
STRAW HAT RESTORATION

774 AND 750 HURONTARIO STREET, 33 FINDLAY DRIVE, 22 CAMPBELL STREET GEOTECHNICAL INVESTIGATION

APRIL 4, 2018

774 AND 750 HURONTARIO STREET, 33 FINDLAY DRIVE, 22 CAMPBELL STREET GEOTECHNICAL INVESTIGATION

STRAW HAT RESTORATION

FINAL REPORT

PROJECT NO.: 17M-01364-00 DATE: APRIL 2018

WSP UNITS C AND D 561 BRYNE DRIVE BARRIE, ON, CANADA L4N 9Y3

T: +1 705 735-9771 F: +1 705 735-6450 WSP.COM

April 4, 2018

Straw Hat Restoration

325 Willard Avenue Toronto, Ontario M6S 3R1

Dear Sir:

Subject: 774 and 750 Hurontario Street, 33 Findlay Drive, 22 Campbell Street - Geotechnical Assessment

WSP Canada Inc. was retained to complete geotechnical investigation at the above noted property. The purpose of the geotechnical investigation is to identify the subsurface conditions at select borehole locations and to provide design recommendations toward the design of the proposed development, as well as identify any potential constraints which may be encountered during construction.

Kind regards,

Nick La Posta, P.Eng. Team Lead - Environment

NL/KM/hm

WSP ref.: 17M-01364-00

Kent Malcom, P.Eng. Senior Geotechnical Engineer

TABLE OF CONTENTS

1	INTRODUCTION	1
2	SITE BACKGROUND AND PROJECT	
	DESCRIPTION	2
3	INVESTIGATION METHODOLOGY	3
4	SITE AND SUBSURFACE CONDITIONS	4
4.1	General Subsurface Conditions	4
4.1.1	Topsoil	4
4.1.2	Fill	4
4.1.3	Non-Cohesive Deposits	
4.1.4	Sandy Silt Till	
4.1.5	Clayey Silt to Silt and Clay	
4.1.6	Groundwater	5
5	DISCUSSION & RECOMMENDATIONS	7
5.1	General	7
5.2	Site Background	7
5.3	Site Preparation and Grading	7
5.4	Preliminary Foundation Recommendations	8
5.4.1	General Foundation Comments	8
5.5	Floor Slab Construction and Drainage	9
5.6	Lateral Earth Pressures	9
5.7	Temporary Excavations and Groundwater Control	10
5.8	Pipe Bedding and Cover	11
5.9	Trench Backfill	11
5.10	Preliminary Pavement Design	11
5.11	Limited Environmental Testing Results	12
5.12	Design Review, Testing and Inspections	12

6	LIMIT	ATIONS OF REPORT	Γ	3
---	-------	------------------	---	---

DRAWINGS

DRAWING 1 SITE LOCATION PLAN DRAWING 2 BOREHOLE PLAN

ENCLOSURES

ENCLOSURES 1-9 BOREHOLE LOGS
ENCLOSURE 10-14 GRAIN SIZE DISTRIBUTION CHARTS

APPENDICES

A ENGINEERED FILL

B SOIL QUALITY ASSESSMENT

1 INTRODUCTION

WSP Canada Inc. (WSP) was retained by Straw Hat Restoration to undertake a Geotechnical Investigation for the proposed residential development located at 774 Hurontario Street, 33 Findlay Drive, 22 Campbell Street, as well as a portion of 750 Hurontario Street, in the Town of Collingwood, Ontario. The location of the proposed development is shown on the attached *Site Location Plan - Drawing 1*.

The scope of this geotechnical investigation was to obtain information about the subsurface conditions through the advancement of nine (9) boreholes and based upon the findings of the boreholes ultimately provide recommendations herein pertaining to the following:

- Site preparation and grading;
- Appropriate foundation type, geotechnical resistances (ULS and SLS) and founding depth;
- Floor slab design and construction;
- General excavation, backfill and bedding requirements; and,
- Groundwater control.

This report deals with geotechnical issues only. Other studies completed by WSP will be submitted under a separate cover.

This report is provided on the basis of the terms of reference presented above and on the assumption that the design will be in accordance with the applicable codes and standards. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design.

The site investigation and recommendations follow generally accepted practice for Geotechnical Consultants in Ontario. The format and contents are guided by client specific needs and economics and do not conform to generalized standards for services. Laboratory testing follows ASTM or CSA Standards or modifications of these standards that have become standard practice.

This report has been prepared for James and Jason Harrison of Straw Hat Restoration. Third party use of this report without WSP consent is prohibited.

2 SITE BACKGROUND AND PROJECT DESCRIPTION

The site is irregular in shape as the properties are located on adjacent streets. A portion of the site is located on the west side of Hurontario Street, north of Poplar Sideroad; the remaining portion of the site is located on the north side of Findlay Drive and connects to the rear portion of 774 Hurontario Street. A small portion of 750 Hurontario is also proposed to be developed as part of the residential development. The site is located in the Town of Collingwood, Ontario.

The portion of the site located at 774 Hurontario was previously an apple orchard; the other two (2) properties are residential. The site is relatively flat; each property includes an existing residential structure.

Based on the latest site concept plan provided to our office, the proposed residential development includes:

- 11 detached 30 foot units
- 6 detached 40 foot units
- 12 detached 30 foot units
- 4 semi-detached 25 foot units

A copy of this concept plan is appended to this report.

3 INVESTIGATION METHODOLOGY

The field investigation consisted of drilling a total of nine (9) boreholes (BH17-01 to BH17-04 and BH18-01 to BH18-05) at the sites on June 23, 2017 and March 2, 2018, as shown on the attached *Borehole Plan - Drawing 2*. The boreholes were advanced to depths between 3.2 m below existing ground surface (mbgs) to 5.2 mbgs. The boreholes were drilled with both hollow and solid stem continuous flight auger equipment.

Drilling equipment was supplied and operated by a drilling sub-contractor under the direction and supervision of WSP personnel. Samples were retrieved at regular intervals with a 50 mm O.D. split-barrel sampler driven with a hammer in accordance with the Standard Penetration Test (ASTM D 1586) method. This sampling method recovers samples from the soil strata, and the number of blows required to drive the sampler a 0.3 m depth into the undisturbed soil (SPT 'N' values) gives an indication of the compactness condition or consistency of the sampled soil material. The SPT 'N' values are indicated on the Borehole Logs - *Enclosures 1-9*.

Soil samples were visually classified in the field and re-evaluated by a senior engineer in our laboratory. All soil samples were tested for moisture contents. Laboratory Grain Size Analyses were carried out on representative samples and the results are provided in *Enclosures 10 to 14*.

Water level observations were made during the drilling and in the open boreholes upon the completion of drilling operations. Monitoring wells were installed in four (4) of the boreholes to allow for subsequent water level observations.

4 SITE AND SUBSURFACE CONDITIONS

Details of the subsurface conditions encountered are presented on the Borehole Logs and summarized in the following sections. It is noted that subsurface conditions can change between boreholes and the details provided below refer to soil conditions that were encountered at the borehole locations only.

4.1 GENERAL SUBSURFACE CONDITIONS

Based on the results of the field investigation, the subsurface conditions at the site consisted of topsoil overlying either fill or sand to sand and gravel; glacial till was encountered underlying the sand. A lower sand and gravel / silt deposit was encountered underlying the till in two (2) of the boreholes. Minor cohesive deposits were encountered in two (2) of the boreholes. Groundwater was encountered in the majority of the boreholes on completion of drilling as well as in the monitoring wells following the drilling operations.

4.1.1 TOPSOIL

Topsoil was encountered surficially at each of the borehole locations at the site. The topsoil varied between 10 cm and 40 cm in thickness. It should be noted that topsoil quantities should not be calculated from the borehole information, as large variations in depth may exist between boreholes. A detailed topsoil thickness survey is required to determine an accurate evaluation of quantity.

The topsoil is generally dark brown in colour and very moist.

4.1.2 FILL

Fill was encountered underlying the topsoil in boreholes BH18-01, BH18-04 and BH18-05 advanced at the site. The fill comprised moist brown sand to sand and gravel; a cobble was encountered within the fill deposit in Borehole BH18-01. The fill extended to depths between 0.8 mbgs to 1.5 mbgs at the site.

The measured SPT 'N' values in the fill ranged from 6 blows per 0.3 m of penetration to greater than 50 blows per 0.3 m of penetration, indicating that the fill varied from loose to very dense; generally being loose as noted above the high SPT 'N' value was due to a cobble being encountered in the fill.

4.1.3 NON-COHESIVE DEPOSITS

Non-cohesive deposits of soil, ranging from sand to sand and gravel were encountered underlying the topsoil and fill, in BH18-04 and BH18-05, excluding Borehole BH18-01. In addition, a sand and gravel deposit and a silt deposit were encountered underlying the till in Boreholes BH17-03 and Borehole BH18-04, respectively. The upper non-cohesive deposits extended to a maximum depth of 1.9 mbgs in Boreholes BH18-04 and BH18-05. The lower sand and gravel deposit in Borehole BH17-03 was encountered at a depth of 4.3 mbgs; the borehole was terminated in this deposit at a depth of 5.0 mbgs. The lower silt deposit in Borehole BH18-04 was encountered at a depth of 4.6 mbgs; the borehole was terminated in this deposit at a depth of 5.2 mbgs.

The non-cohesive deposits are brown, moist to wet, and contained trace organics near the ground surface at BH17-01.

The measured SPT 'N' values in the non-cohesive deposits ranged from 3 blows per 0.3 m of penetration to 43 blows per 0.3 m of penetration, indicating that the deposits varied from very loose (in samples directly underlying the topsoil) to dense.

The natural moisture content of these soil samples ranged between 7% and 28%.

Grain size analysis of the lower sand and gravel deposit in Borehole BH17-03 was conducted and the gradation curve is presented in *Enclosure 10*. A review of the grain size analysis indicates the following ranges of clay and silt (fines), sand and gravel percentages:

Gravel: 23%

- Sand: 47%

Fines (Silt and Clay): 30%

4.1.4 SANDY SILT TILL

A sandy silt till deposit was encountered in each of the boreholes advanced at the site. The till was brown to grey and contains trace to some gravel and trace to some clay. At the time of the investigation, the till was observed to be moist to wet.

Boulders and cobbles are inferred to be present within the till deposit. Each of the boreholes excluding Boreholes BH17-03 and BH18-04 were terminated in the till deposit at a maximum depth of 5.2 mbgs.

The measured SPT 'N' values in this till deposit ranged from 12 blows per 0.3 m to 68 blows per 0.3 m, indicating that the till varied from compact to very dense.

The natural moisture content of these soil samples ranged between 5% and 20%.

Grain size analyses of three till samples were completed and the gradation curves are presented in *Enclosures 11, 12, and 13.* A review of the grain size analyses indicate the following ranges of clay, silt, sand and gravel percentages:

Gravel: 7% to 13%

Sand: 25% to 30%

Silt: 40% to 49%

Clay: 17% - 19%

4.1.5 CLAYEY SILT TO SILT AND CLAY

A minor cohesive deposit was encountered in two (2) of the boreholes advanced at the site. The clayey silt to silt and clay deposit was brown and contains trace sand. At the time of the investigation, the soil was observed to be moist.

The measured SPT 'N' values in this deposit were 14 blows per 0.3 m and 40 blows per 0.3 m, indicating that the clayey silt and silt to clay varied from stiff to hard.

A grain size analysis of one (1) clayey silt sample was completed and the gradation curve is presented in *Enclosure 14*. A review of the grain size analyses indicates the following ranges of clay, silt, sand and gravel percentages:

Gravel: 0%

Sand: 5%

- Silt: 73%

Clay: 22%

4.1.6 GROUNDWATER

Groundwater was encountered in each of the boreholes. A summary of the groundwater depths encountered at the site is shown below.

BOREHOLE	DATE	GROUNDWATER DEPTH (MBGS)	MEASUREMENT SOURCE
	June 23, 2017	1.9	Open Borehole
BH17-01	June 28, 2017	0.3	Monitoring Well
	March 7, 2018	0.4	Monitoring Well
BH17-02	June 23, 2017	2.5	Open Borehole
	June 23, 2017	0.4	Open Borehole
BH17-03	June 28, 2017	0.3	Monitoring Well
	March 7, 2018	0.4	Monitoring Well
	June 23, 2017	3.6	Open Borehole
BH17-04	June 28, 2017	3.5	Monitoring Well
	March 7, 2018	0.4	Monitoring Well
BH18-01	March 2, 2018	Dry	Open Borehole
БПО-01	March 7, 2018	1.1	Monitoring Well
BH18-02	March 2, 2018	Dry	Open Borehole
BH18-03	March 2, 2018	4.3	Open Borehole
BH18-04	March 2, 2018	1.5	Open Borehole
BH18-05	March 2, 2018	1.4	Open Borehole

It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to major weather events. Further monitoring of the groundwater level is recommended.

5 DISCUSSION & RECOMMENDATIONS

5.1 GENERAL

The following recommendations for the proposed site development are based on the information obtained from the borehole investigation and laboratory testing, which we believe fairly represents the subsurface conditions of the site. These recommendations are intended for the guidance of the design engineer to establish constructability and should not be construed as instructions to contractors. If significant differences in the subsurface conditions described above are found, we request to be contacted immediately to review and revise our findings and recommendations, if necessary.

The construction methods described in this report must not be considered as being specifications or recommendations to the prospective contractors, or as being the only suitable methods. Prospective contractors should evaluate all of the factual information, obtain additional subsurface information as they might deem necessary and should select their construction methods, sequencing and equipment based on their own experience in similar ground conditions. The readers of this report are also reminded that the conditions are known only at the borehole locations and in view of the generally wide spacing of the boreholes, conditions may vary significantly between boreholes.

It is noted that, as no detailed design information was available at the time of this investigation, the information and recommendations provided below should be considered preliminary in nature only.

5.2 SITE BACKGROUND

Based on information provided by the client, it is anticipated that the site is proposed to be developed into a residential development. It is anticipated that the residential structures will have full basements.

The results of the geotechnical investigation indicate that the subsurface conditions at the site comprise topsoil overlying either fill or very loose to dense sand to sand and gravel; compact to very dense glacial till was encountered underlying the upper sand deposits. A lower sand and gravel and silt deposit was encountered underlying the till in two (2) of the boreholes. Minor stiff to hard cohesive deposits were encountered in two (2) of the boreholes. Groundwater was measured as high as 0.3 mbgs in one (1) of the monitoring wells following the drilling operations.

5.3 SITE PREPARATION AND GRADING

At the time of our investigation, a portion of the site was an existing apple orchard (774 Hurontario Street); therefore tree removal will be required to facilitate the proposed development on the site. In general the site is relatively flat and as such it is anticipated that only minor site grading will be required. However, if fill greater than one (1) meter in thickness is to be placed at the site, WSP should be contacted to review the fill areas.

Removal of all topsoil and fill will be required to facilitate the proposed development on the site. It is recommended that a topsoil test pit program be completed at the site by WSP prior to construction to refine the topsoil thickness. Regarding the reuse of the site topsoil, the topsoil may be reused in landscaping applications or other non-structural fill applications. WSP should be contacted to review all proposed topsoil reuse on site.

Subsequent to the completion of the required stripping and removal of unsuitable materials (topsoil), the sub-grade should be proof-rolled and inspected by experienced WSP geotechnical engineering personnel. The proof-rolling and compaction of the exposed sub-grade is recommended to be conducted using a vibratory compactor with a minimum static weight of 10 tonnes. The proof-rolling program should consist of a minimum of six (6) passes per unit area and be tested to assure that the sub-grade is compacted to a minimum of 98% of the exposed material's Standard Proctor Maximum Dry Density (SPMDD). Any loose/soft or wet areas identified at the time of proof-rolling that cannot be uniformly compacted are recommended to be sub-excavated and backfilled with approved engineered fill consistent with the recommendations provided in *Appendix A*.

Where engineered fill is required to develop the design grades and elevations or for use in backfilling excavations created through the removal of unsuitable materials or soils as described above, the excavated on-site materials may be re-used,

subject that these are free of organic and other unsuitable materials and have adequate moisture content. Boulders or cobbles greater than 200 mm in size should be removed from the fill.

Alternatively, Ontario Provincial Standard Specification (OPSS) Granular B – Type I, OPSS Select Subgrade Material (SSM) or approved equal may be used.

All fill materials imported to the site must meet all applicable municipal, provincial and federal guidelines and requirements associated with environmental characterization of the materials.

Engineered fill is to be placed in maximum 200 mm thick loose lifts under full time supervision of qualified geotechnical personnel. Each lift is to be uniformly compacted to achieve a minimum of 100% of the material's SPMDD. Additional information related to the placement and compaction of engineered fill can be found in *Appendix A*.

5.4 PRELIMINARY FOUNDATION RECOMMENDATIONS

Details of the proposed development such as underside of footing elevations were not available at the time when this report was prepared. When this information is available, the recommendations provided below should be reviewed by WSP to confirm that the recommendations are still valid based on the design information.

Based on the soil conditions encountered in the boreholes and provided that the site is prepared in accordance with the recommendations presented in this report, footings that are founded at a minimum depth of 1.5 mbgs on the compact or stiff original soil or engineered fill soils may be designed based on a preliminary factored ultimate geotechnical resistance at Ultimate Limit States (ULS) of 150 kPa. A preliminary serviceability geotechnical resistance at Serviceability Limit States (SLS) of 100 kPa may be used in the design of the foundations. We note that some subexcavation may be required in some areas due to loose soil conditions (i.e. Borehole BH18-05).

Foundations designed to the specified bearing capacities at the serviceability limit states (SLS) are expected to settle less than 25 mm total and 13 mm differential.

5.4.1 GENERAL FOUNDATION COMMENTS

All footings exposed to seasonal freezing conditions should be provided with at least 1.5 m of earth cover or equivalent thermal insulation against frost. It is recommended to keep footings as high as possible to avoid or minimize penetration below groundwater levels while considering the minimum frost cover requirement.

Variations in the soil conditions are expected in between the borehole locations, and during construction, the geotechnical resistances should be confirmed by experienced WSP site personnel.

Where it is necessary to place footings at different levels, the upper footing must be founded below an imaginary 10 horizontal to 7 vertical line drawn up from the base of the lower footing. The lower footing must be installed first to help minimize the risk of undermining the upper foundations.

The soils at the base of footings can be easily disturbed by construction machinery and foot traffic or lose their strength in contact with surface water. Consideration could be given to placing a 50 mm thick skim coat of low-strength concrete on the founding subgrade immediately after its approval, to prevent its disturbance by construction activities and from ground or surface water, where necessary.

During winter construction, foundations and slab on grades must not be poured on frozen soil. Foundations must be adequately protected at all times from cold weather and freezing conditions.

In the vicinity of the existing buried utilities, all footings must be lowered to undisturbed native soils, or alternatively the services must be structurally bridged.

It should be noted that the recommended geotechnical resistances have been calculated by WSP from the borehole information for the preliminary design stage only. Additional input may be required as new design information becomes available and is refined. For example, more specific information is available with respect to conditions between boreholes when construction is underway. In this regard, the interpretation between boreholes and the recommendations of this report must therefore be checked through field inspections provided by WSP to validate the information for use during the construction stage.

5.5 FLOOR SLAB CONSTRUCTION AND DRAINAGE

The basement floor slabs can be placed on undisturbed native soils or on engineered fill. For bedding and moisture barrier purposes, a 200 mm thick layer of 19 mm clear crushed stone must be provided under the concrete basement floor slab. Where wet and/or fine grained soil conditions exist, the moisture barrier should be separated from the subgrade by a geotextile fabric to avoid loss of soil/fines and settlement problems.

With the assumption of basement levels approximately 3 metres below grade for the proposed residential development, a robust perimeter and underfloor drainage system will be required around the exterior basement walls. It is recommended that, at a minimum, drains be installed along the perimeter of the base of the basement level and underneath the slab to collect water accumulated behind the perimeter foundation walls. The perimeter drains can consist of 100 mm diameter perforated pipes surrounded by a 150 mm thick layer of 19 mm clear stone on all sides. The pipe and bedding stone are to be completely wrapped in a non-woven geotextile with a minimum 600 mm overlap. The subfloor and perimeter drainage system are to be hydraulically connected. The adjacent filter fabric sheets are to be overlapped by not less than 400 mm. In areas where gravity drainage is not feasible, the water collected by the perimeter drain pipes are to be channelled into a sump from where the water could be removed by pumping. A review of the drainage system should be completed by WSP during the detail design stage.

Underfloor and perimeter drainage will likely be required in the basements. A hydrogeological study must be carried out to investigate the feasibility of perimeter and underfloor drainage for basement floors below the groundwater table.

5.6 LATERAL EARTH PRESSURES

The lateral earth pressure for the design of retaining walls, foundation walls, shoring, or trench boxes can be estimated from the following expressions:

Above groundwater table: $p = K (\gamma z + q)$

Below groundwater table: $p = K \{ \gamma h_1 + \gamma_1 (z - h_1) + q \} + p_w$

Where:

p = Lateral earth and water pressure in kPa acting at depth z;

z = Depth below ground surface, in meters;

K = Active earth pressure coefficient, (K_a);

 γ = Unit weight of soil above groundwater table, in kN/m³;

 γ_1 Submerged unit weight of soil below water table;

h = Thickness of soil above groundwater table, in meters;

q = Value of Surcharge (kPa);

 $p_w = Hydrostatic water pressure$

The suggested soil parameters (unfactored) for the retaining wall design and/or ground support systems are summarized below.

SOU TYPE	UNIT WEIGHT	EFFECTIVE ANGLE OF	COEFFICIENT OF EARTH PRESSURE		
SOIL TYPE	γ (KN/M³)	INTERNAL FRICTION (Φ')	ACTIVE K _A	AT REST Ko	PASSIVE K _P
Granular A	22	35	0.27	0.43	3.69
Granular B	21	32	0.31	0.47	3.25
Glacial Till	20	32	0.31	0.47	3.25
Engineered Fill / Native Cohesive and Non-Cohesive Deposits	19	30	0.33	0.50	3.00

It is essential that imported free-draining OPSS Granular 'B' type fill be used as backfill against foundation walls. Backfilling of the footing wall excavations is recommended to be placed in 200 mm thick lifts, uniformly compacted to 100% SPMDD to proposed sub-grade elevations.

5.7 TEMPORARY EXCAVATIONS AND GROUNDWATER CONTROL

The details for the proposed services installations are not available at the time of preparing this report. The recommendations provided below assume that conventional depths for services will be carried out (approximately 3 mbgs to 4 mbgs below existing site grades).

Based upon the subsurface conditions at the borehole locations, excavations can be carried out with heavy hydraulic back-hoes. It is recommended that provision be carried in the contract for the excavation and disposal of obstructions on site, including cobbles and boulders.

All temporary excavations must be carried out in accordance with the Occupational Health and Safety Act (OHSA). In accordance with OHSA, the soils (assuming they are above the groundwater table or properly dewatered) would be classified as a Type 3 soil. If space limitations exist due to adjacent structures or facilities, consideration could be given to the construction of a temporary support system to provide protection to the structures and/or facilities. All excavated spoil should be placed at least the depth of the trench away from the edge of the trench for safety reasons.

As noted above, groundwater was encountered in the majority of the boreholes at the site; groundwater was measured as high as 0.3 mbgs in two (2) of the boreholes. As such, depending on site grading requirements and excavation depths it is likely that dewatering will be required at the Site and an Environmental Activity and Sector Registry (EASR) or a Permit to Take Water (PTTW) will be required for the excavations. It should be noted that the requirements for a PTTW, issued by the Ontario Ministry of the Environment and Climate Change (MOECC) have recently changed; daily water takings of 50 m³/day require registration of the MOECC EASR database, and daily water takings of 400 m³/day require a PTTW. Both the EASR and the PTTW require a hydrogeological assessment report to support the specific application. In addition, a permit to discharge the collected water to the sewer system/water body will be required from the applicable agency.

Once site grading information is available, it is recommended that WSP review the information to determine if a hydrogeological assessment is required to be completed at the site to provide input toward an EASR or a PTTW. A PTTW application requires a minimum of 90 days for the MOECC to process; in this regard, appropriate lead time should be factored into the overall project schedule to accommodate the PTTW process, if required.

In any areas requiring dewatering, the groundwater table must be lowered a minimum of one (1) meter below the lowest excavation level. It is recommended that, prior to excavations for site servicing, test pits be carried out in areas where groundwater issues are expected to further explore the groundwater and seepage conditions. A specialized dewatering contractor should be retained to design and install the dewatering system.

5.8 PIPE BEDDING AND COVER

The soils above the groundwater level, or properly dewatered if encountered below the groundwater level, will provide adequate support for the sewer pipes and allow the use of normal Class B type bedding. The recommended minimum thickness of granular bedding below the invert of the pipes is 150 mm. The thickness of the bedding may, however, have to be increased depending on the pipe diameter or in accordance with local standards or if wet or weak subgrade conditions are encountered, especially when the soil at the trench base level consists of wet, dilatant silt. The bedding material should consist of well graded granular material such as Granular 'A' or equivalent. After installing the pipe on the bedding, a granular surround of approved bedding material, which extends at least 300 mm above the obvert of the pipe, or as set out by the local authority or municipality, should be placed. It is recommended that WSP be on site during excavations to assess the suitability of the subgrade materials to support the pipes.

If localized wet trench conditions are encountered, a uniformly graded clear stone may be used provided a suitable, approved filter fabric (geotextile) is placed in conjunction with the clear stone. The geotextile must extend underneath the clear stone, along the sides of the trench, and wrapped on top of the clear stone such that **the clear stone is fully wrapped by the geotextile.** A minimum geotextile overlap of 1 m is required; alternatively stitching of the geotextile could be considered.

Localized, wet and unstable soils encountered within generally stable soil zones can be generally stabilized by 'punching' a 50 mm well graded crusher run limestone pad into the soft subgrade prior to bedding placement. The thickness of the 'pad' will depend on field conditions and should be examined by WSP personnel during the construction operations.

Alternatively, if longer stretches of unstable soils are encountered, Class 'A' bedding could be considered. The rigid concrete bedding (lean mix concrete) should be laid from manhole to manhole to mitigate the potential for differential settlement.

Where the sewer pipe is placed in water bearing soils below the water table, the joints connecting the sewer sections should be very well sealed to prevent piping of fines into the sewer pipe and manhole catch basin risers.

5.9 TRENCH BACKFILL

The excavated soils can be used as construction backfill provided their moisture content at the time of placement is within 2% of the optimum moisture content and that the soils do not contain organic content or other deleterious materials. Boulders or cobbles greater than 200 mm in size should be removed from the trench backfill. WSP should be on site during all trench backfilling operations to confirm the suitability of the material being used.

For the granular soils, smooth drum type vibratory rollers are recommended. Cohesive soils, if encountered, should be compacted with sheepsfoot type vibratory compactors. The trench backfill should be placed in maximum 0.3 m lift thickness and compacted to at least 98 percent of its SPMDD. Trench backfilling operations should be avoided during freezing weather.

It is preferable that the native soils be re-used from approximately the position at which they are excavated so that frost response characteristics of the soils after construction remain essentially similar. If required, consideration may also be given to backfilling trenches with a well graded, compacted granular soil such as Granular 'B' material.

It should be noted that the excavated soils are subject to moisture content increase during wet weather which would make these materials too wet for the compaction requirements noted above. Stockpiles should therefore be covered with tarpaulins to help minimize moisture increases.

5.10 PRELIMINARY PAVEMENT DESIGN

The investigation has shown that the predominant subgrade soils encountered at the site, after stripping any topsoil will be native cohesive and non-cohesive deposits, glacial till, and possibly engineered fill.

Prior to the placement of granular materials as part of the pavement structure, the subgrade should be prepared and heavily proof-rolled under the supervision of WSP. Any poorly performing areas should be sub-excavated and replaced

with either granular earth fill approved by WSP or imported Granular B, Type I material conforming to the requirements of OPSS.

Based on the above and assuming that traffic usage will be industrial, the following minimum pavement thickness is recommended:

PAVEMENT LAYER	COMPACTION REQUIREMENTS	LOCAL ROAD
	92.0 to 96.5%	40 mm HL 3
Asphaltic Concrete	Maximum Relative Density (MRD)	50 mm HL 8
OPSS Granular A Base	100% SPMDD	150 mm
OPSS Granular B	100% SPMDD	300 mm

We note that the pavement design noted above should be considered preliminary only. If required, a more refined pavement structure design can be performed based on specific traffic data and design life requirements and will involve specific laboratory tests to determine frost susceptibility and strength characteristics of the subgrade soils, as well as specific data input from the client.

5.11 LIMITED ENVIRONMENTAL TESTING RESULTS

In order to characterize the quality of the existing soils at the site, 34 soil samples were collected and submitted to an analytical laboratory for analysis of various parameters. Additional details regarding the testing methods and results can be found in *Appendix B*.

5.12 DESIGN REVIEW, TESTING AND INSPECTIONS

WSP requests to be afforded the opportunity to complete a final review of the proposed development discussed in this report to verify that geotechnical recommendations are appropriate. If not given this opportunity, we cannot assume liability for omissions, misinterpretations or deficiencies in our recommendations.

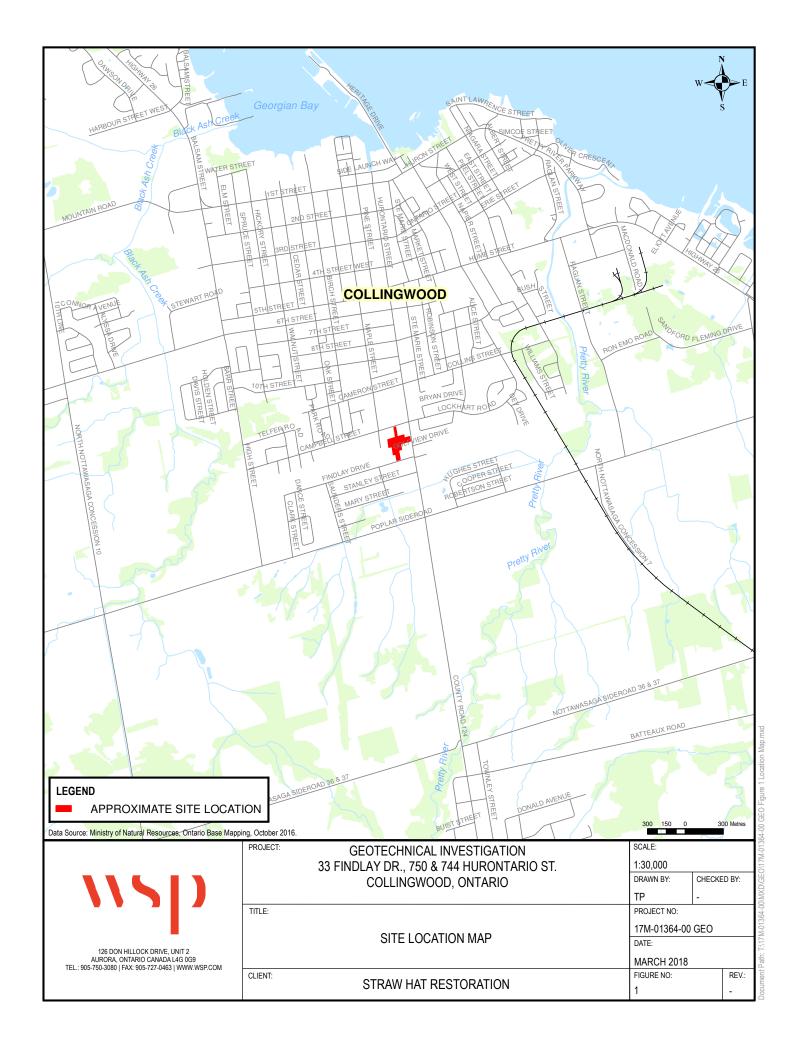
WSP should be contacted to provide geotechnical testing and inspections during construction operations. Exposed subgrade soils for all structures are to be inspected to confirm the material is stable and competent. Inspections of seepage and groundwater conditions during construction are also required, as discussed in this report. Testing and inspections for general QA/QC are to include sampling and laboratory testing of fill materials and asphalt, compaction testing for the placement of fill materials and asphalt, and field and laboratory testing of concrete (including mix design reviews).

6 LIMITATIONS OF REPORT

This report is intended solely for the Client named. The material in it reflects our best judgment in light of the information available to WSP Canada Inc.at the time of preparation. Unless otherwise agreed in writing by WSP Canada Inc., it shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. No portion of this report may be used as a separate entity, it is written to be read in its entirety.

The conclusions and recommendations given in this report are based on information determined at the test hole locations. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated. Subsurface and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction, which could not be detected or anticipated at the time of the site investigation. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report.


The comments made in this report on potential construction problems and possible methods are intended only for the guidance of the designer. The number of test holes may not be sufficient to determine all the factors that may affect construction methods and costs. For example, the thickness of surficial topsoil or fill layers may vary markedly and unpredictably. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work. This work has been undertaken in accordance with normally accepted geotechnical engineering practices.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.

DRAWINGS

ENCLOSURES

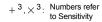
Method: Hollow Stem Auger

REF. NO.: 17M-01364-00

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

PROJECT LOCATION: Collingwood ON Diameter: 216 mm


DATUM: Relative Date: Jun/23/2017 ENCL NO.: 1

BH LOCATION: See Figure 2

BH LO	OCATION: See Figure 2								TANDA	חם חבג	IETDA	TION T	ГСТ									
	SOIL PROFILE		S	AMPL	.ES	<u>_</u>		RES	ISTANC	RD PEN E PLO		- -	ESI	PLAST	IC NAT	URAL	LIQUID		Τ	RE	MARK	S
(m)		=			١.	GROUND WATER CONDITIONS		:	20 -	40 6	60	80	100	PLAST LIMIT			LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		AND AIN SI	7 F
ELEV	DECODIDATION	STRATA PLOT	~		BLOWS 0.3 m	NO NO	NO.			RENG	TH (k	(Pa)		W _P		w 	W _L	X 은	SAL U	DIST		
DEPTH	DESCRIPTION	ATA	1BEF	ш	BLC 0.3	N T	ELEVATION		NCONF	FINED RIAXIAL	+	FIELD & Sens LAB \	VANE itivity	WA.	TER C	ONTEN	IT (%)	P.O.	MTUF)		(%)	
	Ground Surface	STR	NUMBER	TYPE	ż	S S	Ë						100				30		_	GR S	A SI	CL
0.0	TOPSOIL	7/1/2																				
- 0.2	SAND, trace silt		1																			
F	organics, brown, layered, loose,		1	SS	4	abla		₹4								0						
ļ	very moist						W. L. 0 Mar 07).4 ml	GL													
0.6	SANDY SILT TILL, trace to some	141					iviar 07	, 2 01	8													
[0.0	clay, trace to some gravel		\vdash					l \														
- 1	brown, compact to dense, moist							I۱														
1			2	SS	18			}	18						,							
[-						<u>/</u>													
-							-Bento	nite														
									$ \ $													
-									'	\				1				1				
			1 _		4-7					7				_				1				
F.			. 3	SS	47					7 47				0								
2			ļ						Ι.	/												
[/													
-		$\ \cdot\ $							/													
									/													
-			4	SS	19				19						0							
								l .														
-																						
3								ΙI														
[1 1														
-			5	SS	14			↓	14						,							
			ľ		''				Ϊ													
- 1							Sand															
						ŀ.∃.	Scree	h														
- 1			1																			
4			1																			
[•																				
-																						
ļ														1								
-	Increasing clay content																					
<u> </u>	becoming grey													1								
- 1			6	SS	17			4	17					0								
5														1								
5.2		Ш	\vdash				-	_	-				+	\vdash			+	\vdash				-
0.2	END OF BOREHOLE																					
	Notes:																					
	Groundwater measured at a depth of 1.9 m below site grades on																					
88	completion of drilling operations.													1								
7.GPU 3/2	Groundwater Levels																					
EUMNAR	Date Water Level (mbg)																					
PR SDOOL	June 28/17 0.3 March 7/18 0.4																					
184-00 BH																						
30.0 T/M.01																						
200-2017																						
SOLLOG 20 SST ROTTO																						
# 100 ds														1								
**							. 3			1		o ε=39	1		-	1	-					

REF. NO.: 17M-01364-00

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

Method: Hollow Stem Auger PROJECT LOCATION: Collingwood ON Diameter: 216 mm

DATUM: Relative Date: Jun/23/2017 ENCL NO.: 2

BH LOCATION: See Figure 2

BHL	OCATION: See Figure 2 SOIL PROFILE			AMPL	EQ			S1	ANDAF	RD PEN	IETRAT	ION TE	ST	1							
	SOIL PROFILE			AIVIFL		ER								PLAST	IC NAT MOIS CON	URAL STURE	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	r wt	REM.	ARKS ND
(m)		LO1			SN L	GROUND WATER CONDITIONS	z		Ĺ		50 8 	30 10 	1	W _P		W W	W _L	ET PE (kPa)	L UNI	GRAII	N SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	JND	ELEVATION	0 UI	NCONF	INED	+	FIELD V. & Sensiti LAB VA	ANE vity	 	TED 04	0		SQ.	TURA (Kh	DISTRI	BUTION %)
	Ground Surface	STRA	NO.	TYPE	Į.	SROI	ELEV		JICK TF 0 4			LAB VA 80 10				ONTEN 20 (1 (%) 30		₹		SI CL
0.0		7/1/	_		-											ĺ				GIV SA	31 CL
- 0.2	SAND, trace silt orangish brown, very loose to dense, moist		1	SS	3			2 3								0					
1			2	SS	32			\	A 32					C	o						
1.2	SANDY SILT TILL, trace to some clay, trace to some gravel, occasional cobble brown, compact to very dense, very moist	0																			
- - - 2		0	3	SS	68						68			0							
-		0	4	SS	31				31	/					,	0					
- - - - -		0	5	SS	17			 	17					C	>					7 25	49 19
- - - <u>4</u> - -		0																			
- - - - <u>5</u>	becoming grey	0	6	SS	31				3 31						0						
5.22 (IO) AMMENTAL ION (INC. 128 INC. 1	END OF BOREHOLE Notes: 1. Borehole open to a depth of 4.0 m below site grades on completion of drilling. 2. Groundwater measured at a depth of 2.5 m below site grades on completion of drilling operations.																				
Way over		L		L			L				L	L				L	L				
-			•			SDADH		3 1				e -30/				-	1	_			

115[) **LOG OF BOREHOLE BH17-03** 1 OF 1 PROJECT: Hurontario Street/Findlay Drive Method: Hollow Stem Auger CLIENT: Straw Hat Restoration PROJECT LOCATION: Collingwood ON Diameter: 216 mm REF. NO.: 17M-01364-00 DATUM: Relative Date: Jun/23/2017 ENCL NO.: 3 BH LOCATION: See Figure 2 STANDARD PENETRATION TEST RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS POCKET PEN. (Cu) (kPa) AND LIMIT NATURAL UNIT ((kN/m³) 40 60 80 100 (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) TYPE 40 60 80 10 20 30 GR SA SI CL Ground Surface 0.0 TOPSOIL SS 5 ₩. L. **0.4** mBGL Mar 07, 2**0**18 0.3 SAND, trace silt orangish brown, compact, wet 2 SS 23 SANDY SILT TILL, trace to some -Bentonite clay, some gravel, occasional cobbles grey, compact to dense, moist SS 39 3 0 4 SS 29 SS 5 26 Sand -Screen **GRAVELLY SILTY SAND** 4.3 grey, wet, dense 6 SS 43 0 23 46 31 .0 5.0 **END OF BOREHOLE** Notes: Groundwater measured at a depth of 0.4 m below site grades on completion of drilling operations. **Groundwater Levels** Date Water Level (mbg) June 28/17 0.3 March 7/18

REF. NO.: 17M-01364-00

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

Method: Hollow Stem Auger PROJECT LOCATION: Collingwood ON Diameter: 216 mm

	UM: Relative							Date: Jun/2	23/201	7					EN	ICL N	D.: 4			
BH L	OCATION: See Figure 2			A A A DI	F0	1	_	STANDA	RD PEN	IETRAT	ION TE	ST	ı —							
(m) ELEV	SOIL PROFILE	PLOT		SAMPL		WATER	N N		10 6	80 8	0 10	00	PLASTI LIMIT W _P	CON	URAL STURE TENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	At GRAII	ARKS ND N SIZE
DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEAR ST O UNCONF QUICK TI	RIAXIAL	- ×	FIELD VA & Sensiti LAB VA	ANE	ı		ONTENT	「(%) 60	POC (Cu)	NATURA (ki	(0	BUTION %) SI CL
0.0	TOPSOIL	7/ 1/2																		
0.2	SAND TO SAND AND GRAVEL, trace silt orangish brown, very loose to compact, moist	0000		SS	3	<u></u>		12 (3							0					
- - -1 -		000		SS	29		W. L. (Mar 07).7 mBGL , 2018					c							
_ 1.2 - -	SANDY SILT TILL, some clay, some gravel brown, compact to dense, very moist	0					-Bento	nite												
- - <u>-</u> 2 -		0	3	SS	42				42				0							
- - - - -		0	4	SS	20			X 20						Þ					13 29	41 17
<u>3</u> - -		٥	. 5	SS	23			¥ 23					0							
- - - - - -		0					-Sand -Scree													
- - - -	becoming grey	0																		
- - - 5		0	6	SS	43				43				c							
5.2	END OF BOREHOLE Notes: 1. Groundwater measured at a depth of 3.6 m below site grades on completion of drilling operations.																			
DY (AB) OT 120 THA 03 B4 10 B4 LOGS PRELIMINARY (A)	Groundwater Levels Date Water Level (mbg) June 28/17 3.5 March 7/18 0.4																			
NEW SOLL OC. 2018-SPT PL																				

Method: Hollow Stem Auger

REF. NO.: 17M-01364-00

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

PROJECT LOCATION: Collingwood ON Diameter: 216 mm

DATUM: Relative Date: Mar/02/2018 ENCL NO.: 5

BHI	OCATION: See Figure 2							2010.		<i>J2/2</i> 010					LI	OL IN	CL NO 5							
5	SOIL PROFILE		S	AMPL	ES			S1 RESI	TANDAI STANC	RD PENI E PLOT	TRAT	ION TE	ST	, NATI	JRAL				REMAR	KS				
(m) ELEV DEPTH	Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR ST NCONF UICK TI	10 60 RENG) 8 ΓΗ (kF + ×	0 10 Pa) FIELD VA & Sensiti LAB VA	OO L ANE vity	FER CC		LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU (%)	SIZE ITION				
0.0	TOPSOIL	71 1																						
0.2	FILL, sand brown, moist, loose to compact		1	SS	10		-Bento	nite							0									
- - - 1 - -	no recovery, spoon possibly pushing cobble very dense		2	SS	50/ 80mn	. ¥ 	W. L. Mar 07	.1 mE	GL	\$ 50/	80mm													
- - - - - 1.8	layered, brown, moist, hard		3	SS	40	I . H .	Sand			40														
- - - - - - - 3		0	4	SS	15		Scree	<i>_</i> ∠	15					0										
3.7	END OF BOREHOLE	0	5	SS	14			I	4					0										
P ION (CO SIA SELVICIO), ON CONCINENCIAN CON 1922 W	Notes: 1. Installed 50mm groundwater monitoring well upon completion. Groundwater Levels Date Water Level (mbg) March 7/18 1.1																							

REF. NO.: 17M-01364-00

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

Method: Solid Stem Auger PROJECT LOCATION: Collingwood ON Diameter: 150mm

DATUM: Relative Date: Mar/02/2018 ENCL NO.: 6

BH LOCATION: See Figure 2

DITE	SOIL PROFILE		S	SAMPL	.ES			S1 RESI	ANDAF	RD PEN	IETRAT	ION TE	ST							DEMARKO
						GROUND WATER CONDITIONS						0 10	00	PLASTI LIMIT	C NATU MOIS CON	JRAL TURE TENT	LIQUID LIMIT W _L ————————————————————————————————————	Ä.	IT WT	REMARKS AND
(m)		STRATA PLOT			S E	-WA	Z C							W _P	V	v	WL	(KPa)	AL UN N/m³)	GRAIN SIZE DISTRIBUTION
ELEV DEPTH	DESCRIPTION	ATA	NUMBER	ш	BLOWS 0.3 m	DITIO	ELEVATION	0 UI	NCONF	INED	TH (kF	FIÉLD VA	ANE		TER CC	NTEN	Γ(%)	P00 000	ATUR (k	(%)
	Ground Surface	STR	N N N	TYPE	ž	GRC	E.E.				× 50 8	0 10				0 3	80		Z	GR SA SI CL
0.0	TOPSOIL	7/1/2																		
0.2	SAND, some gravel brown, moist to wet, loose to compact		1	SS	6			1 1 1 1 1 1 1 1 1 1							(
1.0	SILTY SAND TILL, some clay, trace gravel brown to grey, moist, compact		2	SS	27			\	27						0					
- - - - - 2	some gravel dense		3	SS	45				\	1 45					0					
-			4	SS	24				24						0					
<u>3</u> 			5	SS	22				X 22						0					
- - - 4 - -																				
- - - - 5	increased clay content wet		6	SS	12			1 12	2						0					
5.22	END OF BOREHOLE Notes: 1. Borehole was open and dry upon completion	144																		
WSP SOIL LOG 2019-SPT PLOT-13																				

REF. NO.: 17M-01364-00

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

Method: Solid Stem Auger PROJECT LOCATION: Collingwood ON Diameter: 150mm

DATUM: Relative Date: Mar/02/2018 ENCL NO.: 7

BH LOCATION: See Figure 2

BH LC	OCATION: See Figure 2		_						TANDA	RD PEN	JETRAT	TION TE	ST	ı —								_
	SOIL PROFILE		S	AMPL	ES.	œ		RES	TANDAI SISTANC	E PLOT			.51	PLAST	IC NATI	URAL	LIQUID LIMIT		™		MARK:	3
(m)		0			(Ol	/ATE IS	_	_		1	1	30 10	00	LIMIT W _P	CON	TENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	UNIT (°		AND JIN SIZ	E
ELEV DEPTH	DESCRIPTION	A PL	띪		BLOWS 0.3 m	V OV	TION		AR ST		TH (kl	Pa) FIELD V & Sensiti	ANE	i-		·	— <u>`</u>	OU) (k	(RN/n	DISTE	RIBUTI	
DEFIN		STRATA PLOT	NUMBER	TYPE		GROUND WATER CONDITIONS	ELEVATION	• (QUICK TI	RIAXIAL	_ ×	LAB VA	ANE		TER CC		T (%)	PC	¥		(%)	
0.0	Ground Surface	7/ 1/V	ž		ż	<u> </u>	ᆸ		20 4	10 6	08	30 10	00	1	10 2	20 3	30			GR S	A SI	CL
0.0	TOPSOIL	X X																				
- 0.3	SAND brown, moist to wet, loose to compact		1	SS	4			12 ,4							0							
1 0.9	SILTY SAND TILL, some clay, some gravel brown, moist, compact		2	SS	24			\ 	224						0							
- - - - - -	trace gravel grey, very dense		3	SS	51				\	3 51					0					10 2	5 48	17
-	some gravel to gravelly																					
- - -		0	4	SS	54						 54 			0								
- - - - - -	cobbles																					
			5	SS	25				25					0								
4.6	SAND TILL, some silt, some clay, some gravel grey, moist, compact		6	SS	19				1 19					0								
5.2	END OF BOREHOLE Notes: 1. Borehole was open and wet at 4.3 mbg upon completion																					
Р.ОСт.30 тию вы дове нось решиниет дот 922/19																						
WêP SOLL CO-20 19-SF							. 3					ε=3%										

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

Method: Solid Stem Auger

PROJECT LOCATION: Collingwood ON Diameter: 150mm REF. NO.: 17M-01364-00

DATUM: Relative Date: Mar/02/2018 ENCL NO.: 8

BH LOCATION: See Figure 2

BH L	OCATION: See Figure 2 SOIL PROFILE		5	AMPL	FS			S	ANDAF	RD PEN	ETRAT	ION TE	ST									\dashv
	COLTROTEL		H	, (IVII L		GROUND WATER CONDITIONS		1				0 10		PLAST LIMIT	C NAT	URAL	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	T W T		Mark And	S
(m)		STRATA PLOT			SIε	WAT	z		Ĺ		TH (kE	 Pa\	l	W _P	CON	W	\mathbf{W}_{L}	(kPa)	νς CNI	GR/	AIN SIZ	
ELEV DEPTH	DESCRIPTION	TAF	3ER		BLOWS 0.3 m	JND	ATIC	O UI	NCONF	INED	+	FIELD VA & Sensiti LAB VA	ANE vity			o		ŠĞ.	TURA (K)		RIBUT (%)	ON
	Consumal Confess	STR/	NUMBER	TYPE	ž	SROI	ELEVATION		JICK TF			LAB VA 0 10			TER CO		1 (%) 30		≥	GR S		CI
0.0	Ground Surface TOPSOIL	Z1 1 ^N	_		=				<u> </u>			<u> </u>			Ĭ		†			GR 3	A SI	CL
0.1	FILL, sand and gravel brown, moist, loose to compact	\boxtimes																				
-	brown, moist, loose to compact	\bowtie	1	SS	6			4 6							0							
-		\otimes						Ш														
ļ		\bowtie						Ш														
-	sand	\bowtie						Ш														
1		\bowtie	1	00	40			11														
-		\otimes	2	SS	10			10							C							
1.2	SAND brown, moist, loose to compact							Ш														
-	brown, moist, loose to compact							П														
-								$\sqcup \setminus$														
-			3	SS	14										0					0 !	5 73	22
2 1.9		177	1	00	'-			1 7	Ī						_						, ,	
-	brown, moist, stiff		<u> </u>					۱ ۱														
- 00	OANDY OH T THE ARREST		1_						1													
2.3	some gravel								Ι\													
-	grey, moist, compact		4	SS	26				26						0							
-			1																			
-			<u> </u>																			
3			-																			
-		<u> </u>	ł																			
ļ.			5	SS	27				27					0	,							
-									Ш													
F			\vdash						П													
ţ																						
4									1													
ļ									1													
-			1						l													
F			1																			
4.6		Щ						1 1														
	clay grey, moist, compact			00	10			l 1														
- <u>5</u>			6	SS	16			*	16						0							
<u> </u>		Ш																				
5.2	END OF BOREHOLE Notes:																					
	Borehole was open to 2.4 mbg																					
	and wet at 1.5 mbg upon completion																					
27.8																						
R.GPU 3/2																						
PEUMNA																						
SDOOT HE																						
M01384-00																						
0.10 13 14																						
DESCRIPTION OF THE PROPERTY OF																						
2001100																						
			<u> </u>				l							L	1		1	<u> </u>				

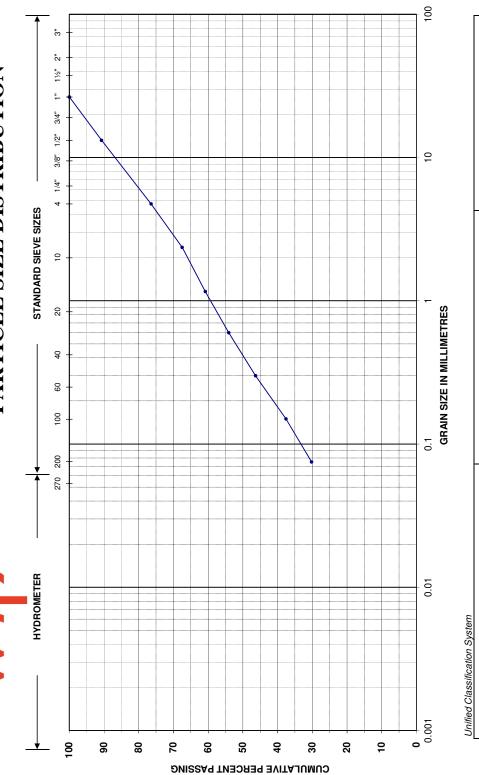
GRAPH NOTES $+\ ^3,\times ^3\colon \ ^{\text{Numbers refer}} \\ \text{to Sensitivity}$

PROJECT: Hurontario Street/Findlay Drive

CLIENT: Straw Hat Restoration

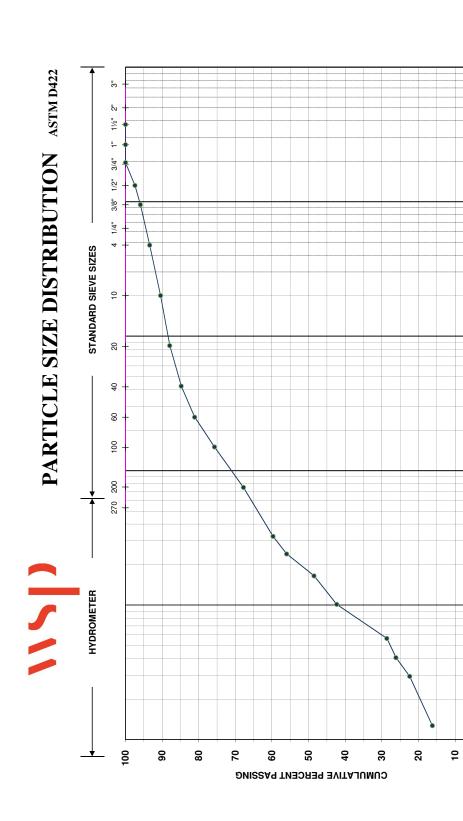
Method: Solid Stem Auger PROJECT LOCATION: Collingwood ON Diameter: 150mm

REF. NO.: 17M-01364-00 Date: Mar/02/2018 ENCL NO.: 9


DATUM: Relative

BH LOCATION: See Figure 2

BH L	OCATION: See Figure 2 SOIL PROFILE			SAMPL	EQ			S	ANDAF	RD PEN	IETRAT	TON TE	ST							
	SOIL I NOI ILL					出		1						PLAST LIMIT	C MAT	JRAL TURE	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m³)	REMARKS AND
(m)		LO T			SI E	WAT	z		i .	1	1	30 10	1	W _P	CON	V TENT	WL	ET PE (kPa)	LUNI'	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	TAF	3ER		BLOWS 0.3 m	JND	ATIO	O UI	NCONF	INED	+	Pa) FIELD V. & Sensiti	ANE	-		>		SC,	TURA (KN	DISTRIBUTION (%)
	Out of Out for a	STRATA PLOT	NUMBER	TYPE	Į.	GROUND WATER CONDITIONS	ELEVATION	• Q	JICK TF 10 4	RIAXIAL 0 6	. × 80 8	LAB VA	ANÉ 00		TER CC		T (%) 30		₹	GR SA SI CL
0.0	Ground Surface TOPSOIL	7/ 1 ^N	_		-	0 0	ш	-				1		<u> </u>	Ĭ		1			GR SA SI CL
-		1/ 7/																		
-		11/2	1	SS	7			7 7							0					
- 0.4	FILL, sand, some gravel brown, moist, loose	\bowtie	}					Ш												
ļ	,,	\bowtie																		
- 0.8		Ť																		
1	layered, oxidized, brown, wet, loose							П												
			2	SS	9			1 9							,					
-																				
-																				
ŀ																				
-			3	SS	7			4 7								•				
2 1.9	SANDY SILT TILL:, some clay,							$ \ $												
-	layers of clayey silt layered, brown, moist, compact to							$ \ $												
	very dense		-					\												
-									Λ											
-			4	SS	26				26						0					
- 3									\											
-		11.							'	\										
-										\										
-			5	SS	50					50					0					
-																				
-																				
-																				
<u>4</u>																				
-																				
ļ																				
-																				
-																				
			6	SS	48					1 48					0					
5			1																	
5.2	END OF BOREHOLE	φ	 																	
0.2	Notes:																			
	Borehole was open to 1.5 mbg and wet at 1.4 mbg upon completion																			
3/22/18																				
ANARY GP.																				
DOS PREUM																				
24-00 BH LC																				
а тимоз																				
PTROIT																				
100-30 ag																				
MSP SOIL																				
						CDADH		3 1				g -30/								



	SILT AND CLAY	SAND	GRAVEL
Project Name:	roject Name: 774 Hurontario Street	Project No.:	17M-01364-00
Location ID.: BH1	BH17-03	Sample No./Depth: SS6, 4.6-5.2 m	SS6, 4.6-5.2 m
Sieve Size	% Passing Coarse	Sieve Size	% Passing Fine

Enclosure No.: 10			
30.2	0.075 mm	5'29	2.36 mm
37.6	0.15 mm	76.4	4.75 mm
46.3	0.30 mm	2'06	13.2 mm
54.1	0.60 mm	100.0	26.5 mm
8.09	1.16 mm	100.0	37.5 mm
% Passing Fine	Sieve Size	% Passing Coarse	Sieve Size

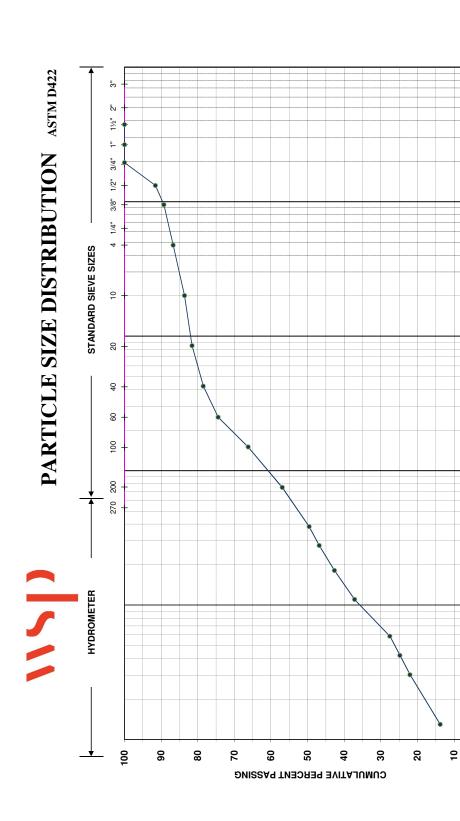
ct Name: 774 Huronitario Street Project No.: 171-01364-00	tion ID.: BH17-02 Sample No./Depth: SS5, 3.0-3.7 m	Size % Passing Coarse Sieve Size % Passing Fine Hydrometer (mm) % Passing	100.0 0.850 mm 87.9 0.032 59.7	97.4 0.425 mm 84.8 0.017 48.5	im 95.9 0.250 mm 81.1 0.006 28.6	93.4 0.106 mm 75.7 0.003 22.4	25 000 001 E23 0001 163
Project Name:	Location ID.:	Sieve Size	26.5 mm	13.2 mm	9.50 mm	4.75 mm	աա

100

10

0.1 GRAIN SIZE IN MILLIMETRES

0.01


0.001

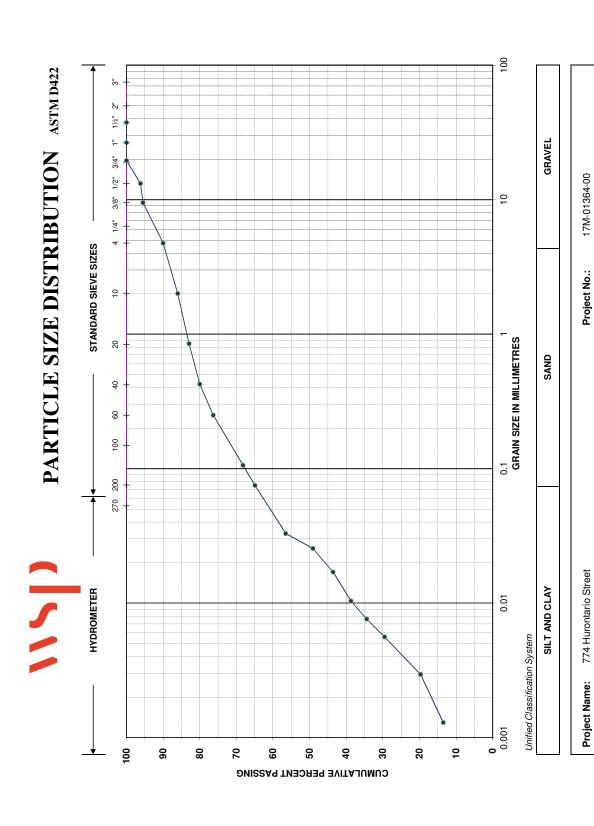
GRAVEL

SAND

SILT AND CLAY

Unified Classification System

Unified Classification Sy	n System				
	SILT AND CLAY		SAND		GRAVEL
Project Name: Location ID.:	774 Hurontario Street BH17-04			Project No.: Sample No./Depth:	171-01364-00 SS4, 2.3-2.9 m
Sieve Size	% Passing Coarse Sieve Size	Sieve Size	% Passing Fine	Hydrometer (mm)	% Passing
26.5 mm	100.0	0.850 mm	81.5	0.038	49.6
13.2 mm	91.6	0.425 mm	78.5	0.018	42.7
9.50 mm	89.3	0.250 mm	74.4	9000	27.5
4.75 mm	86.7	0.106 mm	66.2	0.003	22.0
2.00 mm	83.6	0.075 mm	56.9	0.001	13.8

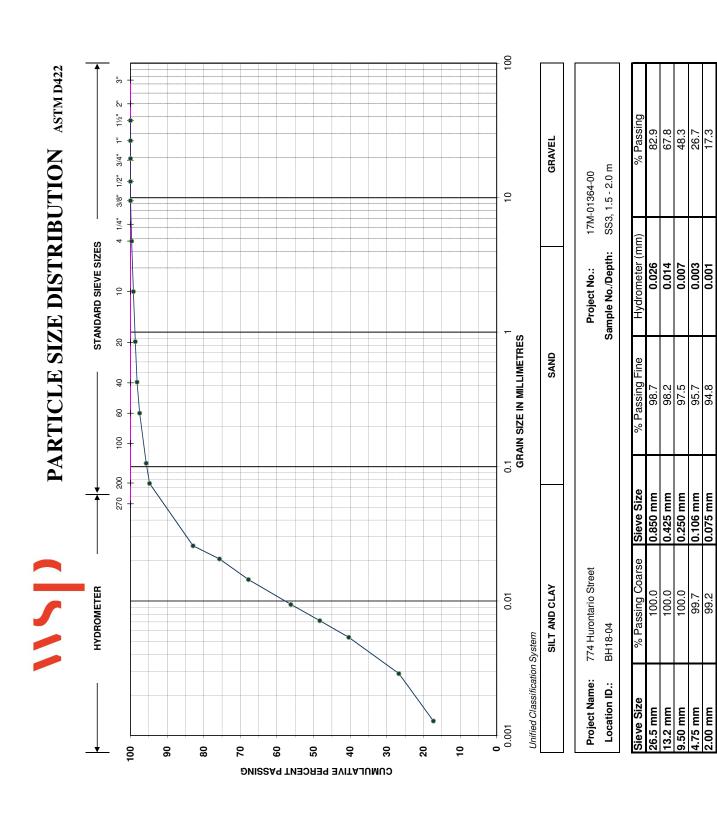

100

10

0.1 GRAIN SIZE IN MILLIMETRES

0.01

0.001


Sieve Size	% Passing Coarse	Sieve Size	% Passing Fine	Hydrometer (mm)	% Passing
26.5 mm	100.0	0.850 mm	82.9	0.033	56.5
13.2 mm	96.2	0.425 mm	80.0	0.017	43.6
9.50 mm	95.5	0.250 mm	76.3	0.008	34.4
4.75 mm	0.06	0.106 mm	68.2	0.003	19.7
2.00 mm	86.0	0.075 mm	64.9	0.001	13.5
					Enclosure No. 13

SS3, 1.5 - 2.0 m

Sample No./Depth:

BH18-03

Location ID.:

Enclosure No. 14

4.75 mm 2.00 mm 9.50 mm

APPENDIX

A ENGINEERED FILL

GENERAL REQUIREMENTS FOR ENGINEERED FILL

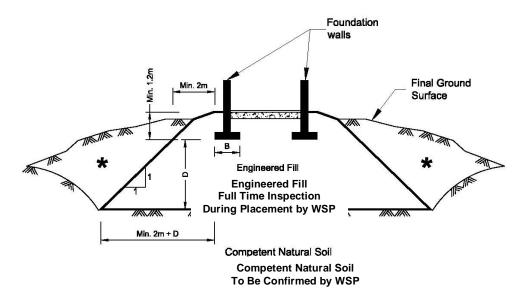
Compacted imported soil that meets specific engineering requirements and is free of organics and debris and that has been continually monitored on a full-time basis by a qualified geotechnical representative is classified as engineered fill. Engineered fill that meets these requirements and is bearing on suitable native subsoil can be used for the support of foundations.

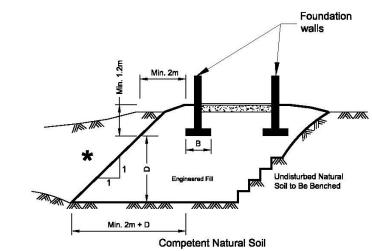
Imported soil used as engineered fill can be removed from other portions of a site or can be brought in from other sites. In general, most of Ontario soils are too wet to achieve the 100% Standard Proctor Maximum Dry Density (SPMDD) and will require drying and careful site management if they are to be considered for engineered fill. Imported non-cohesive granular soil is preferred for all engineered fill. For engineered fill, we recommend use of OPSS Granular 'B' sand and gravel fill material.

Adverse weather conditions such as rain make the placement of engineered fill to the required degree of density difficult or impossible; engineered fill cannot be placed during freezing conditions, i.e. normally not between December 15 and April 1 of each year.

The location of the foundations on the engineered fill pad is critical and certification by a qualified surveyor that the foundations are within the stipulated boundaries is mandatory. Since layout stakes are often damaged or removed during fill placement, offset stakes must be installed and maintained by the surveyors during the course of fill placement so that the contractor and engineering staff are continually aware of where the engineered fill limits lie. Excavations within the engineered fill pad must be backfilled with the same conditions and quality control as the original pad.

To perform satisfactorily, engineered fill requires the cooperation of the designers, engineers, contractors and all parties must be aware of the requirements. The minimum requirements are as follows, however, the geotechnical report must be reviewed for specific information and requirements.


- 1. Prior to site work involving engineered fill, a site meeting to discuss all aspects must be convened. The surveyor, contractor, design engineer and geotechnical engineer must attend the meeting. At this meeting, the limits of the engineered fill will be defined. The contractor must make known where all fill material will be obtained from and samples must be provided to the geotechnical engineer for review, and approval before filling begins.
- Detailed drawings indicating the lower boundaries as well as the upper boundaries of the engineered fill must be available at the site meeting and be approved by the geotechnical engineer.
- 3. The building footprint and base of the pad, including basements, garages, etc. must be defined by offset stakes that remain in place until the footings and service connections are all constructed. Confirmation that the footings are within the pad, service lines are in place, and that the grade conforms to drawings, must be obtained by the owner in writing from the surveyor and WSP Canada Inc. Without this confirmation no responsibility for the performance of the structure can be accepted by WSP Canada Inc. Survey drawing of the pre and post fill location and elevations will also be required.
- 4. The area must be stripped of all topsoil and fill materials. Subgrade must be proof-rolled. Soft spots must be dug out. The stripped native subgrade must be examined and approved by a WSP Canada Inc. engineer prior to placement of fill.



- 5. The approved engineered fill material must be compacted to 100% Standard Proctor Maximum Dry Density throughout. Engineered fill should not be placed during the winter months. Engineered fill compacted to 100% SPMDD will settle under its own weight approximately 0.5% of the fill height and the structural engineer must be aware of this settlement. In addition to the settlement of the fill, additional settlement due to consolidation of the underlying soils from the structural and fill loads will occur and should be evaluated prior to placing the fill.
- 6. Full-time geotechnical inspection by WSP Canada Inc. during placement of engineered fill is required. Work cannot commence or continue without the presence of the WSP Canada Inc. representative.
- 7. The fill must be placed such that the specified geometry is achieved. Refer to the attached sketches for minimum requirements. Take careful note that the projection of the compacted pad beyond the footing at footing level is a minimum of 2 m. The base of the compacted pad extends 2 m plus the depth of excavation beyond the edge of the footing.
- 8. A bearing capacity of 150 kPa at SLS (225 kPa at ULS) can be used provided that all conditions outlined above are adhered to. A minimum footing width of 500 mm (20 inches) is suggested and footings must be provided with nominal steel reinforcement.
- 9. All excavations must be done in accordance with the Occupational Health and Safety Regulations of Ontario.
- 10. After completion of the engineered fill pad a second contractor may be selected to install footings. The prepared footing bases must be evaluated by engineering staff from WSP Canada Inc. prior to footing concrete placements. All excavations must be backfilled under full time supervision by WSP Canada Inc. to the same degree as the engineered fill pad. Surface water cannot be allowed to pond in excavations or to be trapped in clear stone backfill. Clear stone backfill can only be used with the approval of WSP Canada Inc.
- 11. After completion of compaction, the surface of the engineered fill pad must be protected from disturbance from traffic, rain and frost. During the course of fill placement, the engineered fill must be smooth-graded, proof-rolled and sloped/crowned at the end of each day, prior to weekends and any stoppage in work in order to promote rapid runoff of rainwater and to avoid any ponding surface water. Any stockpiles of fill intended for use as engineered fill must also be smooth-bladed to promote runoff and/or protected from excessive moisture take up.
- 12. If there is a delay in construction, the engineered fill pad must be inspected and accepted by the geotechnical engineer. The location of the structure must be reconfirmed that it remains within the pad.
- 13. The geometry of the engineered fill as illustrated in these General Requirements is general in nature. Each project will have its own unique requirements. For example, if perimeter sidewalks are to be constructed around the building, then the projection of the engineered fill beyond the foundation wall may need to be greater.

14. These guidelines are to be read in conjunction with WSP Canada Inc. report attached.

 $[\]begin{picture}(20,0)\put(0,0){\line(0,0){100}}\end{picture}$ Backfill in this area to be as per WSP report.

APPENDIX

B SOIL QUALITY ASSESSMENT

Project Number: 17M-01364-00 March 21, 2018

Straw Hat Restoration 325 Willard Avenue Toronto, Ontario M6S 3R1

Re: Soil Quality Assessment

33 Findlay Drive & 774 Hurontario Street

Town of Collingwood, Ontario

INTRODUCTION

WSP Canada Inc. (WSP) was retained by Straw Hat Restoration to complete a geotechnical investigation for the potential development of 33 Findlay Drive and 774 Hurontario Street located in the Town of Collingwood, Ontario.

In order to characterize the quality of the existing materials, a total of thirty-four (34) soil samples were collected by WSP personnel. The samples were submitted to AGAT Laboratories for analysis of Metals and Other Regulated Parameters (ORPs), Organochlorine Pesticides (OCPs), Petroleum Hydrocarbons (PHCs) and benzene, toluene, ethylbenzene and xylenes (BTEX) parameters.

Soil samples from BH17-01 to BH17-04 were collected on June 22 & 23, 2017 and samples from BH18-02 to BH18-04 were collected on March 2, 2018. A summary of the soil samples collected from the boreholes and the parameters analyzed for each sample is summarized in the table below.

Sample Location	Sample ID	Sample Depth (mbg)	Soil Type	Parameters Analyzed
BH17-01	SS2	0.8-1.4	Sandy Silt Till	Metals and ORPs, incl. EC & SAR
BH17-01	SS3	1.5-2.1	Sandy Silt Till	OCPs, PHCs (F1-F4) incl. BTEX
BH17-01	SS4	2.3-2.9	Sandy Silt Till	Metals and ORPs, incl. EC & SAR
BH17-01	SS5	3.1-3.7	Sandy Silt Till	OCPs, PHCs (F1-F4) incl. BTEX
BH17-02	SS1	0.0-0.6	Topsoil/ Sand	Metals and ORPs, incl. EC & SAR
BH17-02	SS2	0.8-1.4	Sand/ Sandy Silt Till	OCPs, PHCs (F1-F4) incl. BTEX
BH17-02	SS3	1.5-2.1	Sandy Silt Till	Metals and ORPs, incl. EC & SAR

BH17-02	SS4	2.3-2.9	Sandy Silt Till	OCPs, PHCs (F1-F4) incl. BTEX
BH17-03	SS1	0.0-0.6	Topsoil/ Sand	OCPs
BH17-03	SS2	0.8-1.4	Sand	PHCs (F1-F4) incl. BTEX
BH17-03	SS3	1.5-2.1	Sandy Silt Till	Metals and ORPs, incl. EC & SAR
BH17-03	SS4	2.3-2.9	Sandy Silt Till	OCPs, PHCs (F1-F4) incl. BTEX
BH17-03	SS5	3.1-3.7	Sandy Silt Till	Metals and ORPs, incl. EC & SAR
BH17-04	SS1	0.0-0.6	Topsoil/ Sand to Sand and Gravel	OCPs, PHCs (F1-F4) incl. BTEX
BH17-04	SS2	0.8-1.4	Sand to Sand and Gravel	Metals and ORPs, incl. EC & SAR
BH17-04	SS3	1.5-2.1	Sandy Silt Till	OCPs, PHCs (F1-F4) incl. BTEX
BH17-04	SS4	2.3-2.9	Sandy Silt Till	Metals and ORPs, incl. EC & SAR
BH18-02	SS1	0.0-0.6	Topsoil/Sand	OCPs
BH18-02	SS2	0.8-1.4	Silty Sand Till	Metals and ORPs, incl. EC & SAR, OCPs, PHCs (F1-F4) incl. BTEX
BH18-02	SS3	1.5-2.1	Silty Sand Till	Metals and ORPs, including EC & SAR
BH18-02	SS6	4.6-5.2	Silty Sand Till	PHCs (F1-F4) incl. BTEX
BH18-03	SS1	0.0-0.6	Topsoil/Sand	OCPs, PHCs (F1-F4) incl. BTEX
BH18-03	SS2	0.8-1.4	Silty Sand Till	Metals and ORPs, incl. EC & SAR
BH18-03	SS3	1.5-2.1	Silty Sand Till	OCPs
BH18-03	SS4	2.3-2.9	Silty Sand Till	Metals and ORPs, including EC & SAR
BH18-03	SS5	3.1-3.7	Silty Sand Till	PHCs (F1-F4) incl. BTEX
BH18-04	SS1	0.0-0.6	Topsoil/Fill	Metals and ORPs, incl. EC & SAR, OCPs
BH18-04	SS2	0.8-1.4	Fill/Sand	PHCs (F1-F4) incl. BTEX
BH18-04	SS4	2.3-2.9	Clayey Silt Till	Metals and ORPs, incl. EC & SAR, OCPs, PHCs (F1-F4) incl. BTEX
BH18-05	SS1	0.0-0.6	Topsoil/Fill	Metals and ORPs, incl. EC & SAR, OCPs
BH18-05	SS2	0.8-1.4	Sand	OCPs
BH18-05	SS3	1.5-2.1	Sand/Sandy Silt Till	PHCs (F1-F4) incl. BTEX
BH18-05	SS4	2.3-2.9	Sandy Silt Till	Metals and ORPs, incl. EC & SAR
BH18-05	SS5	3.1-3.7	Sandy Silt Till	PHCs (F1-F4) incl. BTEX

Since the potential purpose of the re-use of soils is unknown, the results were compared to Table 1 Full Depth Background Site Condition Standards for residential/parkland/institutional/ commercial/community property uses and Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition as contained in the Ministry of the Environment (MOE) document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (Standards).

The certificate of analysis from the laboratory is attached to this letter report. A summary of the soil quality analysis is provided in the following section.

SOIL QUALITY ASSESSMENT

Soil samples were collected and handled in accordance with generally accepted procedures used by the environmental consulting industry. Prior to each sampling event, new disposable gloves were used to transfer samples to glass jars and vials supplied by the laboratory. All soil samples were kept under refrigerated conditions during field storage and transportation to the environmental analytical laboratory.

No visual or olfactory evidence of environmental impact (debris or staining) was noted in any of the soil samples collected.

The chemical analysis was conducted by AGAT Laboratories located in Mississauga, Ontario. AGAT is a member of the Canadian Association for Laboratory Accreditation (CALA) and meets the requirements of Section 47 of O.Reg. 153/04 certifying that the analytical laboratory be accredited in accordance with the International Standard ISO/IEC 17025 and with standards developed by the Standards Council of Canada.

Based on the results of the chemical analysis, WSP provides the following conclusions:

- All samples met the Table 1 criteria, for the parameters tested with the exception of the following:
 - o BH17-03 SS1 for DDE with 0.13 ug/g (Table 1 criteria is 0.05 ug/g); and,
 - o BH17-04 SS1 for DDE with 0.057 ug/g (Table 1 criteria is 0.05 ug/g).
- All samples met the Table 3 criteria, for the parameters tested.

The results of this soil quality assessment are based on the soil samples collected from the borehole locations and the parameters analyzed. The information in this Soil Quality Assessment will be included in the Phase Two Environmental Site Assessment report that is being completed by WSP. Soil quality may vary at locations other than those tested.

We trust this letter report satisfies your needs. If there are questions or you need more information, please do not hesitate to contact our office.

WSP Canada Inc.

Oxigate Colle

Nicole Collins

Environmental Technician

Gord Jarvis

Team Lead - Environment

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

561 BRYNE DRIVE, UNITS C&D

BARRIE, ON L4N9Y3

(705) 735-9771

ATTENTION TO: Jason Murchison

PROJECT: 17M-01364-00

AGAT WORK ORDER: 17T231150

SOIL ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jul 06, 2017

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

SAMPLING SITE:

引 「 「 「 」 Laboratories

Certificate of Analysis

AGAT WORK ORDER: 17T231150

PROJECT: 17M-01364-00

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Jason Murchison

SAMPLED BY:

			o.	Reg. 153(5	O. Reg. 153(511) - Metals & Inorganics (Soil)	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2017-06-27									DATE REPORTED: 2017-07-04	:D: 2017-07-04	
		SAMPLE DESCRIPTION: SAMPLE TYPE:	DESCRIPTION:	BH17-01 SS2 Soil	BH17-01 SS4 Soil	BH17-02 SS1 Soil	BH17-02 SS3 Soil	BH17-03 SS3 Soil	BH17-03 SS5 Soil	BH17-04 SS2 Soil	BH17-04 SS4 Soil
		DATE	DATE SAMPLED:	2017-06-22	2017-06-22	2017-06-22	2017-06-22	2017-06-23	2017-06-23	2017-06-23	2017-06-23
Parameter	Onit	g/s	RDL	8512961	8512975	8512979	8512984	8513001	8513024	8513032	8513044
Antimony	6/6rl	1.3	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	6/6rl	18	-	က	က	11	က	ო	က	ო	က
Barium	6/6rl	220	2	10	24	41	24	22	23	12	26
Beryllium	6/6rl	2.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron	6/6rl	36	2	\ 5	6	<5	7	7	7	~ 2	6
Boron (Hot Water Soluble)	6/6rl	AN	0.10	<0.10	0.56	0.25	0.25	0.31	0.50	0.12	0.41
Cadmium	6/6rl	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	6/6rl	20	2	2	80	80	∞	7	æ	9	80
Cobalt	6/6rl	21	0.5	2.2	4.5	2.2	3.4	3.2	3.9	2.5	4.2
Copper	6/6rl	92	_	4	-	9	10	∞	80	9	11
Lead	6/6rl	120	-	4	4	32	9	5	4	4	4
Molybdenum	6/6rl	7	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	6/6rl	82	-	က	6	4	7	9	7	4	80
Selenium	6/6rl	1.5	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	4.0>
Silver	6/6rl	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	6/6rl	-	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	4.0>
Uranium	6/6rl	2.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vanadium	6/6rl	98	_	6	13	18	11		12	12	12
Zinc	6/6rl	290	2	13	19	19	20	16	18	41	19
Chromium VI	6/6rl	99.0	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	6/6rl	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	6/6rl	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.57	0.005	0.108	0.159	0.119	0.255	0.163	0.169	0.105	0.199
Sodium Adsorption Ratio	N A	2.4	NA	0.090	0.262	0.062	0.157	0.231	0.267	0.201	0.216
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.72	7.76	7.80	7.94	8.01	8.06	7.86	8.05

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Comments:

8512961-8513044 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Results relate only to the items tested and to all the items tested

自信们 Laboratories

Certificate of Analysis

AGAT WORK ORDER: 17T231150

PROJECT: 17M-01364-00

ATTENTION TO: Jason Murchison

SAMPLED BY:

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

5835 COOPERS AVENUE

CLIENT NAME: WSP CANADA INC. SAMPLING SITE: O. Reg. 153(511) - OC Pesticides (Soil)

BH17-04 SS3 2017-06-23 8513041 <0.005 <0.007 < 0.005 <0.005 <0.005 <0.005 <0.007 <0.007 <0.007 <0.005 < 0.005 <0.005 < 0.005 <0.01 7.7 80 **DATE REPORTED: 2017-07-05** BH17-04 SS1 2017-06-23 8513025 <0.005 <0.005 <0.005 <0.005 <0.007 <0.005 <0.005 <0.005 <0.007 <0.005 <0.005 0.057 0.014 <0.01 <0.01 7.7 72 BH17-03 SS4 2017-06-23 8513021 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.007 <0.005 <0.005 <0.005 <0.00> <0.007 <0.007 <0.01 <0.01 8.2 62 BH17-03 SS1 2017-06-23 8512992 <0.005 <0.005 <0.005 <0.005 <0.005 <0.007 <0.007 <0.005 <0.005 <0.005 <0.005 <0.007 <0.01 0.13 <0.01 24.4 60 BH17-02 SS4 2017-06-22 8512985 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.007 <0.007 <0.007 <0.007 <0.005 <0.005 <0.005 <0.01 <0.07 59 BH17-02 SS2 2017-06-22 8512980 <0.005 <0.005 <0.005 <0.005 <0.005 <0.007 <0.005 <0.005 <0.007 <0.007 <0.007 <0.005 <0.005 <0.01 <0.0> 62 BH17-01 SS5 2017-06-22 8512976 <0.005 <0.005 <0.005 <0.007 <0.005 <0.005 <0.007 <0.007 <0.007 <0.005 <0.005 <0.005 <0.005 <0.01 <0.01 12.2 62 BH17-01 SS3 2017-06-22 8512963 <0.007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00> <0.007 <0.007 <0.01 <0.07 7.7 74 SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.005 0.005 Acceptable Limits 0.007 0.007 0.005 0.01 0.01 0.1 60-130 g/s 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.01 0.01 0.01 4. g/gµ g/gu g/gr ٦. % **DATE RECEIVED: 2017-06-27** Samma-Hexachlorocyclohexane Parameter Surrogate **Hexachlorobutadiene Hexachlorobenzene Heptachlor Epoxide** Decachlorobiphenyl Hexachloroethane Moisture Content Methoxychlor **Heptachlor** Endosulfan Chlordane Dieldrin Endrin Aldrin TCMX 000 DDE DOT

G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil RDL - Reported Detection Limit, G / S - Guideline / Standard: Refers to Table 1 Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Comments:

Note: DDT applies to the total of op/DDT and pp/DDT, DDD applies to the total of op/DDD and pp/DDD and pp/DDD. Endosulfan applies to the total of op/DDE. Endosulfan applies to the total of op/DDE. Results are based on the dry weight of the soil. 8512963-8513041

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane

Certified By:

Results relate only to the items tested and to all the items tested

引 「 「 「 」 Laboratories

Certificate of Analysis

AGAT WORK ORDER: 17T231150

PROJECT: 17M-01364-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Jason Murchison

SAMPLED BY:

DATE REPORTED: 2017-07-04 - F4 (Soil) O. Reg. 153(511) - PHCs F1 **DATE RECEIVED: 2017-06-27**

		SAMPLE DESCRIPTION:		BH17-01 SS3	BH17-01 SS5	BH17-02 SS2	BH17-02 SS4	BH17-03 SS2	BH17-03 SS4	BH17-04 SS3	
		SAMPL	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE SA	DATE SAMPLED:	2017-06-22	2017-06-22	2017-06-22	2017-06-22	2017-06-23	2017-06-23	2017-06-23	
Parameter	Unit	G/S	RDL	8512963	8512976	8512980	8512985	8512996	8513021	8513041	
Benzene	6/6rl	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	6/6rl	0.2	0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
Ethylbenzene	6/6rl	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylene Mixture	6/6rl	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
F1 (C6 to C10)	6/6rl	25	2	\ \ \ \	~	~	<5	\	\ \ \ \	\$	
F1 (C6 to C10) minus BTEX	6/6rl	25	2	^	<5	<5	<5>	\ 2	~	\ 2	
F2 (C10 to C16)	6/6rl	10	10	<10	<10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	6/6rl	240	20	<50	<50	<50	<50	<50	<50	<50	
F4 (C34 to C50)	6/6rl	120	20	<50	<50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	6/6rl	120	20	A A	NA	Ϋ́	ΑΝ	NA	A A	AN	
Moisture Content	%		0.1	7.7	12.2	13.3	10.0	22.9	8.2	7.7	
Surrogate	Onit	Acceptable Limits	Limits								
Terphenyl	%	60-140	0	78	96	88	81	74	63	74	

G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil RDL - Reported Detection Limit, G / S - Guideline / Standard: Refers to Table 1 Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Comments:

Results are based on sample dry weight. 8512963-8513041

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - Č50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request

Certified Bv:

AGAT CERTIFICATE OF ANALYSIS (V1)

子(引し Laboratories

Certificate of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 17T231150

PROJECT: 17M-01364-00

ATTENTION TO: Jason Murchison

SAMPLED BY:

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:

DATE REPORTED: 2017-06-30 O. Reg. 153(511) - PHCs F2 - F4 (Soil) **DATE RECEIVED: 2017-06-27**

		SAMPLE DESCRIPTION: BH17-04 SS1	RIPTION:	BH17-04 S	51
		SAMP	SAMPLE TYPE:	Soil	
		DATES	DATE SAMPLED:	2017-06-2	
Parameter	Unit	8/9	RDL	8513025	
F2 (C10 to C16)	6/6rl	10	10	<10	
F3 (C16 to C34)	6/6rl	240	20	<20	
F4 (C34 to C50)	6/6rl	120	20	<20	
Gravimetric Heavy Hydrocarbons	6/6rl	120	20	NA	
Moisture Content	%		0.1	15.6	
Surrogate	Onit	Acceptable Limits	e Limits		
Terphenyl	%	60-140	40	75	

RDL - Reported Detection Limit; 6 / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Comments:

Results are based on sample dry weight.

8513025

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. The chromatogram has returned to baseline by the retention time of nC50.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample. Fraction Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request

Certified Bv:

Results relate only to the items tested and to all the items tested

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com 5835 COOPERS AVENUE

0.057 0.13

Guideline Violation

RESULT UNIT GUIDEVALUE 0.05 **ATTENTION TO: Jason Murchison** 6/6rl **PARAMETER** DDE DDE AGAT WORK ORDER: 17T231150 PROJECT: 17M-01364-00 O. Reg. 153(511) - OC Pesticides (Soil)
O. Reg. 153(511) - OC Pesticides (Soil) **ANALYSIS PACKAGE** 用何何T Laboratories ON T1 S RPI/ICC ON T1 S RPI/ICC GUIDELINE **CLIENT NAME: WSP CANADA INC.** SAMPLE TITLE BH17-04 SS1 BH17-03 SS1 SAMPLEID 8512992 8513025

Results relate only to the items tested and to all the items tested

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 17M-01364-00

SAMPLING SITE:

AGAT WORK ORDER: 17T231150
ATTENTION TO: Jason Murchison

SAMPLED BY:

				Soi	I Ana	alysis	3								
RPT Date:			D	UPLICATE	.		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lin	ptable nits	Recovery	Lie	ptable nits
		la la		.			value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Soil)													
Antimony	8512961	8512961	<0.8	<0.8	NA	< 0.8	106%	70%	130%	96%	80%	120%	84%	70%	130%
Arsenic	8512961	8512961	3	3	NA	< 1	111%	70%	130%	90%	80%	120%	93%	70%	130%
Barium	8512961	8512961	10	12	18.2%	< 2	109%	70%	130%	100%	80%	120%	99%	70%	130%
Beryllium	8512961	8512961	<0.5	<0.5	NA	< 0.5	75%	70%	130%	98%	80%	120%	90%	70%	130%
Boron	8512961	8512961	<5	<5	NA	< 5	73%	70%	130%	99%	80%	120%	90%	70%	130%
Boron (Hot Water Soluble)	8512961	8512961	<0.10	<0.10	NA	< 0.10	93%	60%	140%	104%	70%	130%	97%	60%	140%
Cadmium	8512961	8512961	< 0.5	<0.5	NA	< 0.5	99%	70%	130%	95%	80%	120%	97%	70%	130%
Chromium	8512961	8512961	5	5	NA	< 2	87%	70%	130%	99%	80%	120%	82%	70%	130%
Cobalt	8512961	8512961	2.2	2.3	NA	< 0.5	98%	70%	130%	91%	80%	120%	93%	70%	130%
Copper	8512961	8512961	4	5	NA	< 1	95%	70%	130%	99%	80%	120%	90%	70%	130%
Lead	8512961	8512961	4	4	NA	< 1	105%	70%	130%	96%	80%	120%	85%	70%	130%
Molybdenum	8512961	8512961	<0.5	<0.5	NA	< 0.5	100%	70%	130%	103%	80%	120%	108%	70%	130%
Nickel	8512961	8512961	3	3	NA	< 1	102%	70%	130%	93%	80%	120%	93%	70%	130%
Selenium	8512961	8512961	<0.4	<0.4	NA	< 0.4	101%	70%	130%	98%	80%	120%	99%	70%	130%
Silver	8512961	8512961	<0.2	<0.2	NA	< 0.2	92%	70%	130%	91%	80%	120%	89%	70%	130%
Thallium	8512961	8512961	<0.4	<0.4	NA	< 0.4	99%	70%	130%	96%	80%	120%	91%	70%	130%
Uranium	8512961	8512961	< 0.5	<0.5	NA	< 0.5	90%	70%	130%	95%	80%	120%	96%	70%	130%
Vanadium	8512961	8512961	9	9	0.0%	< 1	94%	70%	130%	101%	80%	120%	87%	70%	130%
Zinc	8512961	8512961	13	13	NA	< 5	100%	70%	130%	98%	80%	120%	95%	70%	130%
Chromium VI	8509348		<0.2	<0.2	NA	< 0.2	99%	70%	130%	103%	80%	120%	93%	70%	130%
Cyanide	8512961	8512961	<0.040	<0.040	NA	< 0.040	91%	70%	130%	103%	80%	120%	110%	70%	130%
Mercury	8512961	8512961	<0.10	<0.10	NA	< 0.10	107%	70%	130%	99%	80%	120%	86%	70%	130%
Electrical Conductivity	8512961	8512961	0.108	0.111	2.7%	< 0.005	96%	90%	110%	NA			NA		
Sodium Adsorption Ratio	8512961	8512961	0.090	0.095	5.4%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	8513001	8513001	8.01	7.98	0.4%	NA	101%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Iris Verástegui

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: WSP CANADA INC.

AGAT WORK ORDER: 17T231150 PROJECT: 17M-01364-00 **ATTENTION TO: Jason Murchison**

SAMPLING SITE: SAMPLED BY:

			Trac	e Org	gani	cs An	alys	is							
RPT Date:				UPLICATI	 E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable mits
TANAMETER		ld	- up		2		Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	8509490		< 0.01	< 0.01	NA	< 0.01	99%	50%	140%	70%	50%	140%	84%	50%	140%
Gamma-Hexachlorocyclohexane	8509490		< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	74%	50%	140%	74%	50%	140%
Heptachlor	8509490		< 0.005	< 0.005	NA	< 0.005	103%	50%	140%	90%	50%	140%	90%	50%	140%
Aldrin	8509490		< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	90%	50%	140%	90%	50%	140%
Heptachlor Epoxide	8509490		< 0.005	< 0.005	NA	< 0.005	107%	50%	140%	102%	50%	140%	100%	50%	140%
Endosulfan	8509490		< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	87%	50%	140%	88%	50%	140%
Chlordane	8509490		< 0.007	< 0.007	NA	< 0.007	108%	50%	140%	102%	50%	140%	92%	50%	140%
DDE	8509490		< 0.007	< 0.007	NA	< 0.007	106%	50%	140%	109%	50%	140%	100%	50%	140%
DDD	8509490		< 0.007	< 0.007	NA	< 0.007	111%	50%	140%	93%	50%	140%	93%	50%	140%
DDT	8509490		< 0.007	< 0.007	NA	< 0.007	114%	50%	140%	86%	50%	140%	84%	50%	140%
Dieldrin	8509490		< 0.005	< 0.005	NA	< 0.005	107%	50%	140%	102%	50%	140%	96%	50%	140%
Endrin	8509490		< 0.005	< 0.005	NA	< 0.005	109%	50%	140%	102%	50%	140%	98%	50%	140%
Methoxychlor	8509490		< 0.005	< 0.005	NA	< 0.005	112%	50%	140%	94%	50%	140%	102%	50%	140%
Hexachlorobenzene	8509490		< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	96%	50%	140%	96%	50%	140%
Hexachlorobutadiene	8509490		< 0.01	< 0.01	NA	< 0.01	108%	50%	140%	74%	50%	140%	92%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 ((Soil)														
Benzene	8509842		< 0.02	< 0.02	NA	< 0.02	114%	60%	130%	117%	60%	130%	108%	60%	130%
Toluene	8509842		< 0.08	< 0.08	NA	< 0.08	114%	60%	130%	116%	60%	130%	115%	60%	130%
Ethylbenzene	8509842		< 0.05	< 0.05	NA	< 0.05	115%	60%	130%	114%	60%	130%	111%	60%	130%
Xylene Mixture	8509842		< 0.05	< 0.05	NA	< 0.05	111%	60%	130%	111%	60%	130%	109%	60%	130%
F1 (C6 to C10)	8509842		< 5	< 5	NA	< 5	76%	60%	130%	86%	85%	115%	71%	70%	130%
F2 (C10 to C16)	8515718		< 10	< 10	NA	< 10	100%	60%	130%	95%	80%	120%	72%	70%	130%
F3 (C16 to C34)	8515718		< 50	< 50	NA	< 50	94%	60%	130%	105%	80%	120%	74%	70%	130%
F4 (C34 to C50)	8515718		< 50	< 50	NA	< 50	86%	60%	130%	92%	80%	120%	81%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPoprukoli

5835 COOPERS AVENUE http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Method Summary

CLIENT NAME: WSP CANADA INC. AGAT WORK ORDER: 17T231150 PROJECT: 17M-01364-00 **ATTENTION TO: Jason Murchison**

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	'	-	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

5835 COOPERS AVENUE TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

Method Summary

CLIENT NAME: WSP CANADA INC. AGAT WORK ORDER: 17T231150 PROJECT: 17M-01364-00 **ATTENTION TO: Jason Murchison**

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	<u>'</u>		
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P&TGC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID

ies	
Laboratories	
5	
\mathcal{L}	× 10

Laboratory Use Only Work Order #: 17 T 23 1150 Cooler Quantity: 1955	Arrival Temperatures: 7.6 20 30	Custody Seal Intact: TYes TNo TN/A Notes:	Turnaround Time (TAT) Required: Regular TAT Sto 7 Business Days	3 Business 2 Business Next Business Days Days OR Date Required (Rush Surcharges May Apply):	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM	JbCBe	WHT :	r: Voc BTEX ractions 1 to 4 Total Aroclora Total Aroclora Total Aroclora Aroclora	Volatiles CCME F ABNs PAHs CCME F		×	×××		×	X	×	× ×		12 THE	Page of 2	Inc. NºT 054091
5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.742.5122 webearth.agatlabs.com	n (potable water consumed by humans)	8: No Regulatory Requirement	Sewer Use Regulation 558 Sanitary CCME Storm Prov. Water Outsity	te One	Report Guideline on Certificate of Analysis	0	ol, Hydrides s (Incl. Hydrides	Field Filtered - Mana Inorganics and Inorganics Metals 1253 Metals (ex.) BEHWS 101 1153 Metals (ex.) BEN 102 102 104 Con/Custom Metals Scan Con/Custom Metals 102 103 Con/Custom Metals 103 103 Con/Custom Metals 104 Con/Custom	Metals: Hydride ORPs: [DH Chot DH Full Met	×		×	×		S			Y (n): Date
ories	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)	Regulatory Requirements:	53/04	Soil Texture (check one) Coarse Fegion Indica	Is this submission for a Record of Site Condition?	Sample Matrix Legend	B Biota GW Ground Water O Oil	P Paint S Soil SD Sediment SW Surface Water	ple Comments/ crix Special Instructions										Samples Richwildy Octat Name and Sp	Samples Received By (Print Name and Sig	Samples Received By (Print Name and Sign):
Laborator	inking Water sample, please u		45 C+D	roup.com		hilled full nrice for analysis	in oe onled run price for analysis. Bill To Same: Yes No		Time # of Sample Sampled Containers Matrix	N HA					-	PH			Jan 27/17 11	Apr 16/37 H	Date T Tme
		enede Inc.	Bryne Dr. Unit	collins@wsparaup.com	1364-00	PO; Poses once if autoration outmborie one monited client will be hilled full riche for analysis	tion number is not provided, client will be		Date Sampled S	(1)/22/(1)					*	DV23/II		4	7 Janes 7	,	
	thain of Custody Record	Report Information:	S: Sol (Service)	K.13	nformation:	Sampled By: AGAT Quote #:	Invoice Information:	Contact: Address:	Sample Identification	BHITI-OI SSZ	BHIT-01 553	8H17-01 554	20-11	17-02 SS	SHI1-02 554	7-03	17-03 55	BH17-03 553	profes Refriquished By IPrint Name and Sign):	ampies Retinglian d By Orna Harmo and Signal A	amples Relinquished By (Print Name and Sillini

Laboratory Use Only Work Order #: Cooler Quantity:	Arrival Temperatures:	Custody Seal Intact:	Turnaround Time (TAT) Required:	Rush TAT (Rush Surcharges Apply)	3 Business 2 Business Next Business Days	OR Date Required (Rush Surcharges May Apply):	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays	For 'Same Day' analysis, please contact your AGAT CPM		мнт (BTEX [ons 1 to	esecti Tota Chlor	Volatile CCME Organo	××		×××		Z X X			b M Time 1	Time Page Z of Z	Time No: T 054092	Pink Copy - Client Yellow Copy - AGAT White Copy- AGAT Page 12 Of 12 2017
5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	(potable water consumed by humans)	☐ No Reg	Sewer Use Regulation 558	orm Prov. Water Quality	Indicate One Other	A Indicate One	Report Guldeline on Certificate of Analysis]	0.0	Hydrides) Hydridei, Hydri	cs als (excl. I Metals (II CI	norganii 1 153 Meta 1 153 Meta 1 163 Meta 1	and the mate of the mate of the meta of the meta of the meta of the mate of th	ORPS: Chall Me Lull Me		X		X	>			17 (January 17)		Date	Pink Copy - Client Ye
ories	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)	luirem (es)	Regulation 153/04 Sew	Mes/Park	Soil Texture (check One) Region Indicates	Fine	Is this submission for a Record of Site Condition?		am	>		SD Sediment SM Surface Weter		ple Comments/ trix Special Instructions							C		Samples Received By Right Name and Sign):	Samples Received By (Print Name and Sign):	10
Laboratories	ng Water sample, please		CaD		Com	vo.Cc ~			full price for analysis	ame: Yes No				te # of Sample Containers Matrix	S							11 The 11	D 18191-19	te (Thme	
		acts Inc.	DC. CA: 45		dros6dsm a	. Callin sle wepgraup. Co	01364-00	1 1	PO: Please note: If quotation number is not provided, eilent will be billed full price for analysis	Bill To Same:				Date Time Sampled Sampled	MH (1/22/10)								X	Da	
5	hain of Custody Record	ve)	82	705-735-97		nicole. Collin	T J	202	Please note: If quotation number is	ation:				Sample Identification	SSH	555	551	7		500		Print Name and Sight	Name and Salah	Name and Sign):	
	hain of Co	Report Information:	Contact: Address:	Phone:	Reports to be sent to: 1. Email:	2. Email:	Project Information: Project:	Sampled By:	AGAT Quote #:	Invoice Information:	Company: Contact:	Address: Email:		Sample	BHIT-03	BH17-03	BHIT-CH		9!	0-1149		Birth American By Print	amples Reliminated J. P.	amples Relinquished By (Print	un 185 (NV 76 1531 OT4

CLIENT NAME: WSP CANADA INC

14 RONELL CRESCENT UNIT 1 COLLINGWOOD, ON L9Y 4J7

(705) 445-0064

ATTENTION TO: Nicole Collins

PROJECT: 17M-01364-00

AGAT WORK ORDER: 18T317303

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Mar 15, 2018

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

SAMPLING SITE: 774 Hurontario/ Findlay Dr.

CLIENT NAME: WSP CANADA INC

引写有T Laboratories

Certificate of Analysis

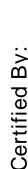
AGAT WORK ORDER: 18T317303

PROJECT: 17M-01364-00

SAMPLED BY:Brian Cooper/Nicole Collins

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2


ATTENTION TO: Nicole Collins

			O. Re	Reg. 153(5	g. 153(511) - Metals & Inorganics (Soil)	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2018-03-06								a	DATE REPORTED: 2018-03-15	D: 2018-03-15	
		SAMPLE DESCRIPTION:	CRIPTION:	BH18-02 SS2	BH18-02 SS3	BH18-03 SS2	BH18-03 SS4	BH18-04 SS1	BH18-04 SS4	BH18-05 SS1	BH18-05 SS4
		SAM	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	DATE SAMPLED:	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02
Parameter	Unit	S/S	RDL	9104422	9104466	9104482	9104485	9104496	9104505	9104512	9104524
Antimony	6/6rl	1.3	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	6/6rl	18	-	4	4	က	က	9	4	7	ო
Barium	6/6rl	220	2	14	29	29	26	28	33	44	35
Beryllium	g/gu	2.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron	b/brl	36	5	10	11	10	10	9	1	9	6
Boron (Hot Water Soluble)	b/brl	A A	0.10	0.27	0.55	0.22	0.41	0.21	0.34	0.37	0.24
Cadmium	6/6rl	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	g/gu	20	7	15	13	10	10	12	13	15	13
Cobalt	g/gu	21	0.5	8.4	6.9	0.9	5.1	5.2	8.0	5.4	7.2
Copper	b/gu	92	-	17	15	12	10	26	17	17	17
Lead	b/brl	120	~	9	9	4	4	1	9	18	9
Molybdenum	g/gu	2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	6/6rl	82	~	16	15	12	1	4	17	12	15
Selenium	g/gu	1.5	0.4	<0.4	<0.4	<0.4	<0.4	0.4	9.4	0.5	9.0
Silver	b/gµ	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	b/brl	_	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	g/gu	2.5	0.5	9.0	0.5	<0.5	<0.5	<0.5	0.5	<0.5	0.5
Vanadium	g/gu	86	-	19	15	4	13	15	17	19	18
Zinc	g/gu	290	2	34	26	23	21	32	31	46	30
Chromium VI	g/gu	99.0	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	b/brl	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	g/gu	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.57	0.005	0.176	0.206	0.164	0.237	0.144	0.189	0.149	0.218
Sodium Adsorption Ratio	Ϋ́	2.4	NA	0.327	0.231	0.126	0.138	0:030	0.158	0.040	0.208
pH, 2:1 CaCl2 Extraction	pH Units		Ϋ́	7.58	7.82	7.78	7.80	7.60	7.71	7.54	7.76

Comments:

9104422-9104524 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). PH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. RDL - Reported Detection Limit, G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

SAMPLING SITE:774 Hurontario/ Findlay Dr.

CLIENT NAME: WSP CANADA INC

引 (引化 Laboratories

Certificate of Analysis

AGAT WORK ORDER: 18T317303

PROJECT: 17M-01364-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Nicole Collins

SAMPLED BY: Brian Cooper/Nicole Collins

ò 6 150/511/ ۵ (

				O. Reg. 15	3(511) - OC	Reg. 153(511) - OC Pesticides (Soil)	(Soil)				
DATE RECEIVED: 2018-03-06									DATE REPORTED: 2018-03-15	:D: 2018-03-15	
		SAMPLE DESCRIPTION:	CRIPTION:	BH18-02 SS2	BH18-02 SS1	BH18-03 SS1	BH18-03 SS3	BH18-04 SS1	BH18-04 SS4	BH18-05 SS1	BH18-05 SS2
		SAMI	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE (DATE SAMPLED:	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02
Parameter	Unit	S/S	RDL	9104422	9104459	9104477	9104486	9104496	9104505	9104512	9104516
Hexachloroethane	6/6rl	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Gamma-Hexachlorocyclohexane	6/6rl	0.01	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	6/6rl	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	6/6rl	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor Epoxide	6/6rl	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan	6/6rl	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chlordane	6/6rl	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
DDE	6/6rl	0.05	0.007	<0.007	0.014	0.022	<0.007	<0.00>	<0.007	0.048	<0.007
DDD	6/6rl	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
DDT	6/6rl	1.4	0.007	<0.007	0.011	0.008	<0.007	<0.007	<0.007	0.050	<0.007
Dieldrin	6/6rl	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	6/6rl	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	6/6rl	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	6/6rl	0.01	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobutadiene	6/6rl	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	14.8	17.4	23	8.7	10.6	11.3	13.7	14.7
Surrogate	Unit	Acceptab	Acceptable Limits								
TCMX	%	50-140	140	89	99	62	102	09	72	89	70
Decachlorobiphenyl	%	60-130	130	84	74	06	88	92	82	80	80

Comments:

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Certified By:

Results relate only to the items tested and to all the items tested

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Results are based on the dry weight of the soil.

Note: DDT applies to the total of op'DDT and pp'DDD and pp'DDD and pp'DDD and DDE applies to the total of op'DDE. Endosulfan applies to the total of Endosulfan I 9104422-9104516

SAMPLING SITE: 774 Hurontario/ Findlay Dr.

CLIENT NAME: WSP CANADA INC

自G有T Laboratories

Certificate of Analysis

AGAT WORK ORDER: 18T317303

PROJECT: 17M-01364-00

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 5835 COOPERS AVENUE http://www.agatlabs.com

ATTENTION TO: Nicole Collins

SAMPLED BY: Brian Cooper/Nicole Collins

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

)	,		,				
DATE RECEIVED: 2018-03-06									DATE REPORTED: 2018-03-15	ED: 2018-03-15	
		SAMPLE DESCRIPTION:		BH18-02 SS2	BH18-02 SS6	BH18-03 SS1	BH18-03 SS5	BH18-04 SS2	BH18-04 SS4	BH18-05 SS3	BH18-05 SS5
		SAMPLE TYPE:	TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPLED:	IPLED:	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02	2018-03-02
Parameter	Unit	G/S R	RDL	9104422	9104468	9104477	9104494	9104501	9104505	9104520	9104527
Benzene	6/6rl	0.02 0	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	6/6rl	0.2 0	0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ethylbenzene	6/6rl	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene Mixture	6/6rl	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
F1 (C6 to C10)	6/6rl	25	2	~	\$5	<5	<5	<5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<5	<5
F1 (C6 to C10) minus BTEX	b/grl	25	2	<5	<5	<5>	<5>	<5	<5	<5	<5>
F2 (C10 to C16)	6/6rl	10	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	b/gµ	240	20	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	6/6rl	120	20	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	g/gu	120	20	AN	ΑN	NA	AN	NA	NA	AN	NA
Moisture Content	%		0.1	14.8	7.8	16.8	9.7	14.9	11.3	16.5	13.4
Surrogate	Unit	Acceptable Limits	imits								
Terphenyl	%	60-140		92	73	43	29	62	20	79	96

G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil RDL - Reported Detection Limit; Comments:

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Results are based on sample dry weight. 9104422-9104527

The C6-C10 fraction is calculated using Toluene response factor.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

The C10 - C16, C16 - C34, and C34 - Č50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

nC10, nC16 and nC34 response factors are within 10% of their average.

nC6 and nC10 response factors are within 30% of Toluene response factor

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Quality Assurance

CLIENT NAME: WSP CANADA INC

PROJECT: 17M-01364-00 SAMPLING SITE:774 Hurontario/ Findlay Dr. AGAT WORK ORDER: 18T317303 ATTENTION TO: Nicole Collins

SAMPLED BY:Brian Cooper/Nicole Collins

				Soi	Ana	alysis	6								
RPT Date: Mar 15, 2018			С	UPLICATE			REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable	Recovery		ptable nits	Recovery	Lin	ptable nits
		ld	''	''			Value	Lower	Upper	,	Lower	Upper		Lower	Uppe
O. Reg. 153(511) - Metals & Ino	organics (Soil)														
Antimony	9104422 9	104422	<0.8	<0.8	NA	< 0.8	96%	70%	130%	104%	80%	120%	87%	70%	130%
Arsenic	9104422 9	104422	4	4	NA	< 1	104%	70%	130%	107%	80%	120%	105%	70%	130%
Barium	9104422 9	104422	41	40	2.5%	< 2	99%	70%	130%	99%	80%	120%	95%	70%	130%
Beryllium	9104422 9	104422	< 0.5	<0.5	NA	< 0.5	99%	70%	130%	110%	80%	120%	94%	70%	130%
Boron	9104422 9	104422	10	11	NA	< 5	74%	70%	130%	104%	80%	120%	86%	70%	130%
Boron (Hot Water Soluble)	9104422 9	104422	0.27	0.27	NA	< 0.10	101%	60%	140%	98%	70%	130%	99%	60%	140%
Cadmium	9104422 9	104422	<0.5	<0.5	NA	< 0.5	98%	70%	130%	97%	80%	120%	102%	70%	130%
Chromium	9104422 9	104422	15	15	0.0%	< 2	89%	70%	130%	100%	80%	120%	100%	70%	130%
Cobalt	9104422 9	104422	8.4	8.3	1.2%	< 0.5	101%	70%	130%	107%	80%	120%	103%	70%	130%
Copper	9104422 9	104422	17	17	0.0%	< 1	92%	70%	130%	104%	80%	120%	102%	70%	130%
Lead	9104422 9	104422	6	6	0.0%	< 1	100%	70%	130%	105%	80%	120%	100%	70%	130%
Molybdenum	9104422 9	104422	<0.5	<0.5	NA	< 0.5	97%	70%	130%	107%	80%	120%	109%	70%	130%
Nickel	9104422 9	104422	16	16	0.0%	< 1	95%	70%	130%	100%	80%	120%	94%	70%	130%
Selenium	9104422 9	104422	< 0.4	< 0.4	NA	< 0.4	109%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	9104422 9	104422	<0.2	<0.2	NA	< 0.2	75%	70%	130%	101%	80%	120%	90%	70%	130%
Thallium	9104422 9	104422	<0.4	<0.4	NA	< 0.4	96%	70%	130%	101%	80%	120%	96%	70%	130%
Uranium	9104422 9	104422	0.6	0.6	NA	< 0.5	90%	70%	130%	101%	80%	120%	99%	70%	130%
Vanadium	9104422 9	104422	19	19	0.0%	< 1	92%	70%	130%	103%	80%	120%	95%	70%	130%
Zinc	9104422 9	104422	34	34	0.0%	< 5	98%	70%	130%	105%	80%	120%	109%	70%	130%
Chromium VI	9104531		<0.2	<0.2	NA	< 0.2	77%	70%	130%	103%	80%	120%	97%	70%	130%
Cyanide	9104422 9	104422	<0.040	<0.040	NA	< 0.040	94%	70%	130%	100%	80%	120%	97%	70%	130%
Mercury	9104422 9	104422	<0.10	<0.10	NA	< 0.10	106%	70%	130%	103%	80%	120%	102%	70%	130%
Electrical Conductivity	9104422 9	104422	0.176	0.181	2.8%	< 0.005	96%	90%	110%						
Sodium Adsorption Ratio	9104422 9	104422	0.327	0.331	1.2%	NA									
pH, 2:1 CaCl2 Extraction	9107591		7.52	7.51	0.1%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Quality Assurance

CLIENT NAME: WSP CANADA INC

PROJECT: 17M-01364-00 SAMPLING SITE:774 Hurontario/ Findlay Dr. AGAT WORK ORDER: 18T317303 ATTENTION TO: Nicole Collins

SAMPLED BY:Brian Cooper/Nicole Collins

			Trac	e Or	ganio	cs An	alys	is							
RPT Date: Mar 15, 2018			С	UPLICATI	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable	Recovery	Lie	ptable nits	Recovery		ptable nits
		Id	·				value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	9104512		< 0.01	< 0.01	NA	< 0.01	81%	50%	140%	90%	50%	140%	70%	50%	140%
Gamma-Hexachlorocyclohexane	9104512		< 0.005	< 0.005	NA	< 0.005	60%	50%	140%	55%	50%	140%	94%	50%	140%
Heptachlor	9104512		< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	114%	50%	140%	87%	50%	140%
Aldrin	9104512		< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	92%	50%	140%	88%	50%	140%
Heptachlor Epoxide	9104512		< 0.005	< 0.005	NA	< 0.005	90%	50%	140%	103%	50%	140%	89%	50%	140%
Endosulfan	9104512		< 0.005	< 0.005	NA	< 0.005	86%	50%	140%	91%	50%	140%	78%	50%	140%
Chlordane	9104512		< 0.007	< 0.007	NA	< 0.007	86%	50%	140%	100%	50%	140%	86%	50%	140%
DDE	9104512		< 0.007	< 0.007	NA	< 0.007	95%	50%	140%	117%	50%	140%	90%	50%	140%
DDD	9104512		< 0.007	< 0.007	NA	< 0.007	97%	50%	140%	110%	50%	140%	86%	50%	140%
DDT	9104512		< 0.007	< 0.007	NA	< 0.007	97%	50%	140%	103%	50%	140%	99%	50%	140%
Dieldrin	9104512		< 0.005	< 0.005	NA	< 0.005	89%	50%	140%	107%	50%	140%	92%	50%	140%
Endrin	9104512		< 0.005	< 0.005	NA	< 0.005	91%	50%	140%	113%	50%	140%	108%	50%	140%
Methoxychlor	9104512		< 0.005	< 0.005	NA	< 0.005	110%	50%	140%	110%	50%	140%	112%	50%	140%
Hexachlorobenzene	9104512		< 0.005	< 0.005	NA	< 0.005	89%	50%	140%	84%	50%	140%	89%	50%	140%
Hexachlorobutadiene	9104512		< 0.01	< 0.01	NA	< 0.01	90%	50%	140%	95%	50%	140%	80%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (Soil)														
Benzene	9102931		< 0.02	< 0.02	NA	< 0.02	93%	60%	130%	94%	60%	130%	107%	60%	130%
Toluene	9102931		< 0.08	< 0.08	NA	< 0.08	89%	60%	130%	97%	60%	130%	115%	60%	130%
Ethylbenzene	9102931		< 0.05	< 0.05	NA	< 0.05	88%	60%	130%	99%	60%	130%	116%	60%	130%
Xylene Mixture	9102931		< 0.05	< 0.05	NA	< 0.05	85%	60%	130%	96%	60%	130%	115%	60%	130%
F1 (C6 to C10)	9102931		< 5	< 5	NA	< 5	85%	60%	130%	89%	85%	115%	102%	70%	130%
F2 (C10 to C16)	9105581		< 10	< 10	NA	< 10	94%	60%	130%	86%	80%	120%	74%	70%	130%
F3 (C16 to C34)	9105581		< 50	< 50	NA	< 50	97%	60%	130%	84%	80%	120%	75%	70%	130%
F4 (C34 to C50)	9105581		< 50	< 50	NA	< 50	86%	60%	130%	86%	80%	120%	77%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jeu

Method Summary

CLIENT NAME: WSP CANADA INC

AGAT WORK ORDER: 18T317303

PROJECT: 17M-01364-00

ATTENTION TO: Nicole Collins

SAMPLING SITE:774 Hurontario/ Findlay Dr.

SAMPLED BY:Brian Cooper/Nicole Collins

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		-	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

Method Summary

CLIENT NAME: WSP CANADA INC AGAT WORK ORDER: 18T317303
PROJECT: 17M-01364-00 ATTENTION TO: Nicole Collins

SAMPLING SITE:774 Hurontario/ Findlay Dr. SAMPLED BY:Brian Cooper/Nicole Collins

SAMPLING SITE. 114 HUIOIIIano/ Fil	iulay Di.	SAIVII EED D1.DI	nan Cooper/Nicole Collins
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID

Laboratories

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only

7303 Work Order #: 18T31

Cooler Quantity:		
Arrival Temperatures:	2.1	12.212.5°C
Custody Seal Intact:	□Yes	□No , □N/A
Notes:		116

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Turnaround Time (TAT) Required:	A to 7 Business Da
Time (Y
Turnaround	Regular TAT

Regulation 558

Sewer Use

KRegulation 153/04

100

Ronell Cres.

Address: Contact:

Collingwood,

Collins

Nicole Į

Report Information:
Company: MSP Consider Inc.

Table Indicate One | Indicate One |

FOOD SUP (201) FOR POOL SUP (201)

Reports to be sent to:

Phone:

1. Email: 2. Email:

CCME

Sanitary Storm

Next Business
Day X 5 to 7 Business Days 2 Business Days Rush TAT (Rush Surcharges Apply) 3 Business Days

Prov. Water Quality
Objectives (PWQO)

Indicate One

Region

Soil Texture (check One)

Coarse

Fine

gord. jarvis @wsp. com nicole, collins @ wsp. com

MISA

Certificate of Analysis

Record of Site Condition? Is this submission for a

Report Guideline on

Indicate One

20

X Yes

% X

□ Yes

Briga Cooper / Nicole Collins

17M-01364-00

Project Information:

Site Location: Sampled By:

Brian Cooper / Nicole

0. Reg 153

OR Date Required (Rush Surcharges May Apply):

Σ

TCP	
AGAT	
your	
contact	
please	
analysis,	
Day'	
г 'Ѕате	
0	

o' I	S3 Metals (excl. Hydroes) T53 Metals (incl. Hydro nn stom Metals	Metals and Ind Metals and Ind Metals 12 Metals 12 Metals 12 Metals 13 Metals 13 Metals 3 Metals		
Sample Matrix Legend	GW Ground Water O Oil P Paint S Soil SD Sediment	SW Surface Water Comments/ Special Instructions		. 0
alysis	O No D	# of Sample Containers Matrix	Ч	7
	Bill To Same: Yes 🗹 No 🗆	entification Date Time # of St Sampled Containers N	FF	13
= ! I be billed full price for an		te le	03/02/18 AH	=
PO: Pleuse note: If quotation number is not provided, elient will be billed full price for analysis.		Date	03	

		шш	11				3	2					7	90
was	×			×	×				X		X		Page 1 of	064506
TCLP				1				le l	1 6				<u> </u>	<u> </u>
SgrO	X	X			X			×		X				ž
PCB	or.													
M8A HA9	06.1													10 S
DHC							-11					Time	Time	
FloV								K	W.	7				0
Nuti														Har 6
BeA												Date	Date	Date
Full														
10 🗆	4	3									270			
08 ₽														
IIA 🗀														
19M	×		X	-		X	×			X				
Z / >													,	7
<u>-</u>			- 6									_		
Special Instructions								200				Samples Received by (Print Name and Sign):	Samples Received By (Print Name and Sign):	Samples Received By (Print Nappe and Sty
Matrix	S	V	W	V	V	S	V	N	S	S	V	4: DD	9	o
Containers	T	7	ਰ	7	60		_	_	7	7	7	6/19 L	Time	Time
Sampled	F	1.	11	11	110	5	11	, ,	-,	MA	1,	03/0	Date	Date
Sampled	03/102/118	-1-	1.1	11	3	11	二	13	1 1	1.1	1.1	Colle	}	
ification	557	5551	553	556	550	285	788	583	, 555	155 1	255 H	AS MERCA	nd Sign):	nd Sign):
Sample Identification	BH18-02	RH18-02	BH 18 -02	BH18-67	RH18-63	BH18-03	RH18-63	BH18-63	BH18-03	13419-0U	BH18-01	Samples Refinquished By (Print Name and Sign)	Samples Relinquisned By (Print Name and Sign)	Samples Relinquished By (Print Name and Sign):
			ļ.,							ļ,		<u> </u>	S	SS

Document ID: Div 78-1511,014

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT 0: 2017

Laboratories

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

5835 Coopers Avenue

Laboratory Use Only

2.117917	□ N/A □ N/A	3
 Cooler Quantity: Arrival Temperatures:	Custody Seal Intact:	Notes:

☐ No Regulatory Requirement

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Regulatory Requirements:

Regulation 558

Sewer Use

Regulation 153/04

CCME

Sanitary Storm

Table Indicate One Indicate One Makes/Park

TOS)445-0004 Fax (705)445-000-7

20

Collinguadod

Cres

Nicole Col

Address:

Contact:

Report Information:

nicole collins@ WSpicom

Reports to be sent to:

Phone:

1. Email: 2. Email:

gord, jarvis@ wsp.com

(TAT) Required	5 to 7 Business [
Time (7
Turnaround Time (TAT)	Regular TAT

s Days		
X 5 to 7 Business Days	es Apply)	2 Business Days
Regular TAT	Rush TAT (Rush Surcharges Apply)	3 Business Days

☐ Prov. Water Quality
Objectives (PWQO)
☐ Other

Indicate One

Soil Texture (check one)

Coarse

Fine

MISA

Next Business
Day

sh TAT	y holida
Please provide prior notification for rush TAT	TAT is exclusive of weekends and statutory holida
or notifica	ekends aı
rovide pri	sive of we
Please p	T is exclu
	Ĭ

Certificate of Analysis

Record of Site Condition? Is this submission for a

Report Guldeline on

2

X Yes

No No

□ Yes

PONIBAL COLLINGAMOR

JM-01364-05

Project Information:

HUCOMPSIO

Site Location: Sampled By:

0/14

Looper

Br. an

O. Reg 153

Sample Matrix Legend

Ground Water

B GW 0

□ %

Yes 💢

Bill To Same:

tion number is not provided, client will be billed full price for analysis.

Please note: If qui

AGAT Quote #:

Invoice Information:

Company:

Contact:

OR Date Required (Rush Surcharges May Apply):

sys

For 'Same Day' analysis, please contact your AGAT CPM

LEX

MHT□ X3T8[

Metals (Incl. Hydrides) tals (excl. Hydrides)

d - Metals, Hg, CrVI

□ ABNs □ B(a)P □PCBs

2 3 3	=11	9		
H(2 + BIE)	1	X		
er Use	wəs			
B □ ABNS □ ABNS □ B	TCLP			
sebiotize99 enholdoons	910	X	X	X
s: Total Aroclors	ьсв			
s	НАЧ			
	N8A			
A of 1 to 4				
tiles: □voc □BTEX □TH	_			
rients: ☐ TP ☐ NH ₃ ☐ TKN	Nut r N □			
alation/Custom Metals	Reg			
Metals Scan				
H □ SAR 6• □ EC □ FOC □ Hg				
SE DB-HWS DCI DCN				
I Metals 🔲 153 Metals (excl. Hydr vdride Metals 🗍 153 Metals (Incl. I				
als and Inorganics	təM	X	X	
Field Filtered - Metals,	2			
	> '			
Ground water Oil Paint Soil Sediment Surface Water Comments/	pecial Instructions			
30 4 8 8 8	S			
Sample Sample		S	S	V
ves N	Containers	I	N	_
Hill to Same: Yes X No L	Sampled	MA	F	1
Date	Sampled	03/02/P	11/20/50	1
Date Time som	fication	アママ	551	くいろ
ompany: ddress:	Sample Identification	45 PO-91418	SHIR-05	としていい

, ,

1 -

53 ST ر -

PALLA (131/15/118) 4: DODA Samples Received by (Print Name and Sign): Date Time	Date Time Samples Received by (Print Name and Sign): Date Time Page 2 of	Date Time Samples Received By (Print Name appropriate Control of C
SINSIIR		
Nicole Collins Manc and Signi	iamples Relinquished By (Print Name and Sign):	iamptes Reilnquished By (Print Name and Sign):

Surrent ID: DIV 78 1511 014