 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5 6182397 6182397 < 0.5	Batch Sample Dup #1 Dup #2 Sehensive) (Soil) 6182397 6182397 < 0.8 < 0.8 6182397 6182397 2 2 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 5 < 5 6182397 6182397 < 5 < 5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 5 5 6182397 6182397 2.3 2.3 6182397 6182397 2.3 2.3 6182397 6182397 2.5 < 0.5 6182397 6182397 5 5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.2 < 0.2 6182397 6182397 < 0.4 < 0.4 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.4 < 0.4 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5 6182397 6182397 < 0.5 < 0.5	Batch Sample Id Dup #1 Dup #2 RPD Phensive) (Soil) 6182397 6182397	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Shensive) (Soil) 6182397 6182397 < 0.8	DUPLICATE REFERENT Referent	DUPLICATE REFERENCE MA Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Lir Lower	DUPLICATE REFERENCE MATERIAL Race Reputation Reference Reference Reference Reference Reputation Reference	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Value Limits Lower Upper Recovery	Batch Sample Dup #1 Dup #2 RPD Method Measured Value Cower Dup #2 Limits Lower Dup #3 Dup #4	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Value Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper tch Sample Dup #1 Dup #2 RPD Method Blank Mesured Value Acceptable Limits Lower Upper Recovery Lower Upper Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Lower Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Recovery Upper Up	Batch Sample Dup #1 Dup #2 RPD Method Blank Walue Recovery Recovery Dup #1 Dup #2 RPD Method Blank Recovery Recov	

Comments: NA signifies Not Applicable.

Certified By:

Mile Muneman

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

AGAT WORK ORDER: 14T928120 ATTENTION TO: David Hill

PROJECT: 13-11-6138-1 SAMPLING SITE:

SAMPLED BY:

OAIMI EINO OITE.								J/ (IVII I		1.					
Trace Organics Analysis															
RPT Date: Jan 06, 2015			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	. RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Gamma-Hexachlorocyclohexane	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	97%	50%	140%	63%	50%	140%	50%	50%	140%
Heptachlor	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	123%	50%	140%	125%	50%	140%	118%	50%	140%
Aldrin	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	97%	50%	140%	112%	50%	140%	79%	50%	140%
Heptachlor Epoxide	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	89%	50%	140%	99%	50%	140%	89%	50%	140%
Endosulfan	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	92%	50%	140%	99%	50%	140%	85%	50%	140%
Chlordane	6182431	6182431	< 0.007	< 0.007	0.0%	< 0.007	90%	50%	140%	98%	50%	140%	109%	50%	140%
DDE	6182431	6182431	0.099	0.082	18.8%	< 0.007	109%	50%	140%	108%	50%	140%	100%	50%	140%
DDD	6182431	6182431	0.026	0.023	12.2%	< 0.007	112%	50%	140%	95%	50%	140%	85%	50%	140%
DDT	6182431	6182431	0.048	0.040	18.2%	< 0.007	112%	50%	140%	121%	50%	140%	102%	50%	140%
Dieldrin	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	99%	50%	140%	99%	50%	140%	89%	50%	140%
Endrin	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	100%	50%	140%	102%	50%	140%	93%	50%	140%
Methoxychlor	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	114%	50%	140%	125%	50%	140%	132%	50%	140%
Hexachlorobenzene	6182431	6182431	< 0.005	< 0.005	0.0%	< 0.005	93%	50%	140%	83%	50%	140%	66%	50%	140%
Hexachlorobutadiene	6182431	6182431	< 0.01	< 0.01	0.0%	< 0.01	134%	50%	140%	79%	50%	140%	61%	50%	140%
Hexachloroethane	6182431	6182431	< 0.01	< 0.01	0.0%	< 0.01	130%	50%	140%	119%	50%	140%	55%	50%	140%

5835 COOPERS AVENUE TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

Method Summary

CLIENT NAME: TERRAPROBE INC. AGAT WORK ORDER: 14T928120 PROJECT: 13-11-6138-1 ATTENTION TO: David Hill

SAMPLING SITE: SAMPLED BY:

		SAMI LED D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	•		
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Trace Organics Analysis			
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE

Samples Relinquished by (Print Name and Sign): Date/Time	Samples Relinquished By (Print Name an Study	GH-56-B V V	GH-45-B W	GH-34-B	GH-23-B	4H-12-B	F6-89-B	FG-78-B	FG-67-B	FG-56-B	FG-45-B		4	Sample Identification Sampled Sampled Sampled Sampled Matrix Containers	SD Sediment S Soil 2. Name: Email:		o oil 1. Name: Lawe H	Legend Matrix Report Information - reports to be sent to:	Address:		Company:	Samaryan	Please note, if quotation number is not provided, client will be billed full price for analysis.	AGAT Quotation #:	13-11-6138-	Phone: 955-796-2650-200	7	30 13	nformation	Chain of Custody Record	Lao	agar .	
1	Say Say Ru		t t				5				until notified	on HOLD.	2 Place Samples X	Site/Sample Information Metals Metals Hydrid Client ORPs:	and Inco	ng Meta Meta	ics	□ CN		EC	don) is the submission for		Soil Fexture (check one)	Agriculture Storm	Res/Park Sanitary	☐ Ind/Com	Indicate one Indicate one	lation 153/04 Sewer Use	atory Requirements	P: 905.712.5100 ·	Jadoralories www.agatlabs.com·webea	-57	1000
-	Cata/Time	<	7										×	VOC: E CCME ABNS PAHS Chloro PCBS Organo	Praction phenols ochlorine	D ₂ (□ NO	l ₃ /NO ₂ □ B1			*TAT is exclusive of weeke	pate Required (Rush surcharges may apply):	None OR	Objectives (PWQO) 1 Working Day	Prov. Water Quality 2 Working Days		(specify)	Regulation 558 Regular Al			AGAT WO #: Lab Temperature:	Mississauga, ON 147 1Y2	
799A	Page of 3																				*TAT is exclusive of weekends and statutory holiday	narges may apply):					prior notification)		Turnaround Time Required (TAT) Required*		8 3.1 3.	Tablao	•

Relinquished By (Print Name and Sign):	Relinquested by December of Rep.	IJ-23-B	1J-12-B	HT-89-B	HI-78-B	HI- 67- B	HI-56-B	HI-45-B	HT-34-B	HI-23-B	HI- 12- B	GH- 78-B	GH-67-B	Sample Identification	Sediment S Soil	/ater P	Ground Water o Oil	end Matrix	SS:	ct.	ice To	Please note, if quotation number is not provided, client will be billed full price for analysis.	otation #:	13-11-613	Brampten	ot:	any: lestrapro	nt Information	in of Custody				
		<	<										Pr 25	Date Sampled		2 Name:	1. Name:	Report Information			(0	ition number is ned full price for a		Fax:	yo, was	H	The H		Record		5		
														Time Sampled		dum	Jak.	mation			Same: Yes 🗓	ot provided nalysis.					VC .						
Date/ Time	Dec		=										2000	Sample Matrix		2	517	- reports to			No	,-								ţ			
	12/	<	1					¥	S		_		2	# of Containers		acro long	J	be sent to:	Drinki		ls ti	Soll Soll						Regul		1001			
Samples Received By (Buff) Ame	Samples Poonweld By JP-Int Tyme and										nothed.		Samples on	Comments Site/Sample Information		DE: CO	10	y.	If "Yes", please use the Drinking Water Chain of Custody Form	LI Yes W No	is this a drinking water sample? (potable water intended for human consumption)	Soil Texture (check one) Coarse Fine	Agriculture	Res/Park	Indicate one ind/Com	Table 2	Regulation 153/04	Regulatory Requirements		CILOTICS	ahoratorios		
Mark Sept	and Signat		<									1	X	Metals Metals Hydrid	Scan e Formi	ng Me	etals		m		is this submission for Revision)		Storm	☐ Sanitary	Indicate one	Region	Sewer Use		P: 905.7	www.agatlabs.co			
														ORPs: D FOC NO ₃ Nutrlet	□ B-HV : □ C /NO ₂ nts: □ ⁻	VS [r+6- □ N- TP [O ₂]	□ CI- □ S Total □ NH	IAR H		3	sion for a Record of Site	None	Prov. Water Quality Objectives (PWQO)		Other (specify)	CCME	Regulation 558		P: 905.712.5100 · F: 905.	www.agatlabs.com·webearth.agatlabs.com	Missis	5835 Coope	
Date/Time	Date/Timo													CCME ABNs PAHs	3 VOC Fraction	□ T			TEX		cord of Site Condition?		r Quality (PWQO)		cify)		558		F: 905.712.5122	tlabs.com	L4Z 1Y2	35 Coopers Avenue	
White Copy- AGAT	Pink Copy - Client	<											X	Chloro PCBs Organo	phenois ochlorin //etals/l	e Pes		es		The Policy Control of the	*TAT is exclusive of v	OR [2 Working Days	3 Working Days	Rush TAT (please provi	1 to 7 Working Days	RegulayTAT	Turnaround Time	Notes:	AGAI WO #:	Arrival Temperature:	Laboratory Use Only	
T Nº. 52949	Page 2 of									3.1										Total and owners	*TAT is exclusive of weekends and statutory holidar				Rush TAT (please provide prior notification) Rush Surcharges Apply)ays		e Required (TAT) Required				Only	
	W																				holida							quired*					

	Samples Received By (Print Name and State) Date/Time Pink Copy - Client Page 3		of Custody Record formation	Regulatory Requirements Regulation 153/04	Metal Scan Hydride FormIng Metals Client Custom Metals ORPs: B-HWS CI- CN- EC FCC Cr+6- SAR NO ₃ /NO ₂ N· Total Hg pH Nutrients: TP NH ₃ TKN NO ₃ NO ₂ NO ₃ /NO ₂ VOC: VOC THM BTEX	PAHS Chlorophenols *TAT is: Regular *TAT is: Re Re 11 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
- Webear (II.agatiabs.com	To Same: Yes No	Regulation 153/04 Sample	앜			,
of Custody Record P: 905.712.5100 · F: 905.712.5122	Regulation 1830-04 Sewert Use Regulation 1838-04 Sewert Use Regulation 1838-04 Sewert Use Regulation 1838-04 Sewert Use Regulation 1838-04	Brampton OA	form	Regulatory Requirements		around Time
of Custody Record Regulatory Requirements www.agatiabs.com	The control of the		company Errapido Inc.			Regular TAT
n of Custody Record P: 905.712.5100 · F: 905.712.5122 N Information Regulatory Requirements Regulatory Regulation 153/04 Sewer Use Regulation 558 Regulation 558	Sample dennification Sampled Sample Sample dennification Sampled Sample	Comments Comments	Bramoton	b		5 to 7 Working Days
of Custody Record Regulatory Requirements Regulatory Requirements Regulation 153/04	Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price for analysis. Sample described full price full price for analysis. Sample described full price ful			Indicate one		
of Custody Record Regulatory Requirements P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.712.5122 Notes: Proproduction Proproductio	To Same: Yes No	Agriculture Information Information	17-11 179-1	PRess/Park	Sanitary	3 Working Days
of Custody Record P: 905.712.5100 · F: 905.712.5122 P: 905.712.5122 Notes: Property Propert	Please note, if quotation number is not provided, Oilent will be billed full price for analysis. Same: Yes No Same: Yes No Is this administration water sample? To Same: Yes No Is this administration water sample? Is this submission for a Record of Site Condition? Indextrix Report Information Paint Pain	Sample S	11-6130-1	Agriculture) 🗆
of Custody Record Regulatory Requirements P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.712.5122 Notes: P: 905.712.5122 Notes: Regulation 153/04 Sewer Use Regulation 558 Regulati	To Same: Yes No Same: Yes No Coalse adhiking water sample? Same: Yes No No Same: Yes No No Same: Yes No No No No No No No No No No No No No	Same: Yes No	Please note, if quotation number is not provided,	Soil Texture (check one)	None	} _
of Custody Record Regulatory Requirements P: 905.712.5100 · F: 905.712.5122 Regulation 153/04 Regulation 153/04 Regulation 153/04 Regulation 153/04 Regulation 153/04 Regulation 153/04 Regulation 558 Regulation 558 Regulation 558 Regulation 558 Regulation 558 Regulation 558 Regulation 558 Regulation 558 Regulation 558 Regulation 7AT Regulation 7AT Regulation 95 to 7 Working Days objectives (PwQO) Please note, if quotation number is not provided, Soll Jexture (check one) Regulation 153/04 Regulation 153/04 Regulation 558 Regulation 558 Regulation 558 Regular TAT Regular	Matrix Report Information - reports to be sent to: In Name: And Water Only Comments Com	Same: Yes No Sample? No	client will be billed full price for analysis.	_		OR Date Required (Rush surcharges may a
of Custody Record P: 905.712.5100 · F: 905.712.5122 Regulatory Requirements P: 905.712.5100 · F: 905.712.5122 Regulation 155/04 Regulation 155/04 Regulation 155/04 Regulation 155/04 Regulation 155/04 Regulation 155/04 Regulation 558 Regulation 11 Add Temperature: Anotes: A	Matrix Paint Soil 1. Name: Abrill Champing Mater Chain of Custody Form Case	Report Information - reports to be sent to: 1. Name: Date Sampled Sampl	Same: Yes □			
of Custody Record Regulatory Requirements P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.712.5122 Notes: Regulation 153/04 Sewer Use Regulation 558 CME Come Other (specify) Rush 1/4	Metals and Inorganics Metals Client Custom Metals Client Custom Metals ORPS: BHWS CL CN ER SAR BHWS INO, NO, NO, NO, NO, NO, NO, NO, NO, NO,	Report Information - reports to be sent to: 1. Name: Anne:	Contact:	□ Yes □ Yes	1 8	(S)
of Custody Record P: 905.712.5100 · F: 905.712.5122 Notes: Regulatory Requirements Regulatory Requirements Regulatory Requirements	Report Information – reports to be sent to: Soil 1. Name: Anne: A	Report Information - reports table sent to: 1. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 3. Nampled Sampled Sampled Samples Sampled Information - reports table sent to: 4. Name: And Information - reports table sent to: 5. Name: And Information - reports table sent to: 6. Nampled Sampled Sampled Sampled Information - reports table sent to: 8. Nampled Sampled Sampled Sampled Information - reports table sent to: 9. Name: And Information - reports table sent to: 9. Name: And Information - reports table sent to: 1. Name: And Information - reports table sent to: 1. Name: And Information - reports table sent to: 1. Name: And Information - reports table sent to: 1. Name: And Information - reports table sent to: 1. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 2. Name: And Information - reports table sent to: 3. Name: And Information - reports table sent to: 4. National Scan 4. Hydride Forming Metals Client Custom Metals Client Custom Metals ORPS: BHWS CI- CN- FOC CIC+6- SAR No./No.2 IN- Total Information Nutrients: ITP INH, INM, INM, INM, INM, INM, INM, INM, INM	Address:	If "Yes", please use the Drinking Water Chain of Custody Form	; □ pH	
of Custody Record P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.	Cartion Cartion Cartion Cartin Car	Date Time Sampled #of Comments Sampled Sample #of Comments Comments Date Time Sample #of Comments Comments All 2 Samples focusioned By (Print Name and Sign): Metals and Inorganics Metals Scan Hydride Forming Metals Client Custom Metals ORPs: B-HWS Cl.	Report Information -	to be sent to:	- CN SAR I He H ₃ CO3/NO2	
Of Custody Record P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.712.5100 · F: 905.712.5122 Notes: P: 905.712.5100 · F: 905.712.5122 Notes: Regulatory Requirements Regulation 153/04 Sewer Use Canal for Juna 153/04 Sewer Use Indicate one Indicate	Comments Sampled Sampled Sampled Sample Matrix Sampled Sampled Sampled Matrix Containers Stite/Sample information Metals and Inorg Metals can Hydride Forming Client Custom Me ORPs: B-HWS FOC C-C-FE NO ₃ /NO ₂ II Nutrients: IP NO ₃ NO ₂ VOC: IVOC II CCME Fractions 3 ABNs PAHs Chlorophenols PCBs Organochlorine P TCLP Metals/inor	Date Sampled Sample Matrix Containers Sample Matrix Containers Site/Sample Information Metals and Inorg Metal Scan Hydride Forming Client Custom Metals ORPs: B-HWS FOC C-46 NO ₃ /NO ₂ In Nutrients: TP NO ₃ NO ₂	O Oil L. Naille: Ahile	probe ca	Metals etals C N- Tota	'estici
of Custody Record P: 905.712.5100 - F: 905.712.5122 Nones: 1	Sampled Sample Time Sample Matrix Comments Sampled Sample Matrix Comments She/Sample Information Metals and Me	Date Time Sampled Hof Sample Hof	s Soil 2.	Inor	rming om M I-HWS I Cr+ I Cr I TP I NO	nols orine
of Custody Record P: 905.712.5100 · F: 905.712.5100 · F: 905.712.5102 Nones: P: 905.712.5100 · F: 905.712.5122 Nones: Regulation Sawer Use Regulation Sawer Use Regulation Regulation Sawer Use Regulation Regulation Sawer Use Regulation Regulation Sawer Use Sawer Use Regulation Regulation Regulation Sawer Use Regulation	Sampled Sampled Sampled Matrix Containers Sampled Matrix Containers Shite/Sample Information Metal Meta	Sampled Sampled Watrix Containers Sites/Sample Information Metal 3012 7 Place Samples Metal Metal Metal Hydric ORPS Date/Time Date/Time Date/Time Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):		s and	Scan Custo B- Custo NO ₂ Ponts: []	opher ochlo Metal
of Custody Record Regulatory Requirements P: 905.712.5100 · F: 905.712.5102 Nones: P: 905.712.5100 · F: 905.712.5102 Nones: P: 905.712.5100 · F: 905.712.5102 Nones: P: 905.712.5100 · F: 905.712.5100	B Dec 114 Soil 2 Place Sound on HOLD with Notities B Wat 194 Soil 2 P	Dec 14 Source Samples X man HOLD man HOLD man HOLD man Hold m	Date Time Sampled Sampled	# of Comments Containers Site/Sample Information	Metal Hydrid Client ORPs: D FOC NO: Nutrie	ABNs PAHs Chlord PCBs Organ TCLP
of Custody Record P: 905.712.5100 · F: 905.712.5102 Notes: Notes P: 905.712.5100 · F: 905.712.5100 · F: 905.712.5100 · F: 905.712.5102 Notes:		Date/Time Date/Time Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	中	2 Place Sound	×	X
Transformation To Custody Record Regulatory Requirements Regulatory Reduction S88 Regulatory Requirements Regulatory		Date/Time Date/Time Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):				
To Custody Record Regulatory Requirements Regulatory R	ט ממש של של של של של של של של של של של של של	Date Time Date Time Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	II-56-B	with notified		
Transition Custody Record P:905.712.5100 F: 905.712.5100 F: 905.712.5122 None: Commettion P:905.712.5100 F: 905.712.5122 None: Commetti P:905.712.5100 F: 905.712.5100 F: 905	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Date/Time Date/Time Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	11-67-17			
To Custody Record Regulatory Requirements Regulatory Regul	משמח	Dente Time Dente Time Samples Received By (Fint Name and Sign): Samples Received By (Fint Name and Sign):	TT- 89- B	~		
To Custody Record Regulatory Requirements P: 905.712.5120 - F: 905.712.5120 Regulatory Requirements Regulatory Regulation 153/04 Regulatory Regulation 153/04 Regulatory Regulator	7 500	Date Time Samples Received By (Print Name and Sign): Date/Time Samples Received By (Print Name and Sign):	JK-67-B			
Tomation Custody Record Regulatory Requirements P: 905.712.5100 F: 905.712.5122 Note: Tomation Regulatory Requirements Regulatory Requirements P: 905.712.5100 F: 905.712.5122 Turnal Regulatory Requirements Regulatory Regulatory Requirements Regulatory Regulatory Requirements Regulatory Regulatory Requirements Regulatory R	7 7	Date Time Date Time Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	1K-78-B			
of Custody Record P: 905.712.5100 F: 905.712.5122 Note:: Tormation From Brown Dec Regulation 155,04 Sever Use Regulation 55,88 Regulation 155,04 Regulation	7-12	Date Time Samples Received By (Print Name and Sign): Date/Time Samples Received By (Print Name and Sign):	78-82-7			
of Custody Record P: 905.712.5100 F: 905.712.5122 torrest Fragulation 1550 H For matter For For matter For For matter For For matter For For matter For For matter For For matter For For matter For For matter For For matter For For matter For matter For matter For matter For matter For matter	7-	Date/Time Samples Received By (Print Name and Sign): Date/Time Samples Received By (Print Name and Sign):	D	*		
Tomation Tomation Regulatory Requirements For Po5.712.5100 F: 905.712.5102 Note: 10 Regulation 1550 Off Sever Use Regulation 558		Samples Received By (Frint Name and Sign): Date/Time Samples Received By (Print Name and Sign):	7-		<	
To Custody Record Regulation 155/04 Server two P. 905.712.5100 F. 905.712.5122 Notes: Regulation 155/04 Server two P. 905.712.5100 F. 905.712.5122 Notes: Regulation 155/04 Server two P. 905.712.5100 F. 905.712.5122 Notes: Regulation 155/04 Server two P. 905.712.5100 F. 905.712.5122 Notes: Regulation 155/04 Regulat				4/1	Date	Yellow Copy - AGAT No: 59

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.
11 INDELL LANE

BRAMPTON, ON L6T3Y3

(905) 796-2650

ATTENTION TO: David Hill

PROJECT: 13-11-6138-1

AGAT WORK ORDER: 15T933789

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jan 15, 2015

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

*NOTE O

Page 1 of 6

Certificate of Analysis

AGAT WORK ORDER: 15T933789

PROJECT: 13-11-6138-1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.
SAMPLING SITE:

O. Reg. 153(511) - OC Pesticides (Soil)

ATTENTION TO: David Hill

				3	(3.1)		()
DATE RECEIVED: 2015-01-09							DATE REPORTED: 2015-01-15
		SAMPLE DES	CRIPTION:	FG23-C	FG34-C	FG34-D	
		SAMI	PLE TYPE:	Soil	Soil	Soil	
		DATES	SAMPLED:	12/12/2014	12/12/2014	12/12/2014	
Parameter	Unit	G/S	RDL	6236615	6236617	6236619	
Gamma-Hexachlorocyclohexane	µg/g	0.056	0.005	<0.005	< 0.005	<0.005	
Heptachlor	μg/g	0.15	0.005	< 0.005	< 0.005	< 0.005	
Aldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	
Chlordane	μg/g	0.05	0.007	< 0.007	0.009	< 0.007	
DDE	μg/g	0.26	0.007	<0.007	0.49	< 0.007	
DDD	μg/g	3.3	0.007	< 0.007	0.18	< 0.007	
DDT	μg/g	1.4	0.007	< 0.007	0.34	< 0.007	
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	
Endrin	μg/g	0.04	0.005	<0.005	< 0.005	< 0.005	
Methoxychlor	μg/g	0.13	0.005	< 0.005	< 0.005	< 0.005	
Hexachlorobenzene	μg/g	0.52	0.005	<0.005	< 0.005	< 0.005	
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	
Moisture Content	%		0.1	16.2	19.1	20.6	
Surrogate	Unit	Acceptab	le Limits				
TCMX	%	50-1	140	50	93	58	
Decachlorobiphenyl	%	60-1	130	104	83	98	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T2(RPI) - Current

6236615-6236619 Results are based on the dry weight of the soil.

Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and DDE applies to the total of op'DDE and pp'DDE. Endosulfan applies to the total of Endosulfan I and Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Certified By:

Guideline Violation

AGAT WORK ORDER: 15T933789

PROJECT: 13-11-6138-1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

ATTENTION TO: David Hill

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6236617	FG34-C	T2(RPI) - Current	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	0.26	0.49

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 15T933789

ATTENTION TO: David Hill

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 13-11-6138-1 SAMPLING SITE:

SAMPLING SITE:							5	SAMPI	LED B	Y:Riley	Hallm	en			
			Trac	e Org	ganio	cs Ar	alysi	is							
RPT Date: Jan 15, 2015			С	UPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	Lin	ptable nits
		la la	,	·			Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Gamma-Hexachlorocyclohexane	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	106%	50%	140%	58%	50%	140%	52%	50%	140%
Heptachlor	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	128%	50%	140%	121%	50%	140%	114%	50%	140%
Aldrin	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	121%	50%	140%	100%	50%	140%	95%	50%	140%
Heptachlor Epoxide	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	111%	50%	140%	107%	50%	140%	95%	50%	140%
Endosulfan	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	119%	50%	140%	92%	50%	140%	87%	50%	140%
Chlordane	6236615	6236615	< 0.007	< 0.007	0.0%	< 0.007	115%	50%	140%	93%	50%	140%	108%	50%	140%
DDE	6236615	6236615	< 0.007	< 0.007	0.0%	< 0.007	117%	50%	140%	104%	50%	140%	104%	50%	140%
DDD	6236615	6236615	< 0.007	< 0.007	0.0%	< 0.007	118%	50%	140%	84%	50%	140%	81%	50%	140%
DDT	6236615	6236615	< 0.007	< 0.007	0.0%	< 0.007	118%	50%	140%	106%	50%	140%	102%	50%	140%
Dieldrin	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	108%	50%	140%	87%	50%	140%	87%	50%	140%
Endrin	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	91%	50%	140%	86%	50%	140%	86%	50%	140%
Methoxychlor	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	105%	50%	140%	123%	50%	140%	113%	50%	140%
Hexachlorobenzene	6236615	6236615	< 0.005	< 0.005	0.0%	< 0.005	111%	50%	140%	77%	50%	140%	68%	50%	140%
Hexachlorobutadiene	6236615	6236615	< 0.01	< 0.01	0.0%	< 0.01	110%	50%	140%	130%	50%	140%	73%	50%	140%
Hexachloroethane	6236615	6236615	< 0.01	< 0.01	0.0%	< 0.01	98%	50%	140%	86%	50%	140%	79%	50%	140%

Certified By:

Janes 1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 13-11-6138-1

SAMPLING SITE:

AGAT WORK ORDER: 15T933789

ATTENTION TO: David Hill

SAMPLED BY:Riley Hallmen

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	-		
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE

White Copy- AGAT

W

Date Issued: May 31, 2013

Contact: Company:

Address:

5835 Coopers / Mississau

ga, ON 4Z 1Y2 AGAT WO #: Lab Temperature: 15T Q 3378Q Lab Temperature: 14 2 4 1 7 Notes: Turnaround Time Required (TAT) Required*

Chain of Custody Record Client Information **GW** Ground Water **Legend Matrix** SW Surface Water Invoice To AGAT Quotation #: F6 34-D FG 23-D D-694-C Sediment F623-C Sample Identification Please note, if quotation number is not provided, 3-11-6138-1 client will be billed full price for analysis 5-7962650 notok David a restro encone P Paint 0 Soil $\underline{\underline{\circ}}$ 2 Report Information - reports to be sent to: Dec 12/14 Sampled Name: Name: Email: Email: Date Fax < PO Same: Yes 🛂 Sampled Time Sample Date/Time Matrix No 🗆 @ terrapide. Containers # of **Regulatory Requirements** (potable water intended for human consumption) ☐ Yes ☐ No Drinking Water Chain of Custody Form Soil Texture (check one) is this a drinking water sample? vCoarse Fine Regulation 153/04 (reg. 511 Amend.) Table ω If "Yes", please use the HOLD HOLD Res/Park ☐ Ind/Com ☐ Agriculture Site/Sample Information Samples Received By (Print Name and Sign): Comments Indicate one and Sign) www.agatlabs.com · webearth.agatlal Region Sewer Use Metals and Inorganics Is this submission for a Record of Site Condition? Storm Sanitary Indicate one Metal Scan P: 905.712.5100 · F: 905.712 Hydride Forming Metals Client Custom Metals ORPs: | B-HWS | CI- | CN-TYes □ EC ☐ FOC ☐ Cr+6- ☐ SAR ☐ NO₃/NO₂ ☐ N- Total ☐ Hg ☐ pH CCME None Prov. Water Quality Objectives (PWQO) Other (specify) Regulation 558 O N Nutrients: TP □ NH₃ □ TKN □ NO₂ □ NO₃/NO₂ \square NO₃ VOC: □ VOC ☐ THM BTEX CCME Fractions 1 to 4 **ABNs** PAHs Date Required (Rush surcharges may apply): Rush Surcharges Apply Rush TAT (please provide prior notification) Chlorophenols *TAT is exclusive of weekends and statutory holidays 1 Working Day 2 Working Days to 7 Working Days 3 Working Days **PCBs** Yellow Copy - AGAT Pink Copy - Client 1 7 Organochlorine Pesticides 7 TCLP Metals/Inorganics Sewer Use 2 2 2 3 3 3 Page 앜

Contact:

Company:

APPENDIX L

Summary of Site Remediation Plan

Trails of Collingwood, High Street & Telfer Road

Collingwood, Ontario

TERRAPROBE INC.

File No. 1-17-0918 Brampton Office

October 10, 2018

Trails of Collingwood 6 Leswyn Road Toronto, Ontario, M6A 1K2

Attention: Mr. David Ferracuti

RE: SUMMARY OF SITE REMEDIATION PLAN
TRAILS OF COLLINGWOOD, HIGH STREET & TELFER ROAD
COLLINGWOOD, ONTARIO

Dear Mr. Ferracuti:

This letter provides a summary of the process for conducting site remediation for the above development.

1.0 INTRODUCTION

Terraprobe has been requested by Mr. David Ferracuti to submit a scope of work for site remediation of the property located at High St & Telfer Road Collingwood, Trails of Collingwood, Ontario hereafter referred to as 'the Property'. The Property consists of approximately 8.1 hectares of vacant land, located east of High Street and north of Telfer Road in Collingwood. The Property is currently vacant with historical light agricultural land use as an orchard on the western portion of the Property. It is proposed to develop the Property for residential purposes. The development will consist of a number of townhouse and condominium blocks and single family residential lots. The development will include internal municipal road ways, a municipal park and a storm water management facility. Previous investigations and current Phase One and Phase Two Environmental Site Assessments (ESA) by Terraprobe indicate that surficial soil over much of the Property has been impacted as a result of pesticide use from the historical orchard operations. The Phase Two ESA identified only an exceedance of DDE (OC Pesticides) in soil. However, the review of previous investigations including Terraprobes report entitled "Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario," dated June 19, 2015 (Terraprobes Site Remediation Update Report) indicated that the surficial soil is contaminated by Selenium and Arsenic (Hydride Forming Metals), Lead (Metals), DDE, DDT, Chlordane and Dieldrin (OC Pesticides) in excess of the applicable Ministry of Environment Conservation and Parks (MECP) Standards (Table 2 residential standards). The approximate impact typically extends to 0.3m to 0.6 m below grade, with a few impacts reaching 0.9 m below grade. The Phase Two ESA identified that the

(905) 643-7560 Fax: 643-7559

groundwater on the Property is not contaminated and meets the applicable Ministry of Environment Conservation and Parks (MECP) Standards (Table 2 standards).

The results of the investigations indicate that there are approximately 48,000 cubic meters of impacted soil found on the Property. The soil volume is an estimate and may vary depending on confirmatory samples and depth of excavation due to the large area of the Property. Off-site disposal of the impacted soil is prohibitively expensive, particularly since the material can be safely managed on the Property.

Terraprobe understands that the Construction Management Plan is to develop the Property in three phases as Identified in Figure 1. Phase 1 involves the remediation of the soil indicated as the yellow area, Phase 2 involves the remediation of the soil in the blue area and Phase 3 involves the remediation of the soil in the green area. The Parkland Block area identified in Figure 2 will be utilized to stockpile the impacted soil from all three development phases. The Parkland Block will then undergo additional soil and groundwater investigation. A Risk Assessment (RA) will be conducted on the Parkland Block. A certificate of Property Use (CPU) and Record of Site Condition (RSC) can then be filed for the Parkland Block portion of the Property. The CPU will enforce the Risk Management Measures (RMM) proposed in the RA and the RSC can be filed once the CPU has been signed.

The Parkland Block portion of the Property that is proposed to be a park as well as any roads can then be transferred over to the Town of Collingwood once all three phases of the Construction Management Plan are carried out and an RSC is obtained on both the remediated portion of the Property and the Parkland Block portion of the Property.

2.0 SCOPE OF WORK

2.1 PROPOSED APPROACH TO SITE REMEDIATION

The ground water results meet the MECP Table 2 standards and the surficial soil is contaminated by Selenium and Arsenic (Hydride Forming Metals), Lead (Metals), DDE, DDT, Chlordane and Dieldrin (OC Pesticides) in excess of the applicable MECP Table 2 Standards. Thus, the proposed approach to site remediation will consist of removing all impacted soil from the entire Property with the exception of the Parkland Block where the contaminated soil will be used to backfill the area. The impacted soil on the Parkland Block will be managed with proper risk management measures and a Risk Assessment would be conducted. The conceptual approach to remediation and risk management will consist of the following:

 Development of a Verification Plan to confirm that all impacted soils are properly identified and removed. This will include a program of detailed sampling and chemical analysis during excavation to ensure that all impacted soil are properly identified and relocated to the risk management area beneath the park. The confirmatory sampling will verify the remediated portion of the Property.

- October 10, 2018 File No. 1-17-0918
- Development of a detailed Soil Management Plan including general operations, traffic control, dust and odour control, spills management, waste management, unknown or unexpected operation conditions, on-site soil management and imported soils requirements for the entire Property.
- Conduct a RA and develop RMMs on the Parkland Block. Once the Property is remediated and all the impacted soil is placed on the Parkland Block, the Parkland Block will undergo additional investigation to determine the extent of the contamination. A RA will be conducted and proper RMM will be identified and implemented. The RMMs could include a soft or hard cap to properly isolate the impacted soil. Once the RA is acknowledged a Certificate of Property Use (CPU) will be issued by the MECP. The CPU will summarize the site conditions and outline any potential restrictions to future property use and any requirements for Risk Management Measures (RMMs).

2.1.1 Development of Verification Plan

The Development Verification Plan will include a detailed review of the previous investigations and current Phase One and Phase Two ESAs completed for the Property. The contaminated soil identified will be stripped and moved to the proposed Parkland Block portion of the Property identified in Figure 2. Confirmatory soil samples will be collected for analysis of Metals, Hydride Forming Metals and OC Pesticides after the soil has been stripped, to confirm the remaining soil on the Property is no longer impacted. The samples are to be collected in a 25 m x 25 m grid pattern throughout the Property for each Phase of the development. The samples will be submitted for analysis at a CAEL accredited laboratory. Soil quality would be compared to MECP Table 2 Standards. If the confirmatory samples exceed MECP Table 2 standards, further excavation and additional sampling will be required.

A report summarizing the remediation results including the Certificate of Analysis (COA) and quality control from a CAEL accredited laboratory will be provided to confirm the remediation of the Property.

2.1.2 Development of a Soil Management Plan

The Soil Management Plan for the development of the Property including soil management, preventative and mitigation measures will be required to remove the impacted soil from the Property and placed on the Parkland Block area. The Soil Management Plan will include the following:

- **General Operations:** General Operations include a detailed plan for the property in regards to site security and fencing, hours of operation, health and safety plan, site boundaries, responsibility and reporting and monitoring and contingency measures.
- Traffic Control: Traffic Control includes a detailed plan for the Property in regards to security, entrances and exits, on-site parking, site regulations, responsibility and reporting and contingency measures.

- **Dust and Odour Control:** Dust and Odour Control includes a detailed plan for the Property in regards to dust and odour monitoring, minimizing dust generation, dust suppression, odour control measures, responsibility, reporting, and contingency measures.
- **Spills Management:** Spills Management includes a detailed plan for the Property in regards to liquid spills, soil spills, spills control kit, responsibility, reporting, and contingency measures.
- Waste Management: Waste Management includes a detailed plan for the Property in regards to soil waste, liquid waste, responsibility, reporting, and contingency measures.
- Unknown or Unexpected Operating Conditions: Unknown or Unexpected Operating Conditions includes a detailed plan for the Property in regards to identification of conditions and responsibility and reporting
- Soil Management: Soil Management includes a detailed plan for the Property in regards to onsite soil management, imported soils form a licenced pit or quarry or imported soils from nonlicenced sources, stockpiling and off-site soil management. These operations will be subject to abide any requirements set out in the RA and CPU.

The general requirements for the field work during the removal and transportation of impacted soil to the Parkland Block potion of the Property includes the following:

- Documentation of excavation depths
- On-Site monitoring will involve the following tasks for the on-Site Field Technician:
 - Monitoring of all soil excavation including but not limited to: soil movement to proposed location for contaminated soils and extent of excavation
 - o Monitoring of all soil movement including but not limited to: soil movement from the proposed location for containments to be stockpiled or moved off-Site.
 - o Monitoring of daily site activities.
- Collection of soil samples for confirmation sampling based on the area required for remediation.

The Soil Management Plans will be provided to the Town of Collingwood before commencing development.

2.1.3 Parkland Block - Risk Assessment, RSC & Risk Management Measures

The Parkland Block portion of the Property will require a Risk Assessment. A Risk Assessment is a scientific tool that can be used for the assessment and management of environmental contamination caused by historical, current or future activities at a site. Risk assessments also develop property specific standards (PSSs) (which are often less stringent than generic standards) that consider site-specific information (e.g., site characteristics, applicable exposure pathways and receptors) that is more relevant to

Terraprobe

the site than the assumptions used to develop generic site condition standards (SCSs). This PSS confers the same level of protection as the MECP generic SCS, but is specific to the RA site.

The RA consists of the following four steps:

- **Problem Formulation**: The problem formulation forms the basis of an RA where an understanding of site characteristics together with land use scenarios and environmental investigations are used to identify contaminants of concern (COCs), human and ecological receptors and potential exposure pathways for receptors located on and in the vicinity of the Site.
- Exposure Assessment: The exposure assessment involves the quantification of exposure to human and ecological receptors through complete exposure pathways. Through this assessment, exposure scenarios, exposure durations and receptor characteristics are compiled. This information is used to estimate a dose for all COCs for each receptor through each complete exposure pathway.
- **Toxicity Assessment**: The toxicity information for each COC is reviewed and exposure limits and/or dose-response information for the COCs are compiled. Toxicity reference values (TRVs) will be preferentially adopted from the MECP, unless scientific justification is available to use TRVs from other jurisdictions.
- **Risk Characterization**: The risk characterization stage integrates the exposure and toxicity assessments to identify if potential risks would be predicted at a site, the magnitude of any such risks, and the driving exposure pathways and routes. The risk characterization must also describe uncertainty surrounding the risk estimates, both qualitatively and, to the extent possible, quantitatively.

The Risk Assessment process requires detailed studies which must receive approval from the Ministry of Environment Conservation and Parks e (MECP). The detailed studies include the following:

- Phase One Environmental Site Assessment (Phase One ESA)
- Phase Two Environmental Site Assessment (Phase Two ESA)
- Phase Two Conceptual Site Model (CSM)
- Preparation of Risk Assessment (RA), including Pre-Submission Form (PSF) for the Block of Parkland portion of the Property
- Addressing comments from the MECP
- Certificate of Property Use (CPU) on the specified Block of Parkland portion of the Property
- Filing of Record of Site Condition (RSC) for the Block of Parkland portion of the Property

The entire Property will remain the current ownerships responsibility until all Phases of the Construction Management Plan are carried out and a Risk Assessment, CPU and RSC is conducted on the Parkland

Terraprobe

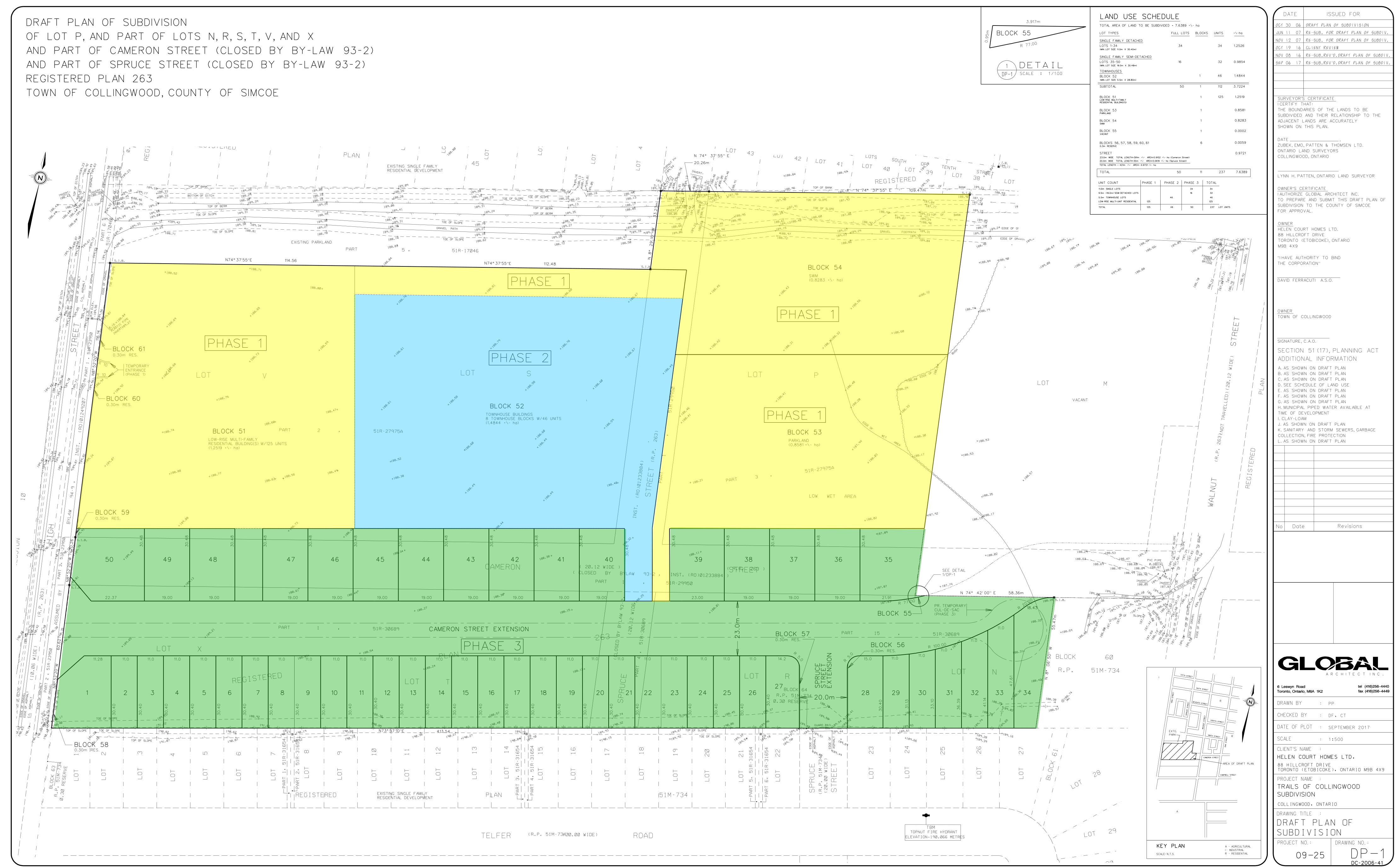
Block portion of the Property. The Parkland Block portion of the Property that is proposed to be a park can then be conveyed over to the Town of Collingwood once an RSC is obtained.

3.0 CLOSURE

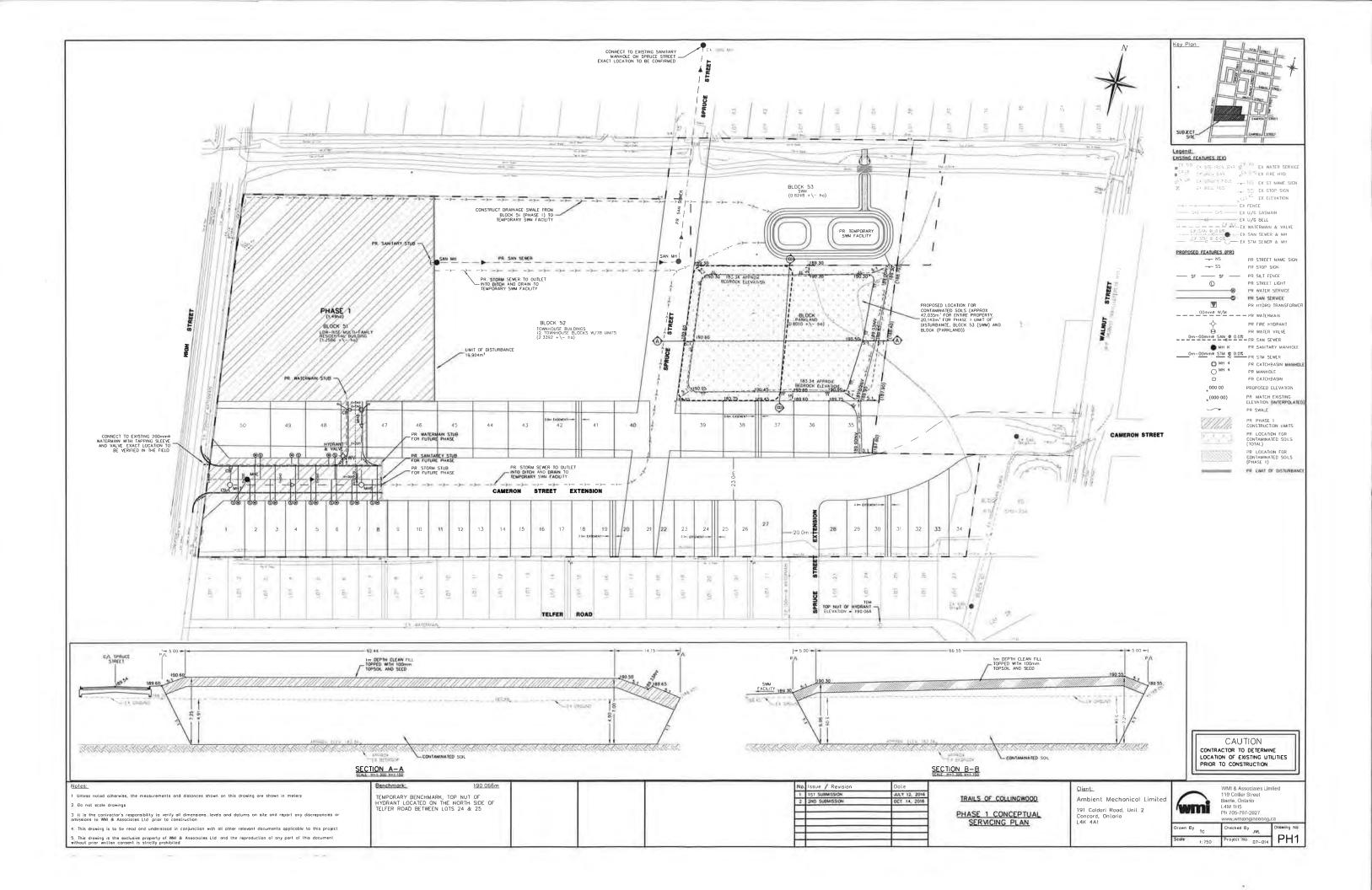
We trust this letter meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

Terraprobe Inc.


Alex Schittenhelm, B.Eng., E.I.T. Project Manager

Baker Wohayeb, M.A.Sc., P.Eng., QP_{RA} Principal


milmit

Attachments

Attachment 1 – Draft Plan of Subdivision Attachment 2 – Conceptual Servicing Plan

PATH NO.

APPENDIX M

Terraprobe Response to Draft Comments by

GHD Limited Dated July 19, 2019

(Reference No. 11176351)

TERRAPROBE INC.

Consulting Geotechnical & Environmental Engineering Construction Materials Engineering, Inspection & Testing

November 21, 2019

File No. 1-17-0918 Brampton Office

Mr. Mark Bryan, MCIP, RPP Community Planner Town of Collingwood P.O. Box 157 Collingwood, Ontario L9Y 3Z5

Attention: Mr. Bryan

RE: TERRAPROBE RESPONSE TO DRAFT COMMENTS BY GHD LIMITED DATED July 19, 2019 (Reference No. 11176351)

Dear Mr. Bryan:

Please find Terraprobe's responses to the draft comments made by the GHD Limited (GHD) in their letter entitled: "*Review of Conference Call Meeting Minutes, Trails of Collingwood*" dated July 19, 2019 which was prepared on behalf of Town of Collingwood. Terraprobe's responses are attached.

We trust this information meets with your current requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

Terraprobe Inc.

Alireza Malek, M.Sc., P. Geo., QP_{ESA}

Project Manager

R. Baker Wohayeb, M.A.Sc., P.Eng., $\mathrm{QP}_{\mathrm{RA}}$

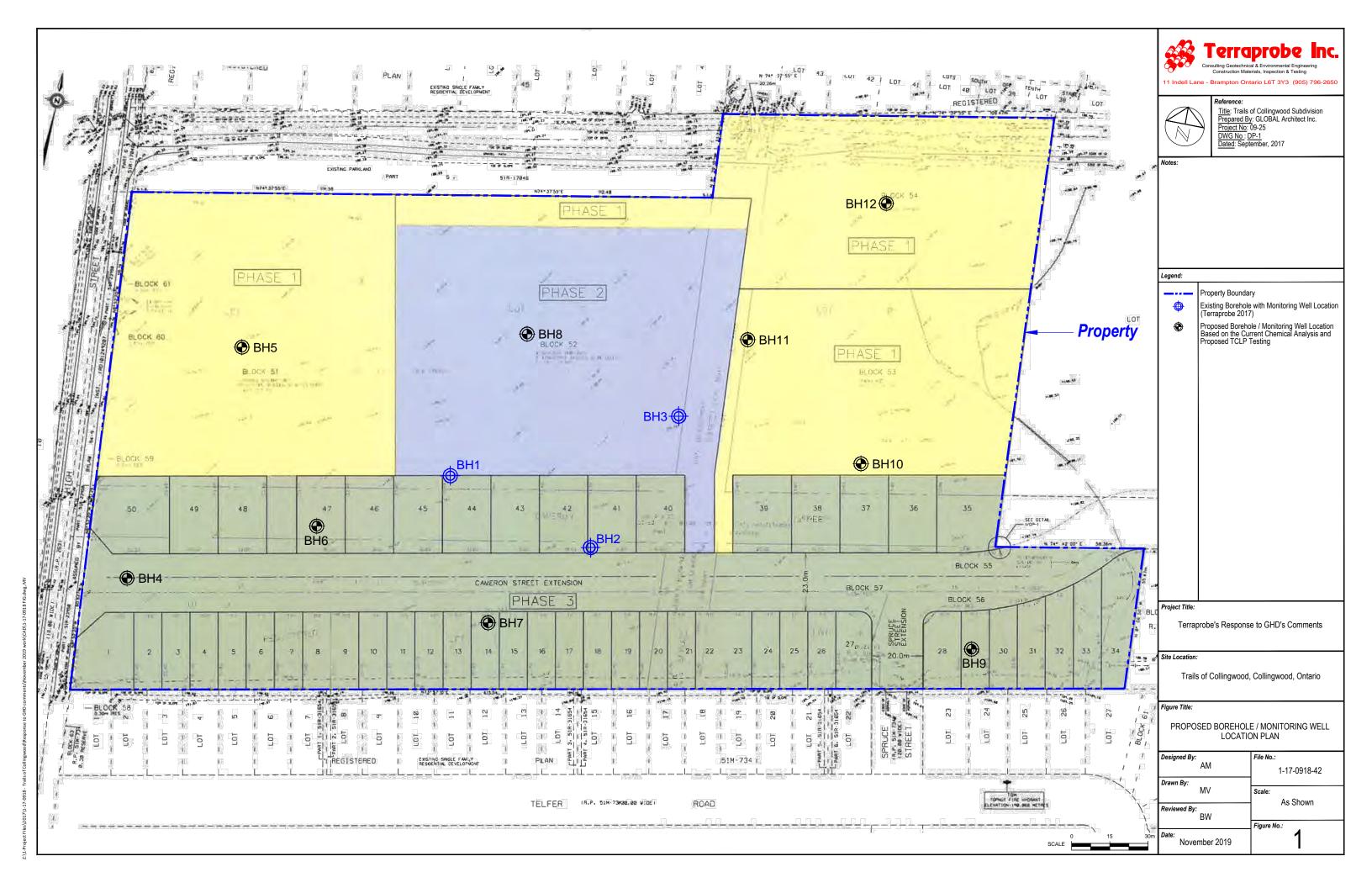
Principal

Attachments:

A: Terraprobe Response to GHD Draft Comments dated July 19, 2019

Figure: Borehole Location Plan

Item #	Comment by GHD in November 2018	Response by Terraprobe in 2018	Comment by GHD in July 2019	Response by Terraprobe in 2019
	"GHD Limited (GHD) was retained by the Town of Collingwood to complete		No further comment by GHD in July 2019	This item is a GHD commentary and no further
	a peer review of the proposed remediation plan for the Trails of Collingwood	, and the second		comment is requested from Terraprobe.
	development in Collingwood, Ontario (Property or Site). The Trails of Colling			
	property is located along the east side of High Street, just north of Telfer Road			
	in Collingwood, Ontario. The Property is presently vacant and is proposed for			
	residential development. The remediation plan for the Site was prepared by			
	Terraprobe on behalf of the Property owner, and is documented in a letter			
1 1	report dated April 13, 2018 entitled 'Summary of Site Remediation Plan –			
1	Trails of Collingwood, High Street & Telfer Road, Collingwood, Ontario'			
	(Remedial Plan). Other environmental reports for the Property that were			
	included in the peer review include a draft Phase One Environmental Site			
	Assessment (dated May 1, 2018), a draft Phase Two Environmental Site			
	Assessment (dated May 23, 2018), and a letter report entitled 'Cost Estimate			
	of Site Remediation Update', dated June 19, 2015. A list of the reports			
	reviewed by GHD is included in Attachment A."			
	"The Property consists of approximately 8.1 hectares of vacant land that was	Acknowledged. The municipal roadways, park and stormwater management	No further comment by GHD in July 2019	This item is GHD understanding of the
	historically used for agricultural purposes with an orchard reportedly located	(SWM) facilities will be conveyed to the Town of Collingwood.	Two further comment by GTID in July 2019	development proposal and no further comment is
	on the western portion of the Property. It is proposed that the Site be	(5 WW) facilities will be conveyed to the Town of Connigwood.		required from Terraprobe.
	developed for residential purposes including townhouse and condominium			required from Terraprooc.
	blocks, as well as some single family residential lots. Some land will also be			
	dedicated for municipal roadways, a park, and stormwater management			
	facilities. A drawing that shows the various development areas for the Site,			
	taken from the Terraprobe letter report dated April 13, 2018, is included in			
	Attachment B."			
	"The Terraprobe environmental reports documented that surficial soils across	Acknowledged	No further comment by GHD in July 2019	This item is GHD summary understanding of the
	most of the Site are impacted with arsenic, as well as the pesticides DDT and			soils impact reports from Terraprobe and no
	DDE at concentrations exceeding the Ministry of the Environment,			further comment is required.
	Conservation and Parks (MECP) Standards for residential land use, as			
	provided on Table 2 in the document entitled, 'Soil, Ground Water and			
3	Sediment Standards For Use Under Part XV.1 of the Environmental			
	Protection Act, effective July 1, 2001' (MECP Standards). These soil impacts			
	are related to the historic agricultural land use (orchard) at the Site. There are			
	also a few exceedances of other parameters in soil as well, such as selenium,			
	lead, chlordane, and dieldrin. Terraprobe estimates that approximately 48,000			
	cubic metres of impacted soil is located on the Property."			
	"In general terms, the remediation plan for the Site involves the removal of	Acknowledged. A Record of Site Condition (RSC) will be filed based on	No further comment by GHD in July 2019	This item was addressed to GHD satisfaction and
	impacted surficial soils from the areas that will be developed for residential	generic standards after remediation for the entire Property including the		no further comment is required from Terraprobe
		following:		
	lands that will become parkland. A verification soil sampling program would	Residential lands		
	be undertaken on the residential lands to confirm that the MECP Standards for			
	residential land use are met. A Record of Site Condition would then be filed	Stormwater management facility lands		
4		An RSC will be filed based on the Risk Assessment (RA) for:		
4	area after which a Certificate of Property Use and Record of Site Condition	• The Park		
	will be prepared. The parkland, as well as the roads within the residential area,			
	would ultimately be transferred to the Town of Collingwood. The remediation	of the Property and conveyed to the Town of Collingwood.		
	plan does not specify what activities will be completed on the stormwater			
	management facility lands, or if these lands are being transferred to the			
	Town."			


ltem #	Comment by GHD in November 2018	Response by Terraprobe in 2018	Comment by GHD in July 2019	Response by Terraprobe in 2019
5	"GHD completed this peer review on behalf of the Town of Collingwood in light of their potential future ownership of the parkland area and municipal roadways. The peer review included an evaluation of the proposed Remedial Plan. GHD did not complete a technical review of the various environmental reports that have been prepared for the Site for completeness or compliance with the requirements of Ontario Regulation 153/04. The MECP will undertake a detailed review of the reports during the process of completing the Risk Assessment and filing of the Record of Site Condition, and the Owner of the Property will have to address those comments. GHD relied on the information presented in the reports as being factual in completing the peer review. GHD did not independently verify any of the information presented in the reports."	Acknowledged. The Ministry of the Environment, Conservation and Parks (MECP) will undertake a detailed review of the environmental reports prepared by Terraprobe during the process of completing the RA and filing of the RSC. The Town of Colling and their peer reviewer will be updated and copied on reports submissions.	No further comment by GHD in July 2019	This item is addressed and no further comment from Terraprobe is required.
6	"GHD's comments on the Remedial Plan are presented in the following sections of this letter are organized into the following areas: Potential leaching from soils in the parkland area Groundwater characterization Dewatering and constructability of the parkland area Future use of the parkland area Verification sampling plan Excess Soils Management Regulatory Proposal/Policy and phasing Town participation in development of Risk Management Measures and Certificate of Property Use	Acknowledged. These comments have been addressed individually in the following sections.	No further comment by GHD in July 2019	This item is addressed and no further comment from Terraprobe is required.
7	"Potential Leaching from Soils to Groundwater" The Remedial Plan assumes that the impacted soil placed into the parkland area will not leach arsenic, DDE, DDT, or other contaminants into groundwater at concentrations that would be of concern. While it is recognized that a Risk Assessment will be completed for the parkland area, the Town should not become the owner of lands where contaminants are migrating off site at concentrations in excess of the MECP Standards. In the documents reviewed by GHD there was no reference to any studies or assessment of leaching potential for the soils being placed onto the parkland area. GHD notes that the Remedial Plan involves the placement of the impacted soils directly on bedrock, at an elevation of approximately 183.34 metres above mean sea level (AMSL). The groundwater table in the parkland area exists at an approximate elevation of 188.7 metres AMSL. A scientific assessment needs to be completed to confirm that contaminants will not leach from the impacted soils at concentrations that would create an unacceptable impact to groundwater, on either the parkland area or downgradient of the parkland area.	A Phase Two Environmental Site Assessment (Phase Two ESA) will be conducted on the parkland area which will consist of advancing boreholes and monitoring wells. Soil and ground water quality will be assessed through the Phase Two ESA. If the chemical analysis results indicate that the ground water is impacted, then the RA will assess the ground water impacts and recommend a Risk Management Measure (RMM) to eliminate the potential of off-site migration.	testing to be prepared and approved by the town and peer reviewer prior to undertaking sampling and chemical testing. In addition, GHD recommended a comprehensive groundwater	During the subsurface investigations for the Phase Two ESA, borehole locations will be selected in close proximity to the worse scenario of previous soil sample locations and will be tested for leaching potential study. To address the comment about groundwater monitoring and sampling, it should be noted that a groundwater sampling program will be conducted for the groundwater quality prior to possession of the Parkland by the Town. The above actions will address GHD comments and suggestions. No further commentary frrom Terraprobe is required.
8	"Groundwater Characterization within the Parkland" The draft Phase Two Environmental Site Assessment identified that only three groundwater monitoring wells have been installed at the Site. These monitoring wells are centrally located within the Site. In GHD's opinion a more complete characterization of groundwater quality across the Site is needed in order to confirm that the lands (residential development land, roadways, and SWM facility) meet the MECP Standards for residential land use.	Advancing three (3) monitoring wells at the Property as a part of Terraprobe's previous Phase Two Environmental Site Assessment meets the minimum requirements of the Ontario Regulation 153/04. If the MECP requests that additional monitoring wells are required, Terraprobe will follow as per the MECP's request.	GHD recommended that a minimum of twelve (12) monitoring wells to be installed across the Site to further characterize soil and groundwater quality across the Property.	In total, nine (9) boreholes will be drilled and instrumented with groundwater monitoring wells (Three from previous investigation; in total 12). A proposed borehole locations plan is attached for review. These actions are per GHD recommendations and address same.

Item #	Comment by GHD in November 2018	Response by Terraprobe in 2018	Comment by GHD in July 2019	Response by Terraprobe in 2019
9	"Dewatering" As discussed above, impacted soils from the residential lands, roadways, and possible the SWM facility will be placed on lands that will become a park. The proposed Remedial Plan involves removal of existing soils in the parkland area, to the top of bedrock. This excavation will extend approximately 4.5 metres into the groundwater table in the parkland area. The remedial plan does not discuss dewatering of the parkland area or the approach to placement of soils in the parkland area. It is important that dewatering be properly completed including the management of recovered water, and that the soil be properly placed and compacted on the parkland area such that unacceptable settlement of the lands does not occur in the future.	Additionally, a hydrogeological report will address if short-term dewatering is required based on the hydrogeological investigation. The soil will be properly placed and compacted on the parkland area and an engineering fill report will be prepared by a professional Geotechnical Engineer regarding the potential settlement and will include the compaction, density and grain size results.	No further comment by GHD in July 2019	The original GHD comment was addressed and no further comment is required.
10	"Parkland Construction and Future Use" As proposed, the parkland area will contain approximately 7 metres of primarily organic topsoil. While unlikely, it should be confirmed that methane generation will not be an issue once all of the topsoil has been placed in this area.	As part of the proposed RA that will be conducted on the Site, Terraprobe will issue a Methane Management Plan.	No further comment by GHD in July 2019	Original GHD request was addressed and no further comment is required.
11	"Parkland Construction and Future Use" As noted above settlement of the parkland area could be a concern. The soils will need to be placed and compacted in a manner that reduces settlement to the extent practical. Provisions will need to be in place for future repair to the parkland area to address settlement conditions.	The soil will be properly placed and compacted on the parkland area and an engineering fill report will be prepared by a professional Geotechnical Engineer regarding the potential settlement and will include the compaction, density and grain size results.	No further comment by GHD in July 2019	The original GHD concern was addressed and no further comment is required.
12	"Parkland Construction and Future Use" The Remedial Plan includes a 1 metre cap of clean soil over the parkland area. If the Town wished to incorporate any deep rooted trees into the landscaping of the park, the clean cover will need to be 1.5 metres in thickness. GHD believes this will also be a requirement of the MECP.	Acknowledged, the thickness of the clean soil cap over the parkland area will be changed from 1.0 metre to 1.5 metre to accommodate any future deep rooted trees that may be planted in the parkland area.	No further comment by GHD in July 2019	The original GHD request was addressed and no further comment is required.
	"Parkland Construction and Future Use" Some form of financial assurance should be put in place for future monitoring and maintenance of the parkland as part of the transfer agreement.	maintenance of the parkland. The Financial assurance will be used as part of the transfer agreement.		The original GHD recommendation was addressed and no further comment is required.
	"Verification of Sampling" The Remedial Plan States that a Verification Plan will be developed. The Town should undertake a review of this plan and the Town's comments should be incorporated as appropriate.	Acknowledged, the Remedial Plan will be provided to the Town for review.	GHD recommended that a comprehensive verification sampling plan to be submitted to the Town and Peer reviewer in advance for approval.	As discussed in the previous correspondence, a comprehensive verification sampling plan (Remedial Plan) will be submitted to the Town for review. This addresses the GHD recommendation.

Item#	Comment by GHD in November 2018	Response by Terraprobe in 2018	Comment by GHD in July 2019	Response by Terraprobe in 2019
	"Excess Soils Management Regulatory Proposal/Policy and Phasing"		GHD insisted of initiation of a communication	As discussed previously, Terraprobe will
	The MECP has recently been focused on the management of excess soils generated at construction projects in the Province. A draft regulation has recently been prepared and a number of information sessions on this topic have been completed by the MECP. The intent of the draft regulation is to control the movement of excess soils between properties, and ensure that these soils are properly characterized and that the movement of such soils is tracked and monitored. The draft regulation is focused on situations where excess soils are moved from one property to another, and as such are not applicable to the proposed remedial plan. It is GHD's understanding that the draft regulation does not control the movement of soils within a property. It is recommended that the Developed confirm with the MECP that the proposed movement of soils within the Property, and the placement of impacted soils in the parkland area, are acceptable prior to initiation of the remedial plan. Consideration of the proposed excess soil management regulatory proposal will be very important in the phasing of the proposed development (subdivision of lands) as discussed below."	PSF and will ensure that the MECP will be informed with the placement of impacted soils in the parkland area as part of the remedial plan. A soil	with the MECP in regards of the proposed remedial action plan in advance to obtain approval from the Ministry.	communicate the following items with the MECP
16	"Excess Soils Management Regulatory Proposal/Policy and Phasing" The remedial plan identifies that the movement of soils from the residential lands, roadways, and SWM facility will be conducted in phases. The phasing of the remediation and severance of the lands will need to be carefully coordinated. Once severed the draft regulations will need to be considered for any movement of soils, along with existing regulatory requirements. It is recommended that no severance of land be undertaken until the Record of Site Condition for the land has been filed and accepted by the MECP. The Town's requirements for land severance also need to be considered.	Acknowledged, the RSC will be filed for Roadways, Parkland, and the SWM facility prior to severance of these lands. Terraprobe understands as per the comments provided by GHD that severance refers to the subdivision of the land, the creation of registered parcels and the conveying of lands to their respective proposed owners. There is to be no movement of soil between properties after the RSC has been filed.	· · · · · · · · · · · · · · · · · ·	The original GHD comment has been addressed and no further comment is required.
17	"Excess Soils Management Regulatory Proposal/Policy and Phasing" It is GHD's understanding that the MECP has not been involved at the Site, or consulted about the Remedial Plan. In our opinion, it would be prudent for the property Owner to consult the MECP concerning the remedial actions to be undertaken at the Site.	application. Since the soil and ground water investigation will cover the	No further comment by GHD in July 2019	The original GHD comment is required and no further action is required.
18	"Town Participation in Development of Risk Management Measures and Certificate of Property Use" It is intended that the Town ultimately take ownership of the municipal roadways and the parkland area. GHD is not aware of the future ownership plans for the stormwater management facility. The future owner of these lands will be required to comply with any risk management measures specified in the Risk Assessment, as well as the Certificate of Property Use. As such, the Town must be involved in the preparation of these documents prior to submission to the MECP to ensure that any ongoing management requirements are reasonable, and acceptable to the Town. This will also allow for an estimate of future costs for management of lands being transferred to the Town.	(SWM) facilities will be conveyed to the Town of Collingwood. The proposed RMMs will be sent to the Town for review before the submission to the MECP.		The original GHD comment has been acknowledged with no further GHD comment, therefore no further comment is required.
	"Town Participation in Development of Risk Management Measures and Certificate of Property Use" With regard to the municipal roadways, the Remedial Plan specifies that these lands be remediated to residential land use standards and that a Record of Site Condition be filed. Under this approach, there will be no ongoing management requirements for these lands.	Acknowledged. Ongoing managements are not required for the municipal roadways and SWM facility after filing the RSC of them.	II ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Original GHD comment is addressed. No further comment from Terraprobe is required.

Item #	Comment by GHD in November 2018	Response by Terraprobe in 2018	Comment by GHD in July 2019	Response by Terraprobe in 2019
20	The soil management plan (Section 2.1.2 of the Remedial Plan) should address stormwater management during remedial activities.	Acknowledged. The stormwater management will be addressed during the remedial activities.	No further comment by GHD in July 2019	No comment from Terraprobe
21	The draft Phase One ESA does not include the lands identified as Bock 53 and Block 54. It is proposed that these lands be developed with the SWM Facility and the park, respectively. A Phase One ESA will be needed to facilitate completion of a RSC for these lands. Any additional APECS identified in the Phase One ESA on these lands will need to be investigated and addressed.	Our Draft Phase One ESA entitled 'Phase One Environmental Site Assessment, Trails of Collingwood – High Street and Telfer Road, Collingwood, Ontario' dated May 1, 2018 identifies in Figure 2 that the entire subject Property, including Block 53 and Block 54 have been included in Attachment B. Therefore, with regards to the RSC Property, since Block 53 and Block 54 have been included in the Phase One ESA study, the potential of any additional APECs has been clearly identified.	No further comment by GHD in July 2019	Original GHD comment and request has been met. No further comment from Terraprobe is required.
22	Based on the soils data provided to GHD, the extent of soils impact to depth at many locations has not been determined. There is risk that the actual volume of impacted soil is greater than estimated.	Based on Terraprobe's Draft Remediation Plan entitled 'Summary of Site Remediation Plan, Trails of Collingwood, High Street & Telfer Road, Collingwood, Ontario' dated October 10, 2018, the approximate depth of impacted soils was identified to be 0.9 m in some areas as stated in the Remedial Plan in Section 1.0: " The approximate impact typically extends to 0.3 m to 0.6 m below grade, with a few impacts reaching 0.9 m below grade." Additionally, Terraprobes document entitled 'Cost Estimate of Site Remediation Update, Trails of Collingwood, Collingwood, Ontario' dated June 19, 2015, Attachment 3 shows the depths of the impacts that have been identified on the Property and confirms that impacts exist at 0.9 m below grade in localized areas. Considering the soil impact depth at 0.9 m will be a conservative approach and as such, the actual depth to impacted soils may vary and will be determined during the Remedial Activities at the Site. An earthworks contractor will be instructed to excavate the surficial layer and a confirmatory soil sampling program will be conducted. The soil samples will be submitted for chemical analysis and if it is identified that the soil samples exceed the Applicable Site Condition Standards, they will be considered interim samples and the earthworks contractor will be instructed to excavate deeper. Once the chemical analysis of the soil samples indicates that the soil meets the Applicable Site Condition Standards, this will conclude the confirmatory sampling program and a soil letter report will be prepared. The Remedial Plan and Attachment 3 as noted above are attached as Attachment C and Attachment D respectively.	No further comment by GHD in July 2019	Original GHD comment and concern was addressed. No further response is rquired.

Item #	Comment by GHD in November 2018	Response by Terraprobe in 2018	Comment by GHD in July 2019	Response by Terraprobe in 2019
	It is estimated in the Summary of Site Remediation Plan that 48,000 cubic	Based on the Terraprobe's letter entitled 'Summary of Site Remediation and	No further comment by GHD in July 2019	Original GHD coment and concern was addressed.
	metres of soil are impacted. The volume of soil that can be placed in the	Record of Site Condition Process, Trails of Collingwood Development,		No further response from Terraprobe is required.
	parkland areas is reported to be 42,035 cubic metres, as shown on drawing	Collingwood, Ontario' dated October 24, 2016, the approximate extent of the		
	PH1.	soil impacts are identified to range between a depth of 0.3 to 0.6 metres		
		below grade and the volume of impacted soils is approximated to 42,000 m3.		
		Based on Terraprobe's Draft Remediation Plan entitled 'Summary of Site		
		Remediation Plan, Trails of Collingwood, High Street & Telfer Road,		
		Collingwood, Ontario' dated October 10, 2018, the approximate depth of		
		impacted soils was identified to be 0.9 m in some areas as stated in the		
		Remedial Plan in Section 1.0: "The approximate impact typically extends		
23		to 0.3 m to 0.6 m below grade, with a few impacts reaching 0.9 m below		
		grade." The 0.9 metres depth changed the average depth to impacted soils for		
		the site, and as such, changed the approximated volume of impacted soils		
		from 42,000 m3 to 48,000 m3. However, these quantities are approximate		
		and the actual quantity will be determined when the Remedial Activities are		
		conducted at the Site. As a provision, the parkland area that will be filled will		
		be designed with a buffer so that it is capable of handling more soil quantity		
		should the quantity turn out to be greater than 48,000 m3. Additionally,		
		impacted soil materials that can no longer fit in the allotted parkland area		
		will be hauled off-site to a licensed disposal facility.		
			N. C. I. CHE. I. I. 2010	lo : : . tours
24		Acknowledged. The Town of Collingwood will be consulted and updated on	No further comment by GHD in July 2019	Original GHD recommendation was
		the project progress		acknowledged. No further response from
	Verification Plan, Soil Management Plan, etc.) be provide at the Town's			Terraprobe is required.
	request.			
	"			1

