

Enhancing our communities

50 Saunders Street

PRELIMINARY STORMWATER MANAGEMENT REPORT

Lotco II Limited

Document Control

File: Prepared by: Prepared for:

119106 Tatham Engineering Limited

115 Sandford Fleming Drive,

Suite 200

Collingwood, Ontario

Date: L9Y 5A6

December T 705-444-2565 **tathameng.com**

Lotco II Limited

24 Executive Place
Kitchener, Ontario N2G 3W5

Authored by:	Reviewed by:
Davi lule	D. B. N. T. T. VIIGGER TO BOUNCE OF ONTE
Avneet Button, M.A.Sc., P.Eng.	Daniel Twigger, B.Sc.Eng., P.Eng.
Intermediate Engineer	Senior Engineer, Group Leader

Disclaimer	Copyright
The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and Tatham Engineering Limited undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.	This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of Tatham Engineering Limited.

Issue	Date	Description
1	December 11, 2019	Draft Plan Submission

i

Document Contents

1	Intr	oduction
2	Site	• Description2
2.1		Site Location
2.2		Site Conditions
2.3	•	Subsurface Conditons
3	Pro	posed Development3
4	Exis	sting Drainage Conditions4
5	Sto	rmwater Management Plan5
5.1		Proposed Drainage Conditions
5.2		
		Water Quantity Control6
5.3		Water Quality Control
5.4	-	Stormwater Conveyance
6	Silt	ation and Erosion Control10
7	Sun	nmary11
		•
Tab	oles	
Tak	ble 1	: Overall Peak Flow Summary6
Tak	ble 2	: 50 Saunders Street Peak Flow Summary
Tak	ble 3	: On-site Dry Pond Stage-Storage-Discharge Summary8
Tak	ble 4	: Overland Flow Summary 9
Fig	ures	
Fig	jure :	1: Site Location Plan
Fig	jure :	2: Overall Servicing Plan13

Appendices

Appendix A: Overall Hydrologic Analysis

Appendix B: Modified Rational Method Calculations

Appendix C: On-Site Dry Pond Stage-Storage-Discharge Tables

Appendix D: Water Quality Calculations

Appendix E: Conveyance Calculations

1 Introduction

Tatham Engineering Limited has been retained by Lotco II Limited to prepare a Preliminary Stormwater Management Report in support of Draft Plan Approval for the proposed 50 Saunders Street residential development in the Town of Collingwood. The objective of this report is to address the internal and external servicing requirements related to stormwater management associated with this development.

Several other reports as well as engineering drawings have been prepared in conjunction with this report in support of the proposed residential development and are summarized below:

- Natural Hazards Background prepared by Tatham Engineering Limited (October 15, 2019);
- Pre-Consultation Servicing Assessment prepared by Tatham Engineering Limited (August 2, 2019);
- Servicing and Earthworks Assessment prepared by C.C. Tatham & Associates Ltd. (May 8, 2018);
- Servicing Assessment prepared by Tatham Engineering Limited (June 14, 2019);
- Functional Servicing Report prepared by Tatham Engineering Limited (November 14, 2019);
 and
- Traffic Impact Brief prepared by Tatham Engineering Limited (November 14, 2019).

2 Site Description

2.1 SITE LOCATION

The subject property consists of approximately 3.89 ha of undeveloped land and is legally described as Lots R1, R2 and part of R3, registered plan 446, geographic Township of Nottawasaga, now in the Town of Collingwood, County of Simcoe. The site is bound on the east by Saunders Street, on the south by Poplar Sideroad, on the west by the Mountaincroft Subdivision and on the north by the St. Mary's Elementary Catholic School. Figure 1, included in the rear of this report, illustrates the location of the property in the Town of Collingwood. The site is currently vacant and mostly tree covered.

2.2 SITE CONDITIONS

The existing grading of the site generally slopes from south to north at an average gradient of 0.9% as detailed by the topographic survey of the site completed by Rudy Mak Surveying Ltd. dated June 28, 2017. The site is vacant with vegetation ranging from trees to brush.

The site is currently designated Low Density Residential in the Official Plan which allows for the proposed development.

2.3 SUBSURFACE CONDITONS

A geotechnical investigation, submitted under separate cover, was completed by Peto MacCallum Ltd. dated July 2017 and summarized the subsurface conditions as follows:

- 150 to 300 mm of sandy topsoil;
- 1.4 to 2.9 m of sand; and
- layered clay and silt from 1.4 to 2.9 m deep to termination of the borehole at 5 m deep.

The above noted geotechnical investigation established groundwater levels at 1.1 to 1.2 m below existing grade with a gradient following the topography sloping from south to north.

3 Proposed Development

The proposed development features a 20 m public right-of-way (ROW) crescent street with two intersections with Saunders Road (the north intersection aligns with Mary Street). The development will feature 64 single family detached lots fronting either the proposed crescent road or Saunders Street with a park block and SWM block in the centre of the development. Most of the lots will have frontages that are 12.2 m and a majority of the lots are 32 m deep. The proposed development is shown on the attached Overall Servicing Plan, Figure 2, which is included at the end of this report. The proposed development also features an approximate 8.76 m block along its south extent to facilitate a possible future road widening of Poplar Sideroad.

4 Existing Drainage Conditions

Existing site topography, ground cover, land use and drainage patterns were established through site visitation, interpretation of available topographic maps, aerial photographs, and a site topographic survey. An Existing Conditions Drainage Plan (Drawing DP-1) illustrating the existing drainage conditions across the site and in the surrounding area is enclosed for reference.

The existing properties along Garbutt Crescent that back onto the subject property were designed to drain rear to front and to Garbutt Crescent and the Mountaincroft Subdivision Stormwater Management Facility (SWMF). However, to match existing grade at the property line shared with the subject property, a slope draining onto the subject property was created on the neighbouring lots. As such, approximately 6 m of the neighbouring lots within the Mountaincroft Subdivision drains overland as sheet flow onto the subject property.

As previously noted, the subject property generally slopes from south to north at an average gradient of 0.9%. Runoff from the subject property drains to Saunders Street and its storm sewer constructed as part of the South Collingwood development. The storm sewer runs north on Saunders Street to Findlay Drive, then east on Findlay Drive to the South Collingwood development stormwater management facility (SWMF). The South Collingwood development SWMF was sized to overcontrol post development peak flows discharged downstream to the Oak Street Canal to levels less than pre-development to prevent potential negative impacts associated with development downstream.

While the SWMF's contributing drainage area includes 50 Saunders Street it was sized to accommodate existing (undeveloped) flows from the site. Similarly, the existing storm sewers on Saunders Street and Findlay Drive draining to the SWMF were sized to convey the existing (undeveloped) runoff generated during the 1:5-year design storm from 50 Saunders Street to the SWMF. During this design storm, the storm sewer was designed to convey 205 L/s from 50 Saunders Street.

5 Stormwater Management Plan

50 Saunders Street is located between the Mountaincroft subdivision and the South Collingwood development. As such, the stormwater management plans for each development were reviewed to assess options that address the stormwater management requirements of the 50 Saunders Street residential development.

As part of our Pre-Consultation Servicing Assessment (August 2019), it was determined that the South Collingwood development SWMF as designed provides sufficient water quantity and quality control to accommodate the additional flows generated from the development of 50 Saunders Street. No improvements are required to the SWMF to accommodate the contemplated development.

Similarly, the existing Saunders Street and Findlay Drive storm sewers were reviewed and it was determined that they do not have sufficient conveyance capacity to accommodate the additional flows generated from the contemplated development. The uncontrolled 1:5-year design flow from the 50 Saunders Street development is 528 L/s. The storm sewers were designed to convey approximately 205 L/s from 50 Saunders Street during the 1:5-year design storm.

Through the Pre-Consultation Servicing Assessment, the preferred SWM strategy for the subject site was identified, which includes constructing an on-site dry pond to control the minor storm (up to and including the 1:5-year design storm) peak flows to the available capacity of the storm sewer along Saunders Street and utilizing the available storage capacity in the South Collingwood development SWMF to provide the requisite water quantity control for the site runoff from the major storm events. Similarly, the available storage in the South Collingwood development SWMF will be utilized to provide the requisite water quality control for the site.

5.1 PROPOSED DRAINAGE CONDITIONS

The proposed drainage conditions for the subject site are illustrated on the Post Development Drainage Plan (Drawing DP-2) enclosed. The proposed drainage conditions are summarized as follows:

- The runoff from the slope draining onto the subject property from the neighbouring lots will be collected and conveyed to the internal road network and an internal storm sewer network in the 50 Saunders Street development;
- Approximately 0.78 ha of the 50 Saunders Street residential development will drain overland directly to Saunders Street and the Saunders Street storm sewer;

- The remainder of the 50 Saunders Street development (3.35 ha including the external drainage area) will be serviced by an internal storm sewer network draining to a dry pond SWMF in the centre of the development;
- The dry pond SWMF will provide the requisite water quantity control to reduce the discharge from the 50 Saunders Street development during minor storm events (up to and including the 1:5-year design storm) below 205 L/s (allowable storm sewer capacity); and
- All runoff generated within the 50 Saunders Street residential development will drain to the South Collingwood development SWMF.

5.2 WATER QUANTITY CONTROL

As mentioned, the South Collingwood development SWMF as designed provides sufficient water quantity control to accommodate the additional flows generated from the site with no improvements to the SWMF. A hydrologic analysis was completed to confirm the existing South Collingwood development SWMF will provide the requisite water quantity control for its contributing drainage area considering the 50 Saunders Street development. Specifically, the hydrologic model prepared in support of the South Collingwood development was revised to include the development of 50 Saunders Street as proposed and the model results were compared against the original design criteria. The results of the revised hydrologic analysis are included in Appendix A for reference and summarized in Table 1.

Table 1: Overall Peak Flow Summary

STORM EVENT	PRE-DEVELOPMENT PEAK FLOW (m³/s)	EXISTING PEAK FLOW (m³/s)	PROPOSED PEAK FLOW (m³/s)
25 mm	0.052	0.048	0.051
1:2-year	0.153	0.087	0.146
1:5-year	0.249	0.163	0.245
1:10-year	0.324	0.229	0.318
1:25-year	0.429	0.319	0.404
1:50-year	0.512	0.380	0.471
1:100-year	0.598	0.444	0.532
Regional	1.164	1.068	1.111

A comparison of the proposed peak flow rates against the target pre-development flow rates demonstrates that the as constructed South Collingwood development SWMF will provide the requisite water quantity control for its contributing drainage area including the 50 Saunders Street development.

As the existing Saunders Street and Findlay Drive storm sewers do not have sufficient conveyance capacity to accommodate the additional flows generated from the site, an on-site dry pond SWMF will be constructed to limit the total discharge from the development to the design capacity of the storm sewer (205 L/s) during minor storm events (up to and including the 1:5-year design storm). Runoff from major storm events exceeding the capacity of the storm sewer will drain overland via the road network.

To control the minor storm event peak flows leaving the site, an on-site dry pond with a storage volume of 627 m³ and a 200 mm diameter storm sewer outlet is proposed. A hydrologic analysis was completed to confirm the proposed on-site dry pond will provide the requisite water quantity control. Specifically, modified rational method calculations were completed to determine the required storage volume and outlets controls needed to restrict flows leaving the site to the design capacity of the Saunders Street storm sewer. The modified rational method calculations are included in Appendix B and the results of the analysis are summarized in Table 2.

Table 2: 50 Saunders Street Peak Flow Summary

STORM EVENT	UNCONTROLLED PEAK FLOW (m³/s)	DRY POND DISCHARGE (m³/s)	TOTAL PEAK FLOW (m³/s)
1:2-year	0.076	0.067	0.143
1:5-year	0.100	0.080	0.179
1:10-year	0.115	0.087	0.202
1:25-year	0.148	0.129	0.277
1:50-year	0.179	0.189	0.368
1:100-year	0.205	0.244	0.449

As demonstrated in the table above, the proposed on-site dry pond SWMF will restrict the discharge from the 50 Saunders Street development below 205 L/s during minor storm events (up to and including the 1:5-year design storm).

The on-site dry pond stage-storage-discharge tables are provided in Appendix C for reference and the on-site dry pond water levels, storage volumes and discharge rates during the design storms are presented in Table 3.

 STORM EVENT
 STAGE (m)
 STORAGE (m³)
 DISCHARGE (m³/s)

 1:2-year
 195.57
 237
 0.067

 1:5-year
 195.71
 330
 0.080

Table 3: On-site Dry Pond Stage-Storage-Discharge Summary

5.3 WATER QUALITY CONTROL

The South Collingwood development SWMF as designed provides sufficient water quality control to accommodate the additional flows generated from the 50 Saunders Street development with no improvements required. As designed, the South Collingwood development SWMF has a permanent pool and extended detention storage volumes of 2,290 m³ and 1,203 m³ respectively.

The South Collingwood development SWMF has a drainage area of 16.58 ha at an imperviousness of 40% with the 50 Saunders Street development included. The corresponding water quality storage volume required is 150 m³/ha which includes 110 m³/ha for permanent pool storage and 40 m³/ha for extended detention storage, which equates to 1,824 m³ and 663 m³ of permanent pool and extended detention storage respectively. As such, the provided water quality storage volumes exceed those required and the South Collingwood development SWMF has sufficient water quality storage to accommodate the additional flows from the 50 Saunders Street development.

The water quality calculations are included in Appendix D for reference.

5.4 STORMWATER CONVEYANCE

Runoff from major storm events exceeding the capacity of the storm sewer will drain overland via the road network. The runoff from the major storm events will be conveyed to the South Collingwood development SWMF through the Saunders Street and Findlay Drive road allowances. To confirm that the road allowances have sufficient capacity to convey the runoff, conveyance capacity calculations have been completed. Overland flow calculations were completed using the Hydraflow Express Extension of Autodesk AutoCAD Civil 3D for typical cross-sections of Saunders Street and Findlay Drive downstream of 50 Saunders Street. The detailed Hydraflow calculations are included in Appendix E and a summary of the results is provided in Table 4.

Table 4: Overland Flow Summary

LOCATION	PEAK FLOW (m³/s)	CONVEYANCE CAPACITY (m³/s)	DEPTH OF FLOW (m)	VELOCITY (m³/s)
Saunders Street	0.71	1.4	0.11	0.75
Findlay Drive	0.94 ¹	1.4	0.12	0.85

^{1:} Overland flow from Findlay Street and Saunders Street

As demonstrated, the maximum depth and velocity of flow on the roadway is 0.12 m and 0.85 m/s respectively. The runoff produced during major storms will be conveyed at depths and velocities satisfying the safe access/egress criteria established by the Nottawasaga Valley Conservation Authority. The conveyance capacity of the roadway (within the road allowance) is sufficient to convey the runoff produced by each major storm event downstream to the South Collingwood development SWMF.

Siltation and Erosion Control 6

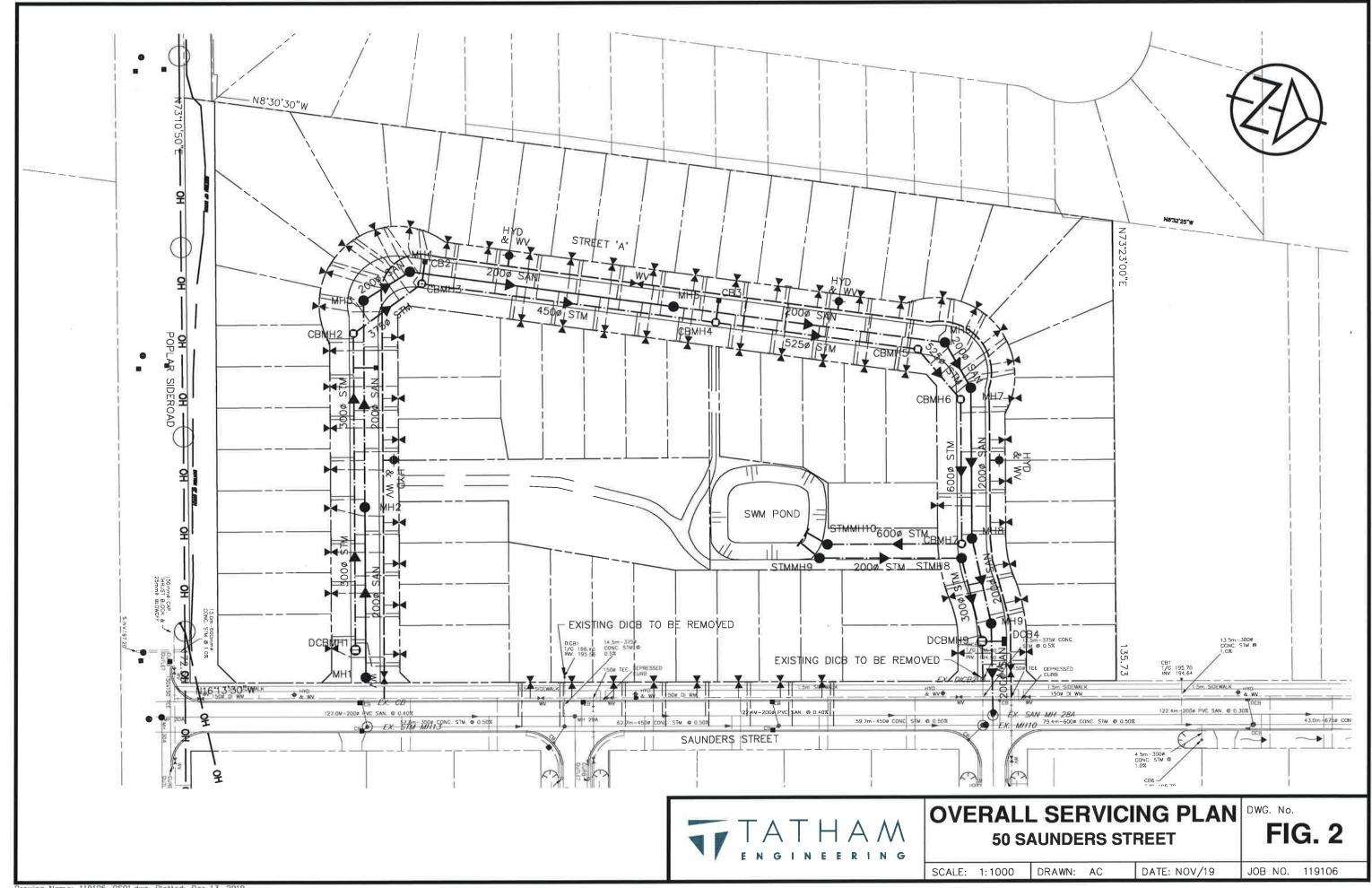
Siltation and erosion control will be implemented for all construction activities within the development site, including vegetation clearing, topsoil stripping, road construction and stockpiling of materials. The basic principles considered to minimize erosion and sedimentation and resultant negative environmental impacts include:

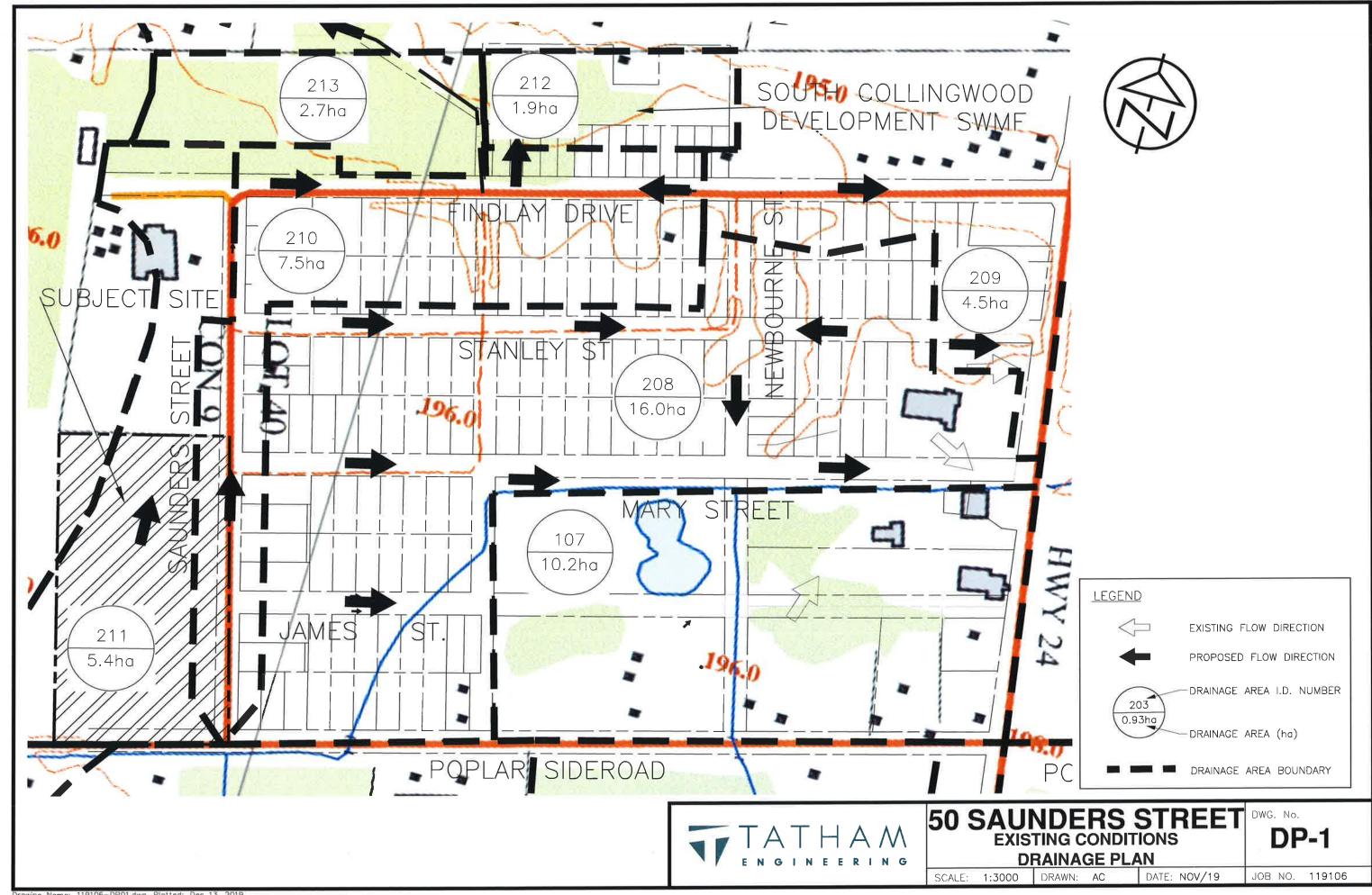
- Minimize disturbance activities where possible;
- Expose the smallest possible land area to erosion for the shortest possible time;
- Institute erosion control measures as-required immediately;
- Implement sediment control measures before the outset of construction activities; and
- Carry out regular inspections of erosion/sediment control measures and repair or maintain as necessary.

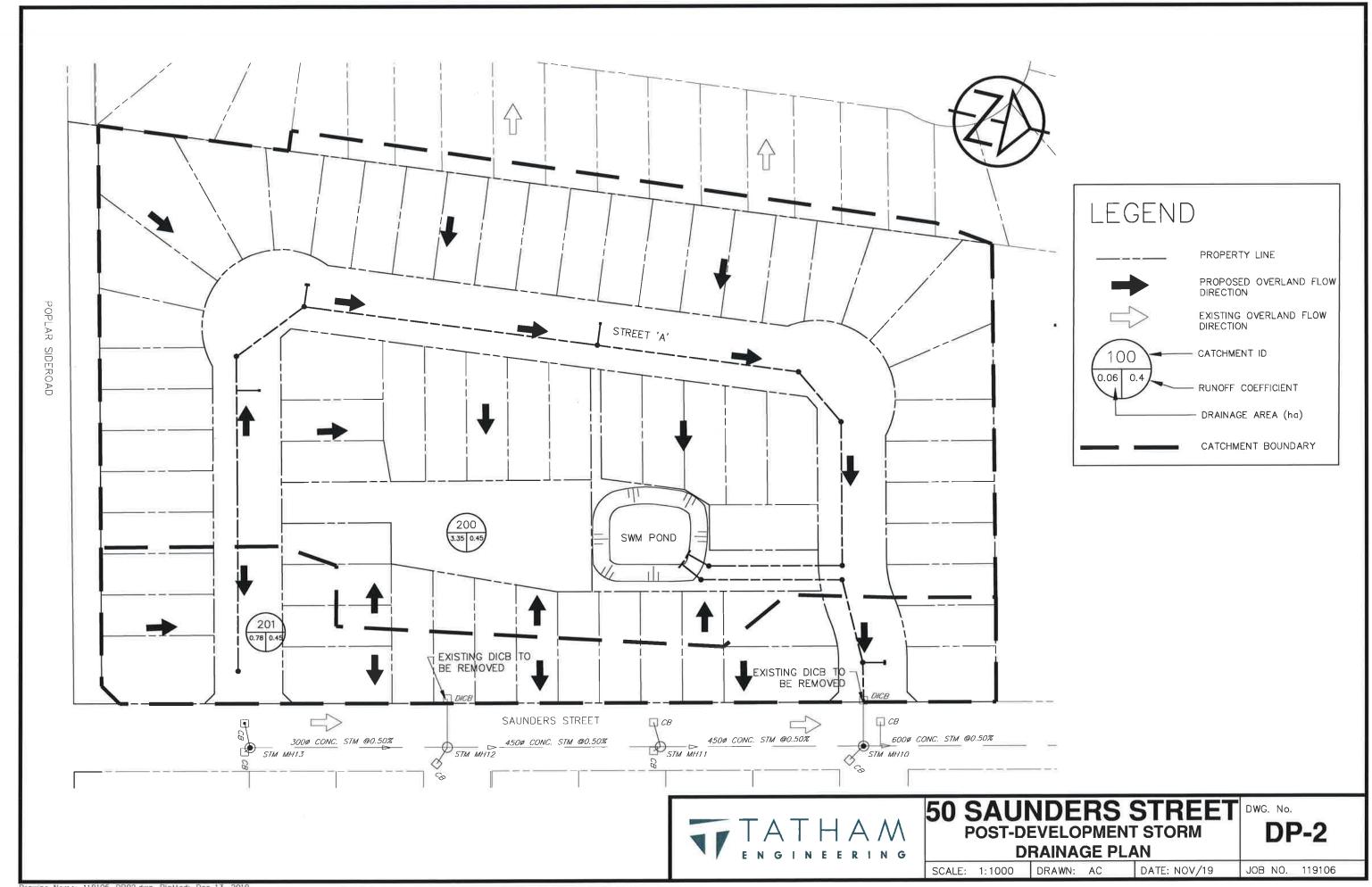
7 Summary

The proposed SWM plan demonstrates that the development will meet the established criteria and can proceed without negatively impacting the local drainage systems. The water quality and quantity controls for the subject site will be provided via the South Collingwood development SWMF. A small dry pond is proposed within the subject property to attenuate minor peak flows to the capacity of the downstream storm sewers. Major flows will be safely conveyed overland from the subject site to the South Collingwood development SWMF. No further improvement to the South Collingwood development is required to accommodate development of the 50 Saunders Street site for the proposed 64 single family lots.

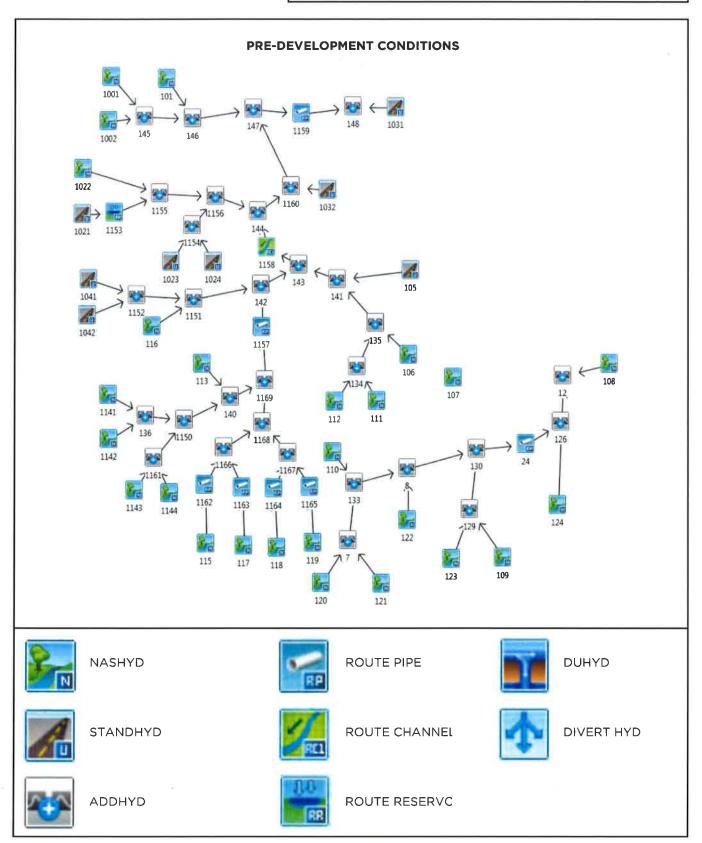
Siltation and erosion control strategies will be implemented as part of erosion and sediment control best management practices during site servicing and building construction to reduce the transportation of sediment from the site, improve stormwater quality and mitigate any environmental impacts during construction activities.

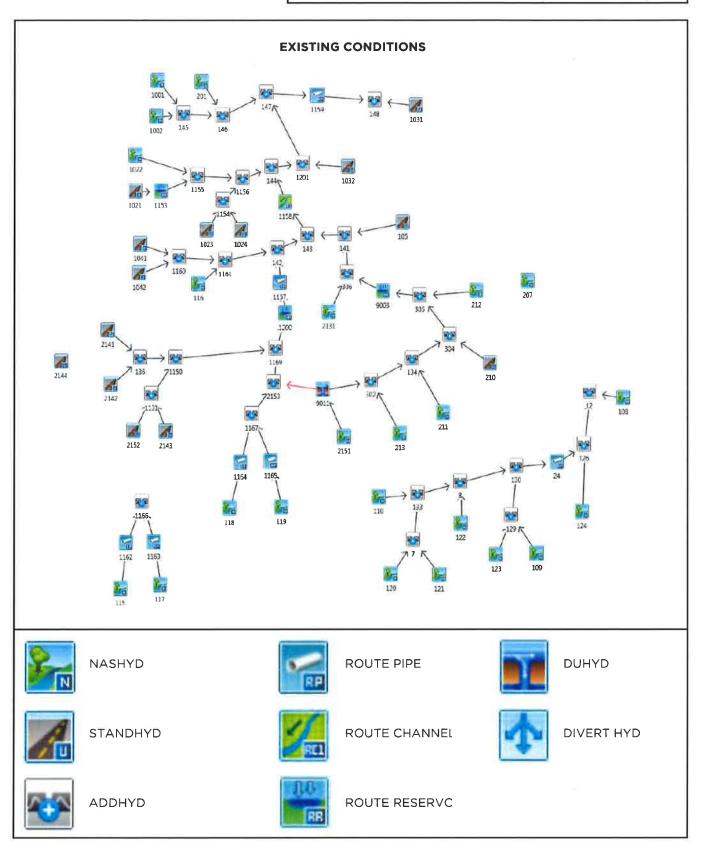



TATHAM

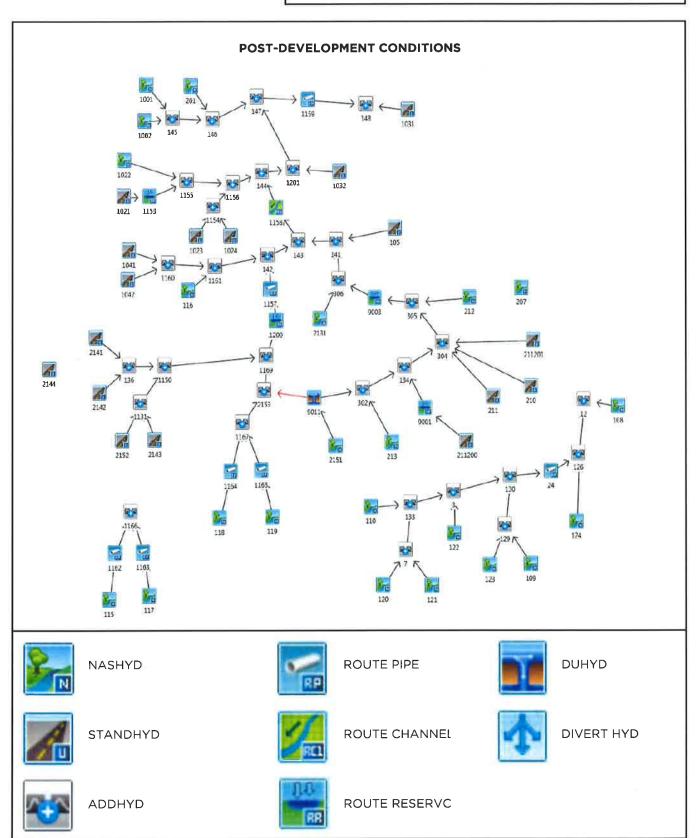

50 SAUNDERS STREET SITE LOCATION PLAN

SCALE: NTS DATE: NOV/19 DWG. No. FIG. 1


Appendix A: Overall Hydrologic Analysis



PROJECT	50 Saunders Street	FILE DATE	11910 12/13	_	
SUBJECT	VO Schematic	NAME	ASB		
		PAGE	1	OF	1



PROJECT 50 Saunders Street	50 C	FILE	11910	6	
	50 Saunders Street	DATE	12/13	/2019	
SUBJECT VO Schematic	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NAME	ASB		
	VO Schematic	PAGE	1	OF	1

PROJECT	50 Saunders Street	FILE	11910)6	
50 Saunders Street	DATE	12/13	/2019		
SUBJECT	VO Schematic	NAME	ASB		
		PAGE	1	OF	1

overall.txt Pre-Development Chicago Storms

** SIMULATION:Run 01 (25mm 4-HR Chicago) **

R.(6.81 1.50	1.91
TPEAK	1.92 2.83	2.67
QPEAK	0.047	0.056
AREA	1.92 22.95	24.87
<u>-</u> -	0105):	0141):
0141)		<u>ب</u>
) _Q	101= 1 102= 2	ID =
ADD HYD	+	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY,

** SIMULATION:Run 02 (27R 4-HR Chicago) **

R.V.	3.21	3.82
TPEAK (hrs)	2.75	2.58
QPEAK (CIIS)	0.071	0.118
AREA (ha)	22.95	24.87
 -	0105):	0141):
ADD HYD (0141) $1 + 2 = 3$	101= 1 (+ 102= 2 (ID = 3 (

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

R. <	(mm)	5.92	6.77
TPEAK	(hrs)	2.75	2.58
QPEAK	(cms)	0.183	0.214
AREA	(ha)	22.95	24.87
(1)	0105)	0135):	0141):
ADD HYD (0141)		+ ID2= 2 (ID = 3 (

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Overall.txt 0.288 24.87 ID = 3 (0141):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

TPEAK (hrs) 1.92 2.67 AREA QPEAK (ha) (cms) 1.92 0.178 22.95 0.349 24.87 0.395 101= 1 (0105); + 102= 2 (0135); 10 = 3 (0141);

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0141) 1 + 2 = 3

R.V. (mm) 31.22 13.60 QPEAK (cms) 0.211 0.436 24.87 0.489 AREA (ha) 1.92 22.95 1D1= 1 (0105): + 1D2= 2 (0135): ID = 3 (0141):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

17.70 TPEAK (hrs) 2.08 2.67 2.58 QPEAK (cms) 0.248 0.523 0.582 AREA (ha) 1.92 22.95 24.87 | ADD HYD (0141)| | 1 + 2 = 3

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

AREA (ha) 1.92 ID1= 1 (0105): | ADD HYD (0141)| | 1 + 2 = 3

7.33 94.81 91.11 Overall.txt 1.047 7.42 24.87 1.164 + ID2= 2 (0135): 22.95 ID = 3 (0141):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Pre-Development SCS Storms

0.153 ID = 3 (0141): 1D1= 1 (0105): + ID2= 2 (0135): ADD HYD (0141) $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 \end{vmatrix}$

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run 02 (SYR SCS) **

12.75 QPEAK (cms) 0.120 0.214 24.87 0.249 AREA (ha) 1.92 22.95 ID = 3 (0141): 1D1= 1 (0105); + 1D2= 2 (0135); | ADD HYD (0141)| | 1 + 2 = 3

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run 03 (10YR SCS) **

AREA (ha) 1.92 22.95 1 ID1= 1 (0105): + ID2= 2 (0135):

0.324 12.75 Page 3

ID = 3 (0141):

overall.txt

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY,

** SIMULATION:Run 04 (25YR SCS) **

R.V. (mm) 40.00 18.83 20.46 TPEAK (hrs) 12.25 12.92 12.75 QPEAK (cms) 0.191 0.378 24.87 0.429 AREA (ha) 1.92 22.95 | D1 = 1 (0105) | + ID2 = 2 (0135); | ID = 3 (0141); ADD HYD (0141) 1 + 2 = 3

** SIMULATION: UN OS (SOYR SCS) **
** SEMULATION: UN OS (SOYR SCS) **

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

TPEAK (hrs) 12.25 12.92 12.75 QPEAK (CMS) 0.223 0.455 24.87 0.512 AREA (ha) 1.92 22.95 | ID1= 1 (0105): + ID2= 2 (0135); ID = 3 (0141): | ADD HYD (0141)| | 1 + 2 = 3

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

AREA QPEAK (ha) (cms) 1.92 0.255 22.95 0.534 | ID1= 1 (0105): + ID2= 2 (0135): ADD HYD (0141)

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

24.87 0.598

ID = 3 (0141):

Existing Development Chicago Storms

经存款的 经存款 经存款 经存款 医克拉克氏 医克拉克氏病

Page 4

R.V.	6.81	4.53
TPEAK	1.92	1.92
QPEAK	0.047	0.048
AREA	19.28	21.20
3	0105):	0141):
3	00	_
HYD (+ 2 =	101= 1 102= 2	ID = 3
ADD H)	+	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

R.V. (mm)	11.09	7.56	7.88
TPEAK (hrs)	1.92	4.08	1.92
QPEAK (cms)	0.071	0.047	0.075
AREA (ha)	1.92	19.28	21.20
<u>ਜ</u> -।	0105):	0306):	0141):
D (0141)	ID1= 1 (ID2= 2 (ID = 3 (
ADD HYD		+	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

R.V.	16.93	12.62
TPEAK	3.25	2.92
QPEAK (Cms)	0.112	0.137
AREA (ha)	1.92	21.22
[n	0105):	0141):
0141) 3	<u> </u>	<u></u>
U	1 2	1
2	ID1= ID2=	A
ξ+	+	
9"		

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run 04 (10YR 4-HR Chicago) **

| ADD HYD (0141) | 1 + 2 = 3

15.95 2.75 AREA (ha) 1.92 19.47

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page 5

overall.txt ** SIMULATION:Run 05 (25YR 4-HR Chicago) **

R.V.	26.63	20.63
TPEAK (hrs)	1.92	2.67
QPEAK (Cms)	0.178	0.288
AREA (ha)	1.92	21.63
ADD HYD (0141) 1 + 2 = 3	ID1= 1 (0105); + ID2= 2 (0306);	ID = 3 (0141):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run OG (50YR 4-HR Chicago) **

R.V. (mm) 31.22 23.84	24.49
TPEAK (hrs) 2.00 2.75	2.50
QPEAK (cms) 0.211 0.307	0.362
AREA (ha) 1.92 19.87	21.79
1) 0105) : 0306) :	0141):
3341)	<u> </u>
	6
HYD (+ 2 = ID1= + ID2=	a
ADD H	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

R.V.	35.65	28.25
TPEAK	2.08	2.33
QPEAK (CIRS)	0.248	0.437
AREA (ha)	19.99	21.91
<u>[]</u>	0105):	0141):
ADD HYD (0141) $1 + 2 = 3$	ID1= 1 (+ ID2= 2 (ID = 3 (

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION: Run 08 (Timmins) **

R.V.	139.08	122.44
TPEAK	9.08	90.6
OPEAK	0.185	1.068
AREA	19.62	21.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1D1= 1 (0105): + 1D2= 2 (0306):	ID = 3 (0141):
8		

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page 6

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 1.92 0.191 12.25 19.55 0.278 13.00 AREA QPEAK (ha) (cms) 1.92 0.255 19.69 0.358 21.61 0.444 AREA QPEAK (ha) (cms) 1.92 0.223 19.62 0.321 ** SIMULATION:Run 01 (25mm 4-HR Chicago) ** ID = 3 (0141): 21.47 0.319 21.54 0.380 ** SIMULATION: Run O5 (50yR SCS) ** Post-Development Chicago Storms ID1= 1 (0105): + ID2= 2 (0306): ID = 3 (0141): ID1= 1 (0105): + ID2= 2 (0306): ID = 3 (0141): + ID2= 2 (0306): ADD HYD (0141) ADD HYD (0141) 13.75 25.52 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. TPEAK (hrs) 12.25 13.42 12.25 12.92 ** SIMULATION:Run 02 (5YR SCS) ** AREA QPEAK (ha) (cms) 1.92 0.120 19.33 0.146 21.25 0.163 QPEAK (cms) 0.151 0.203 ID = 3 (0141): 21.35 0.229 21.20 0.087 AREA (ha) 19.28 ** SIMULATION:Run 03 (10YR SCS) ** ** SIMULATION:RUN 04 (25% SCS) ** AREA (ha) 1.92 19.43 ** SIMULATION:Run 01 (2YR SCS) **
*** SIMULATION:Run 01 (2YR SCS) ** Existing Development SCS Storms | ID1= 1 (0105) | + ID2= 2 (0306) | ID1= 1 (0105): + ID2= 2 (0306): ID = 3 (0141): | ID1= 1 (0105); + ID2= 2 (0306); ID = 3 (0141): ADD HYD (0141) 1 + 2 = 3| ADD HYD (0141)| | 1 + 2 = 3 ADD HYD (0141)

12.42

12.67

12.83

overall.txt

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0141) $\begin{vmatrix} 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \end{vmatrix}$

overall.txt

** SIMULATION:Run 02 (2YR 4-HR Chicago) **

ADD HYD	70 (2 ≡	5 m	0141)	AREA	QPEAK	TPEAK	R. V.
+	101= 102=	77	(0105):	1.92 19.28	0.071 0.106	1.92 3.25	10.80
	10	m	(1910)	21.20	0.116	3.08	10.82

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run 03 (5YR 4-HR Chicago) **

R.V.	16.93	16.12	16.20
TPEAK (hrs)	1.92	3.00	2.75
QPEAK (CIIIS)	0.112	0.193	0.214
AREA (ha)	1.92	19.30	21.22
ਹ ੀ	0105):	0306):	0141):
D (0141)	ID1= 1 (ID2= 2 (ID = 3 (
ADD HYD		+	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

R.V.	20.99 19.73	19.84
TPEAK (hrs)	1.92	2.67
QPEAK (CIIS)	0.140	0.286
AREA (ha)	19.47	21.39
<u>a</u> -1	0105): 0306):	0141):
2 = 3	ID1= 1 (ID2= 2 ((D = 3 (
ADD HYD	+	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run 05 (25% 4-HR Chicago) **

	1.92 26.63 2.67 24.69	2.33 24.86
	0.178	0.371
AREA	19.71	21.63
ADD HYD (0141) 1 + 2 = 3	1D1= 1 (0105); + 1D2= 2 (0306);	ID = 3 (0141):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page 9

overall.txt

***simuLATION:Run O6 (SOYR 4-HR Chicago) **

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

SIMULATION: Run 07 (100YR 4-HR Chicago) **

ADD HYD	No C	0141)	lt.	ADEA	OBEAK	TDEAK	0
-		,		(ha)	(CIIS)	(hrs)	<u>:</u> 5
	ID1=	1 (0105):	1.92	0.248	2.08	32,6
+	. ID2=	2 (0306):	19.99	0.394	2.58	32.6
	I QI	<u>_</u>	0141):	21.91	0.517	2.17	32.5
	i	,					

PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. NOTE:

AREA QPEAK (ha) (cms) 1.92 0.185 (66); 19.62 1.002 (41): 21.54 1.111	1 (0105); (19.62 1.002 3 (0141); 21.54 1.111	AREA QPEAK (ha) (cms) 1.92 0.185 19.62 1.002	rPEAK R (hrs) (7.00 139. 9.00 128.	.00 129.
AREA (ha) (1.92 806): 19.62 (41): 21.54	1 (0105) AREA (ha) 1.92 (ha) 1.92 (ha) 1.92 (ha) 19.62	2 = 3 AREA (ha) AREA (ha) 11= 1 (0105); 1.92 02= 2 (0306); 19.62 0 = 3 (0141); 21.54	, -,	01
105): 306): 141):	3 1 (0105) 2 (0306) 3 (0141):	$ 2 = \frac{(0.041)}{3} $ $ 0.01 = \frac{(0.05)}{2} $ $ 0.02 = \frac{(0.05)}{2} $ $ 0.03 = \frac{(0.041)}{2} $	QPEAK (cms) 0.185 1.002	1.111
0105); 0306); 0141);	3 (3 () 3 () 3 () 3 ()	2 = 3 01 = 1 (02 = 2 (0 = 3 (AREA (ha) 1.92 19.62	21.54
	14216	2 = 0 01= 1 02= 2 0 = 3	41) 0105): 0306):	0141):

32 38 32

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Post-Development SCS Storms

Page 10

13.08 Overall.txt QPEAK (cms) 0.072 0.132 AREA (ha) 1.92 19.28 1D1= 1 (0105); + 1D2= 2 (0306); ID = 3 (0141): ADD HYD (0141) | 1 + 2 = 3

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

R.V. (mm) 26.42 24.70 TPEAK (hrs) 12.25 13.08 12.92 QPEAK (cms) 0.120 0.220 0.245 AREA (ha) 1.92 19.33 21.25 + ID2= 2 (0306): ID = 3 (0141): $\left| \begin{array}{ccc} ADD & HYD & (& 0141) \\ 1 & + & 2 & = & 3 \end{array} \right|$

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

12.75 QPEAK (cms) 0.151 0.276 21.35 0.318 AREA (ha) 1.92 19.43 1D1= 1 (0105): + 1D2= 2 (0306): ID = 3 (0141): | ADD HYD (0141) | 1 + 2 = 3

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:RUN 04 (25YR SCS) **

R.V. (mm) 40.00 36.85 37.13 21.47 0.404 12.42 AREA (ha) 1.92 19.55 1D1= 1 (0105): + 1D2= 2 (0306): ID = 3 (0141): | ADD HYD (0141) |

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Page 11

Overall.txt

12.42 AREA QPEAK (ha) (cms) 1.92 0.223 19.62 0.364 21.54 0.471 + ID2= 2 (0105) ID = 3 (0141): | ADD HYD (0141)| | 1 + 2 = 3 |

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

12.42 AREA QPEAK (ha) (cms) 1.92 0.255 19.69 0.397 21.61 0.532 ID1= 1 (0105): + ID2= 2 (0306): ID = 3 (0141): | ADD HYD (0141) | 1 + 2 = 3

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page 12

Appendix B: Modified Rational Method Calculations

PROJECT	FO Country Chroat	FILE	11910	6	
	50 Saunders Street	DATE	Novem	ber 6,	2019
SUBJECT	NA 1167 1 D 47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NAME	ASB		
	Modified Rational Method	PAGE	1	OF	3

POST DEVELOPMENT ANALYSIS CATCHMENT # 201

Runoff Coefficient (Municipal Standard)

2 Year 0.45 5 Year 0.45 10 Year 0.45 25 Year 0.50 =C5*1.10 50 Year 0.54 =C5*1.20 100 Year 0.56 =C5*1.25

Peak Rainfall Intensity

Town of Collingwood

2YR 5YR 10YR 25YR 50YR 100YR

A 807 1135 1387 1676 1973 2193

B 6.75 7.5 7.97 8.3 9 9.04

C 0.83 0.84 0.85 0.86 0.87 0.87

Drainage Area 0.780 ha

Peak Runoff Rate - Rational Method (Q=CiA/360)

QUNCONTROLLEE
2 Year 0.076 m³/s
5 Year 0.100 m³/s
10 Year 0.115 m³/s
25 Year 0.148 m³/s
50 Year 0.179 m³/s
100 Year 0.205 m³/s

PROJECT	EQ Carradoro Ctroot	FILE	11910	6	
	50 Saunders Street	DATE	Novem	nber 6,	2019
SUBJECT	Madistrat Dational Mathematical	NAME	ASB		
	Modified Rational Method	PAGE	2	OF	3

POST DEVELOPMENT ANALYSIS CATCHMENT # 200

Runoff Coefficient (Municipal Standard)

2 Year 0.45 5 Year 0.45 10 Year 0.45 25 Year 0.50 =C5*1.10 50 Year 0.54 =C5*1.20 100 Year 0.56 =C5*1.25

Peak Rainfall Intensity Town of Collingwood

2YR 5YR 10YR 25YR 50YR 100YR

 A
 807
 1135
 1387
 1676
 1973
 2193

 B
 6,75
 7.5
 7.97
 8.3
 9
 9.04

 C
 0.83
 0.84
 0.85
 0.86
 0.87
 0.87

Drainage Area 3.350 ha

Peak Runoff Rate - Rational Method (Q=CiA/360)

Quncontrolled
2 Year 0.328 m³/s
5 Year 0.428 m³/s
10 Year 0.496 m³/s
25 Year 0.638 m³/s
50 Year 0.770 m³/s
100 Year 0.882 m³/s

POST DEVELOPMENT ANALYSIS CATCHMENT # 200

Runoff Coefficient (Municipal Standard)

2 Year 0.45 5 Year 0.45 10 Year 0.45 25 Year 0.50 =C5*1.10 50 Year 0.54 =C5*1.20 100 Year 0.56 =C5*1.25

Peak Rainfall Intensity Town of Collingwood

2YR 5YR 10YR 25YR 50YR 100YR

 A
 807
 1135
 1387
 1676
 1973
 2193

 B
 6.8
 7.5
 8.0
 8.3
 9.0
 9.0

 C
 0.828
 0.841
 0.852
 0.858
 0.868
 0.871

Drainage Area 3.350 ha

Peak Runoff Rate - Rational Method (Q=CiA/360)

 Quncontrolled
 QDIS
 Reduction

 2 Year
 0.328
 0.0670
 0.261
 m³/s

 5 Year
 0.428
 0.0795
 0.349
 m³/s

 10 Year
 0.496
 0.0870
 0.409
 m³/s

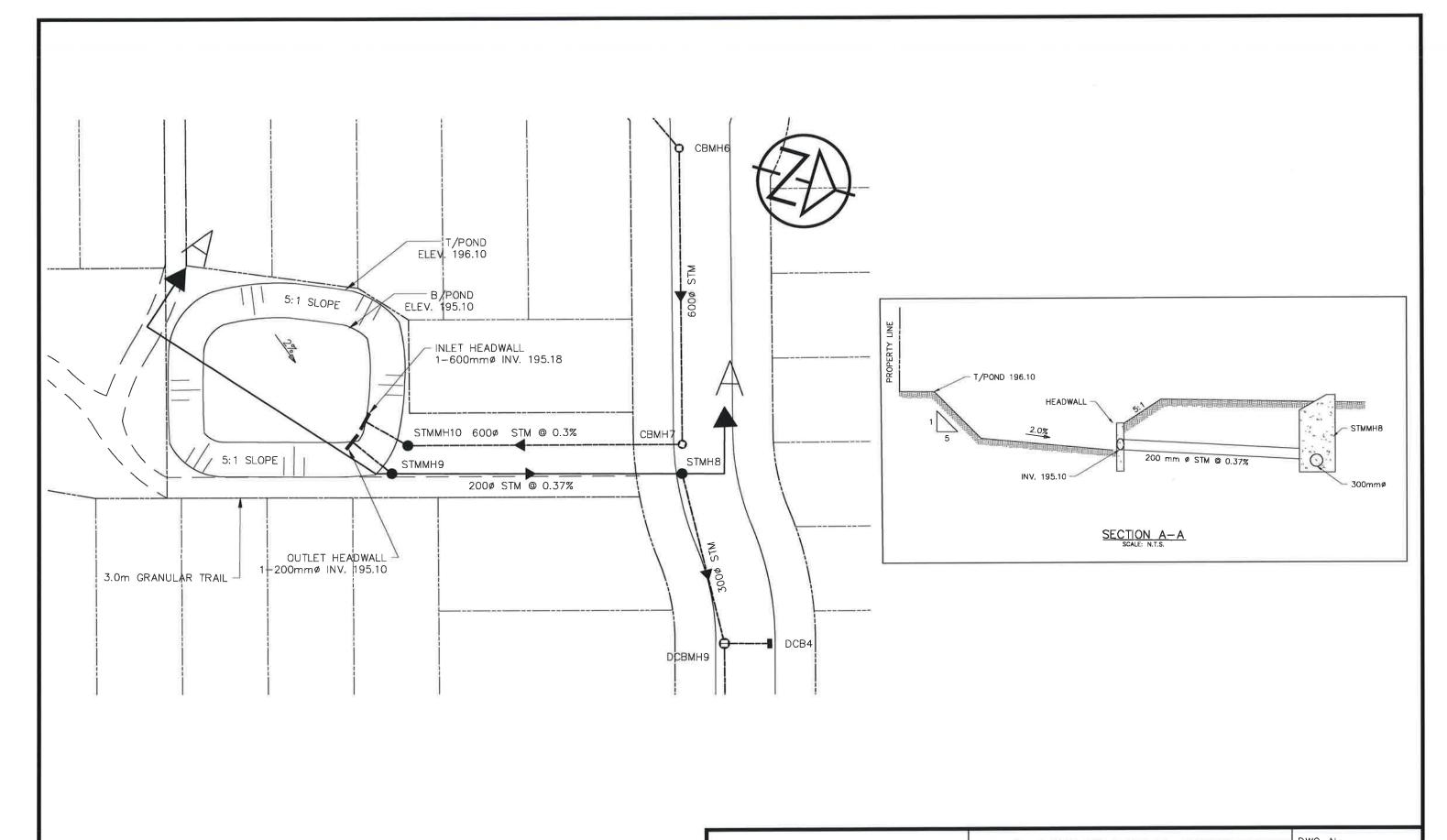
 25 Year
 0.638
 0.1290
 0.509
 m³/s

 50 Year
 0.770
 0.1890
 0.581
 m³/s

 100 Year
 0.882
 0.2440
 0.638
 m³/s

Required Storage Volumes

Dur.	2YR	5YR	10YR	25YR	50YR	100YR
10	156.5	209.3	245.2	305.1	348.4	382.6
20	206.6	279.9	329.7	410.2	469.8	512.9
30	227.4	310.7	367.3	454.1	515.4	556.4
40	235.8	324.6	384.8	471.9	528.2	562.3
50	237.4	329.3	391.6	475.5	523.4	547.9
60	234.9	328.5	391.7	470.5	507.7	521.2
70	229.6	323.8	387.4	459.7	484.8	486.3
80	222.2	316.4	379.9	444.7	456.8	445.5



000 1000					
PROJECT	50 Saunders Street	FILE	11910	6	
	50 Saunders Street	DATE	Novem	ber 6,	2019
SUBJECT	Post Development Flow	NAME	ASB		
	Summary	PAGE	3	OF	3

Post Development Peak Flow (m³/s)

Storm Event	Catchment 200	Catchment 201	Total (Uncontrolled)	Total (Controlled)
2 Year	0.067	0,076	0.404	0.143
5 Year	0.080	0.100	0.528	0.179
10 Year	0.087	0.115	0.611	0.202
25 Year	0.129	0.148	0,786	0.277
50 Year	0.189	0.179	0.949	0.368
100 Year	0.244	0.205	1.087	0.449

Appendix C: On-site Dry Pond Stage-Storage-Discharge Tables

50 SAUNDERS STREET DWG. No. STORMWATER MANAGEMENT POND

PND-1

DATE: NOV/19 DRAWN: AC SCALE: 1:500

JOB NO. 119106

Project :	50 Saunders Street	
File No.	119106	
Date:	6-Nov-19	
Designed By:	ASB	
Checked By:	DRT	
Subject:	SWMF Stage-Storage	

STAGE-STORAGE TABLE

Side Slope

5 (H:V)

Bottom Elevation

195.10 m

Stage

0.10 m

	S	TAGE-STO	RAGE TABI	LE	
	Donal		A		Volume
Elevation	Pond Depth	Pond Area	Average Pond Area	Active	Accum. Active
				Storage	Storage
(m)	(m)	(sq.m)	(sq.m)	(cu.m)	(cu.m)
195.10	0.00	400.00	0.00	0.00	0.00
195.20	0.10	445.50	422.75	42.27	42.27
195.30	0.20	491.00	468.25	46.82	89.10
195.40	0.30	536.50	513.75	51.37	140.47
195.50	0.40	582.00	559.25	55.92	196.40
195.60	0.50	627.50	604.75	60.47	256.87
195.70	0.60	673.00	650.25	65.02	321.90
195.80	0.70	718.50	695.75	69.57	391.47
195.90	0.80	764.00	741.25	74.12	465.60
196.00	0.90	809.50	786.75	78.67	544.27
196.10	1.00	855.00	832.25	83.22	627.50

Project:	50 Saunders Street
File No:	119106
Date:	6-Nov-18
Designed By:	ASB
Checked By:	DRT
Subject:	SWMF Stage-Discharge

STAGE-DISCHARGE TABLE

Outlet

Туре	Pipe	Туре	Weir
Diameter (mm)	200	Bottom Width (mm)	300
Area (sq.m)	0.031	Side Slope (_H:1V)	3
Coefficient	0.80	Coefficient	1.60
Invert (m)	195.1	Invert (m)	195.8

Pond Water	Pipe		Weir		Total	
Level	Head	Discharge	Head	Discharge	Discharge	
(m)	(m)	(cms)	(m)	(cms)	(cms)	
195.10	0.00	0.0000	0.00	0.0000	0.0000	
195.20	0.10	0.0082	0.00	0.0000	0.0082	
195.30	0.10	0.0352	0.00	0.0000	0.0352	
195.40	0.20	0.0498	0.00	0.0000	0.0498	
195.50	0.30	0.0609	0.00	0.0000	0.0609	
195.60	0.40	0.0704	0.00	0.0000	0.0704	
195.70	0.50	0.0787	0.00	0.0000	0.0787	
195.80	0.60	0.0862	0.00	0.0000	0.0862	
195.90	0.70	0.0931	0.10	0.0259	0.1190	
196.00	0.80	0.0995	0.20	0.1083	0.2078	
196.10	0.90	0.1056	0.30	0.2634	0.3690	

NVCA Weir Flow Calculation Applied For Weir Flow Below Circular Orifice Centroid

 $Q_w = 1.65([(pi*(D^2)/4)(2*cos^{-1}[(((D/2)-d)/(D/2))*(180/pi)]/360)-((D/2-d)(Dd-d^2)^{0.5})]/d)d^{1.5}$

Where: Q_w is well: flow (m^3/s) D is orifice diameter (m) d is depth of flow above the invert (m)

Project:	50 Saunders Street
File No:	119106
Date:	6-Nov-19
Designed By:	ASB
Checked By:	DRT
Subject:	SWMF SSD Relationship

STAGE-STORAGE-DISCHARGE TABLE

Outlet

 Type
 Pipe
 Trapezoidal Weir

 Diameter (mm)
 200,00
 0.3 m Bottom Width

 Invert(m)
 195,10
 195.80

STAGE-STORAGE-DISCHARGE TABLE				
Pond Water Level	Total Discharge	Active Storage		
(m)	(cms)	(cu.m)		
195.10	0.0000	0		
195.20	0.0082	42		
195,30	0.0352	89		
195.40	0.0498	140		
195.50	0.0609	196		
195.57	0.0673	237		
195.60	0,0704	257		
195.70	0.0787	322		
195.71	0.0796	330		
195.80	0.0862	391		
195.90	0.1190	466		
195.91	0.1285	474		
195,98	0.1894	528		
196,00	0.2078	544		
196.02	0.2441	563		
196.10	0.3690	627		

Interpolated to match Modified Rational Method

Interpolated to match Modified Rational Method

Interpolated to match Modified Rational Method Interpolated to match Modified Rational Method

Interpolated to match Modified Rational Method

Appendix D: Water Quality Calculations

Project:	50 Saunders Road	Date:	11-Jun-19	
File No.:	119106	Designed	By: DAM	
Subject:	SWMF Water Quality	Checked	By: DPT	

South Collingwood SWMF

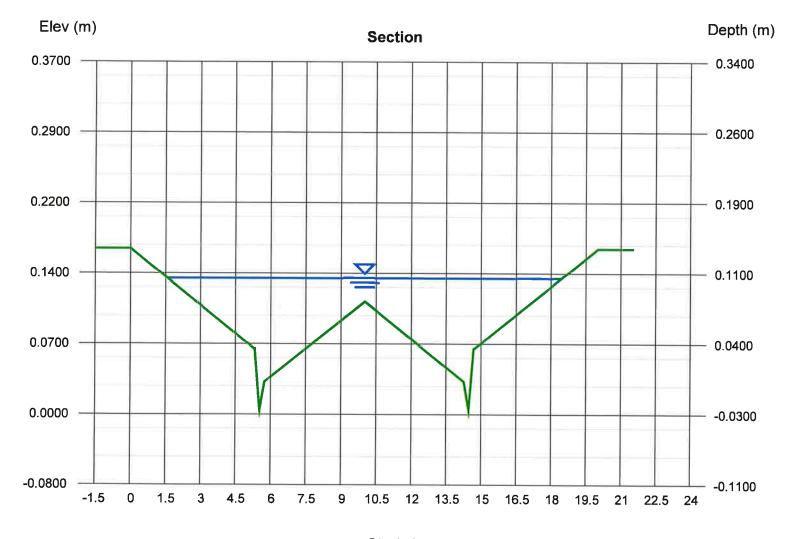
Stormwater Management Facility Water Quality Storage Requirements

TOTAL DRAINAGE AREA	16.58 ha	%Impervious	39.60	
Required Level of Treatment 80 % SWM Facility Type 4 (1-In	Enhanced Leve filtration, 2-Wetlar		nd/Wetland	, 4-Wet Pond, 5-Dry Pond)
	Enhanced	Normal	Basic	
Water Quality Storage Requirement	150.0	-	-	cu.m/ha
Permanent Pool Volume Required	110.0 1823.8	-	-	cu.m/ha cu.m
Extended Detention Volume (40 cu.m)	40.0 663.2	-	-	cu.m/ha cu.m
25mm Storm Runoff Volume		mm cu.m		
Required Extended Detention Volume	1220.3	cu.m		
Permanent Pool Volume Provided	2290	cu.m Provi	lded >	Required
Extended Detention Volume Provided	1203	cu.m Provi	ded <	Required

Appendix E: Conveyance Calculations

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Thursday, Nov 7 2019

Saunders Street - Channel Analysis

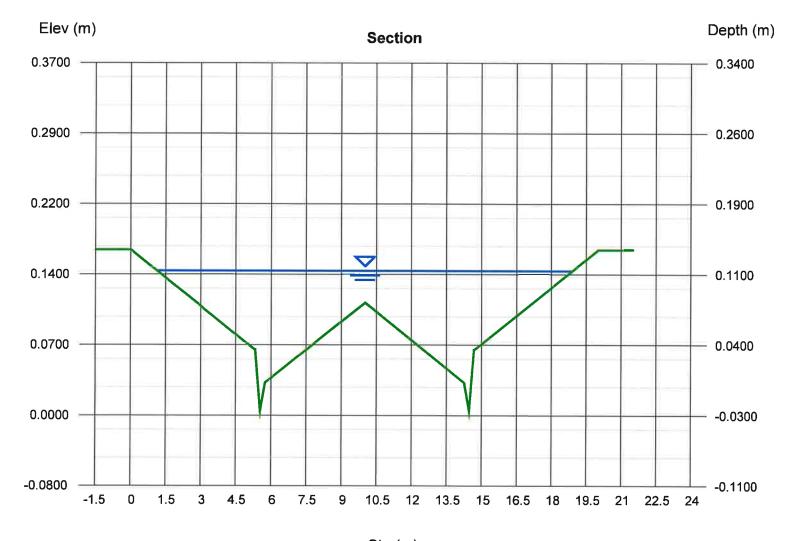
User-defined		Highlighted	
Invert Elev (m)	= 0.0300	Depth (m)	= 0.1097
Slope (%)	= 0.5000	Q (cms)	= 0.7100
N-Value	= 0.013	Area (sqm)	= 0.9507
		Velocity (m/s)	= 0.7468
Calculations		Wetted Perim (m)	= 16.8804
Compute by:	Known Q	Crit Depth, Yc (m)	= 0.1128
Known Q (cms)	= 0.7100	Top Width (m)	= 16.8528
		EGL (m)	= 0.1382

(Sta, EI, n)-(Sta, EI, n)...

(0.0000, 0.1712)-(5.3100, 0.0650, 0.013)-(5.3350, 0.0650, 0.013)-(5.7500, 0.0300, 0.013)-(10.0000, 0.1150, 0.013)-(14.2500, 0.0300, 0.013)-(14.6650, 0.0650, 0.013)-(14.6900, 0.0650, 0.013)-(20.0000, 0.1712, 0.013)

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Friday, Nov 15 2019

Findlay Drive - Channel Analysis

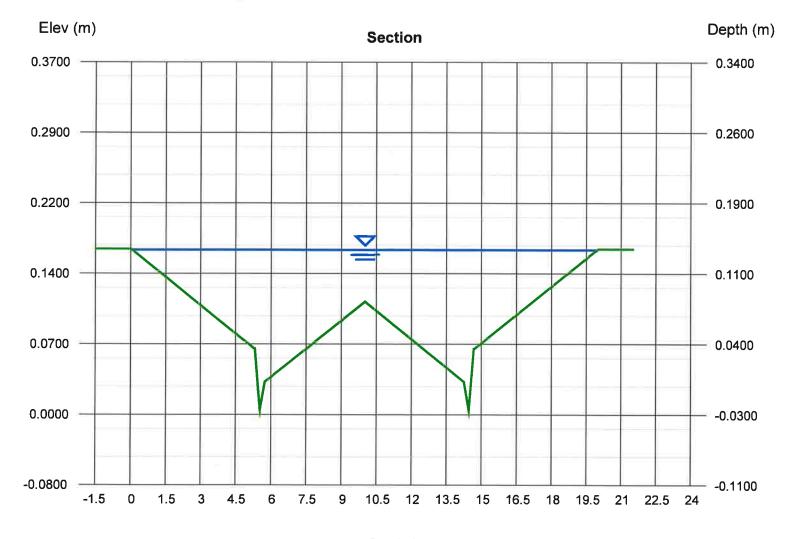
User-defined		Highlighted	
Invert Elev (m)	= 0.0300	Depth (m)	= 0.1189
Slope (%)	= 0.5000	Q (cms)	= 0.9400
N-Value	= 0.013	Area (sqm)	= 1.1090
		Velocity (m/s)	= 0.8476
Calculations		Wetted Perim (m)	= 17.7950
Compute by:	Known Q	Crit Depth, Yc (m)	= 0.1250
Known Q (cms)	= 0.9400	Top Width (m)	= 17.7672
		EGL (m)	= 0.1555

(Sta, El, n)-(Sta, El, n)...

(0.0000, 0.1712)-(5.3100, 0.0650, 0.013)-(5.3350, 0.0650, 0.013)-(5.7500, 0.0300, 0.013)-(10.0000, 0.1150, 0.013)-(14.2500, 0.0300, 0.013)-(14.6650, 0.0650, 0.01-(14.6900, 0.0650, 0.013)-(20.0000, 0.1712, 0.013)

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Friday, Nov 15 2019

Findlay Drive - Channel Analysis (Max Flow)

User-defined		Highlighted	
Invert Elev (m)	= 0.0300	Depth (m)	= 0.1402
Slope (%)	= 0.5000	Q (cms)	= 1.4000
N-Value	= 0.013	Area (sqm)	= 1.5109
		Velocity (m/s)	= 0.9266
Calculations		Wetted Perim (m)	= 19.9290
Compute by:	Known Q	Crit Depth, Yc (m)	= 0.1412
Known Q (cms)	= 1.4000	Top Width (m)	= 19.9008
		EGL (m)	= 0.1840

(Sta, El, n)-(Sta, El, n)...

(0.0000, 0.1712)-(5.3100, 0.0650, 0.013)-(5.3350, 0.0650, 0.013)-(5.7500, 0.0300, 0.013)-(10.0000, 0.1150, 0.013)-(14.2500, 0.0300, 0.013)-(14.6650, 0.0650, 0.013)-(14.6900, 0.0650, 0.013)-(20.0000, 0.1712, 0.013)

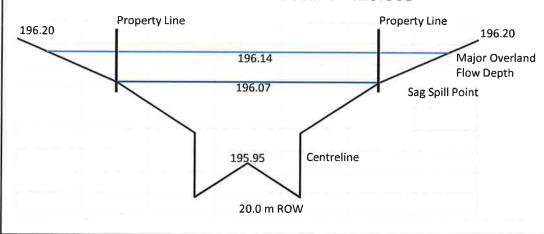
PROJECT	50.0	FILE	119106
	50 Saunders Street	DATE	November 6, 2019
SUBJECT	Post Development Flow	NAME	ASB
	Summary	PAGE	1

Sag Spill Over High Point

High Point in Road Acting as Weir Control

Length of Weir 20 m
Weir Sill Elevation 196.07 m
Weir constant K 1.6
Side Slope (H:V) 50

 $Q = K x L x H^{1.5}$


where Q = flow rate (cms)
K = constant
L = length (m)

H = head on the weir (m)

Major Overland Flow 0.71 cms

	Emergency Spillway		
Water Level	Head Discharg		
(m)	(m)	(cms)	
196.07	0.00	0.00	
196.08	0.01	0.03	
196.09	0.02	0.10	
196.10	0.03	0.18	
196.11	0.04	0.28	
196.12	0.05	0.40	
196.13	0.06	0.54	
196.14	0.07	0.70	
196.15	0.08	0.87	
196.16	0.09	1.06	
196.17	0.10	1.26	

Saunders Street Sta. 0+420.005

