

22-189-402 April 21, 2025

Integricon Property Restoration and Construction Group Inc. (IPCG) 219 Westcreek Drive Vaughan, ON L4L 9T7

RE: Surface Water and Groundwater Level Monitoring, Wetland Risk Evaluation and Feature Based Water Balance Study – 11476 Highway 26, Collingwood, ON

In December 2014, SPL Consultants Ltd. advanced eleven (11) boreholes and installed four (4) monitoring wells at the Site. In July 2022, DS installed an additional two (2) monitoring wells at the Site. It is understood that additional hydrogeological assessments are required to address comments from the Town and the Conservation Authority in support of future Site Plan Approvals.

1.0 Groundwater and Surface Water Conditions

A coastal wetland feature was identified on the northern portion of the Site. In May 2024, a site reconnaissance of the site was conducted to assess the wetland feature. To assess recharge/discharge conditions within the coastal wetland, two (2) surface water stations were installed at the inlet and outlet locations of the wetland. The locations of the surface water stations are presented in **Figure 1**. Each surface water station was equipped with a staff gauge (SG1 & SG2) to monitor surface water levels, and a shallow and deep piezometer (PZ1S/D & PZ2S/D) to assess the vertical gradient at the wetland. Automated data loggers were installed at each staff gauge and deep piezometer locations set to record water levels on a continuous daily basis. In addition, automated data loggers were installed at two (2) select monitoring well locations (BH14-1 & BH14-7). Groundwater and surface water levels were monitored between May 2024 and April 2025 monthly to obtain manual water level readings and download data loggers.

Based on continuous and manual groundwater level data collected to date, groundwater levels remained below the ground surface throughout the monitoring period, ranging from approximately 0.4 to 1.4 meters below ground surface (mbgs), corresponding to elevations between 177.0 and 178.9 meters above sea level (masl). Seasonal trends in groundwater levels were observed, with highest levels occurring during the spring (May–June). This was followed by a gradual decline through the fall, and a subsequent increase during the winter months, leading into seasonal highs in the following spring. Groundwater levels also exhibited positive responses to major precipitation events, reflecting a dynamic interaction between climatic inputs and subsurface hydrology. Groundwater levels are presented in **Table 1** in **Appendix A**, and groundwater level hydrographs are presented in **Appendix B**. Borehole logs are presented in **Appendix C**.

Based on the review of the monitoring data to date for the Wetland the following groundwater and surface water conditions are noted. SG1 & SG2 water levels generally remained slightly above the base of the wetland, 180.1 and 179.7 masl, respectively. At Station 1 (inlet), water levels generally remained at or near the ground surface throughout the monitoring period. Increased surface water levels were observed during the summer months (June to August 2024), with additional brief increases occurring in December 2024, January 2025, and from March to April 2025. These elevated levels appear to correlate with periods of increased precipitation and potential spring snowmelt. Groundwater levels in the piezometers located near SG1 remained consistently below the surface water levels throughout the monitoring period. The shallow piezometer typically recorded groundwater levels slightly higher than those in the deep piezometer, indicating a downward vertical hydraulic gradient consistent with recharge conditions, where water is infiltrating into the groundwater system. Furthermore, groundwater levels in both piezometers consistently remained below the base of the wetland, suggesting that groundwater is not discharging into the surface water feature at this location. This supports the interpretation that the feature is primarily surface water-fed, with limited or no groundwater contribution at this station.

At Station 2 (outlet), water levels generally remained above the ground surface throughout the monitoring period. Elevated water levels were observed from spring (May 2024) through summer (August 2024), with a gradual decline occurring into the fall (September 2024). This decline continued through to the winter months (December 2024), during which water levels reached their lowest points, often corresponding with dry periods. Following this decline, a gradual increase in water levels was observed and sustained throughout the remainder of the monitoring period (January to April 2025). Notably, incremental increases in surface water levels were recorded in response to major precipitation events, indicating a strong correlation between rainfall and short-term fluctuations in water levels. This trend suggests a seasonal pattern influenced by climatic conditions, with higher water levels during wetter spring and summer months and lower levels during the drier fall and early winter, followed by a slow recovery influenced by precipitation inputs.

Groundwater levels in the piezometers near SG2 were generally observed to be below surface water levels throughout the monitoring period. It is noted that the station was inaccessible during the September 2024, December 2024, and January 2025 monitoring events, and therefore no manual data is available for those periods. The shallow piezometer (PZ2S) typically recorded higher groundwater levels than the deep piezometer (PZ2D), indicating a downward vertical hydraulic gradient and suggesting recharge conditions at this location. Occasionally, groundwater levels rose above the bottom of the wetland base during the spring months (May–June 2024 and March–April 2025), indicating potential groundwater contributions to the wetland during these periods. Despite these seasonal increases, groundwater levels remained below surface water levels for much of the monitoring period, suggesting that surface water is the dominant water source at this location.

Based on the observed data, there is a general increase in water levels from the upstream station (Station 1) to the downstream station (Station 2), suggesting a net accumulation of water through the wetland system.

The data indicate that both groundwater recharge processes are generally occurring within the wetland, with some groundwater discharge evident at the outlet (Station 2) during the spring months. Additionally, vegetation uptake is expected to play a significant role in reducing groundwater contributions, particularly during the spring and summer growing seasons, when evapotranspiration rates are elevated. This mechanism likely contributes to the observed seasonal decline in water levels following spring peaks.

A summary of the water levels in each of the surface water monitoring station is provided in **Table 2** in **Appendix A**. The hydrographs are provided in **Appendix B**.

2.0 Surface Water Quality

In May 2024, two (2) surface water quality samples were obtained from the wetland near each of the surface water monitoring stations (SG1 & SG2) and analyzed for general chemistry parameters and metals and inorganics to establish pre-construction baseline conditions. Results were compared to Provincial Water Quality Objectives (PWQO). Results indicate that phosphorus and iron exceeded at both locations. Groundwater quality results reported in the Preliminary Hydrogeological Investigation completed by DS dated February 13, 2023, indicate that groundwater exceeded multiple parameters against PWQO. Therefore, groundwater will be required to be treated to meet or exceed surface water quality to discharge groundwater overland during dewatering activities. The laboratory certificate of analysis is presented in **Appendix D**.

3.0 Wetland Risk Evaluation & Feature Water Balance Study

A Wetland Risk Evaluation was conducted by GeoBase Solutions (GBS) Ltd. in March 2025 for the coastal wetland located on the Site. The evaluation was carried out in accordance with the *Wetland Water Balance Risk Evaluation* guidelines developed by the Toronto and Region Conservation Authority (TRCA, November 2014).

The findings of the assessment determined that the wetland catchment was categorized as *low risk* in relation to the proposed development area. No risks were identified in terms of potential changes to the size of the wetland's catchment. Comprehensive details of the Wetland Risk Assessment can be found in **Appendix E**.

Additionally, GBS Ltd. completed a *Feature-Based Water Balance* for the wetland (March 2025). The assessment incorporated a Low Impact Development (LID) strategy, which included the implementation of a rain garden. With this strategy in place, the total annual site infiltration was estimated to increase by approximately 982 m³/year, along with an associated runoff deficit increase of 631 m³/year. Based on these results, potential risks to the wetland remain low. Further information and calculations related to this assessment are also provided in **Appendix E**.

Should you have any questions regarding these findings, please contact the undersigned.

Sincerely,

DS Consultants Limited

Prepared By: Reviewed By:

Dorothy Santos, M.Sc. Project Manager

Martin Gedeon, M.Sc., P.Geo. Vice President

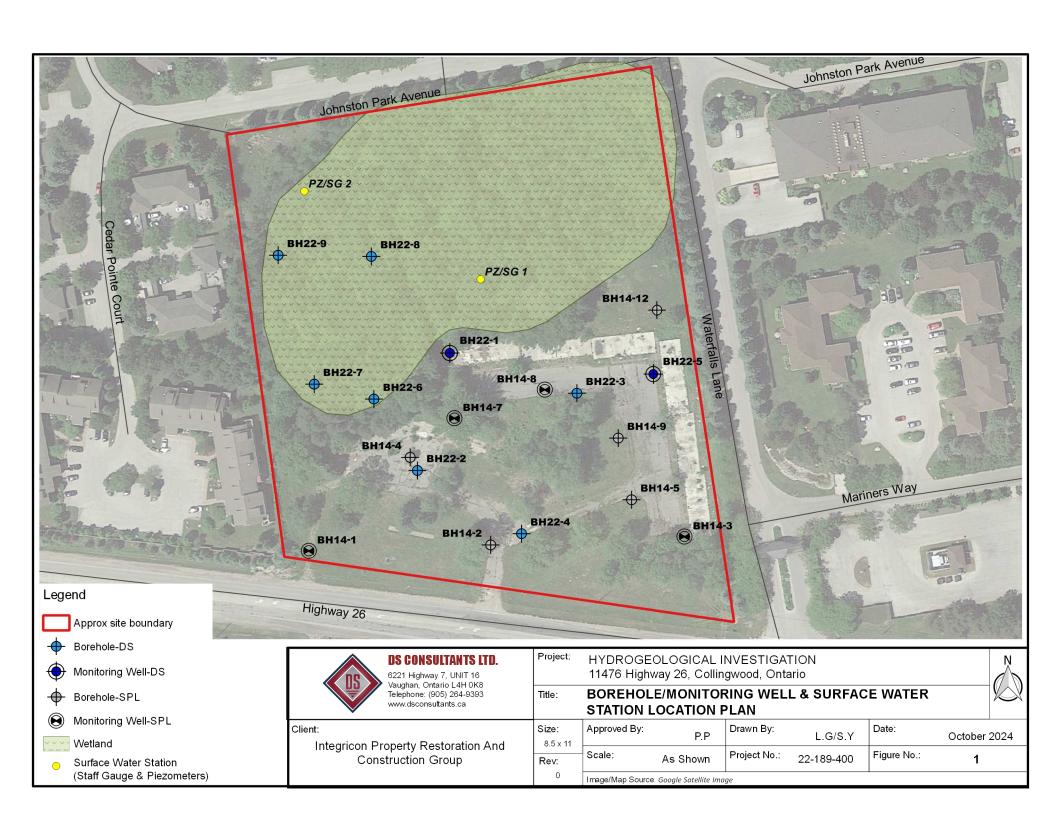
Mont. Ceder

Enclosures:

Figure 1- Borehole/Monitoring Well and Surface Water Station Locations

Appendix A- Groundwater and Surface Water Tables (Table 1 & Table 2)

Appendix B- Groundwater and Surface Water Level Hydrographs


Appendix C- Borehole Logs

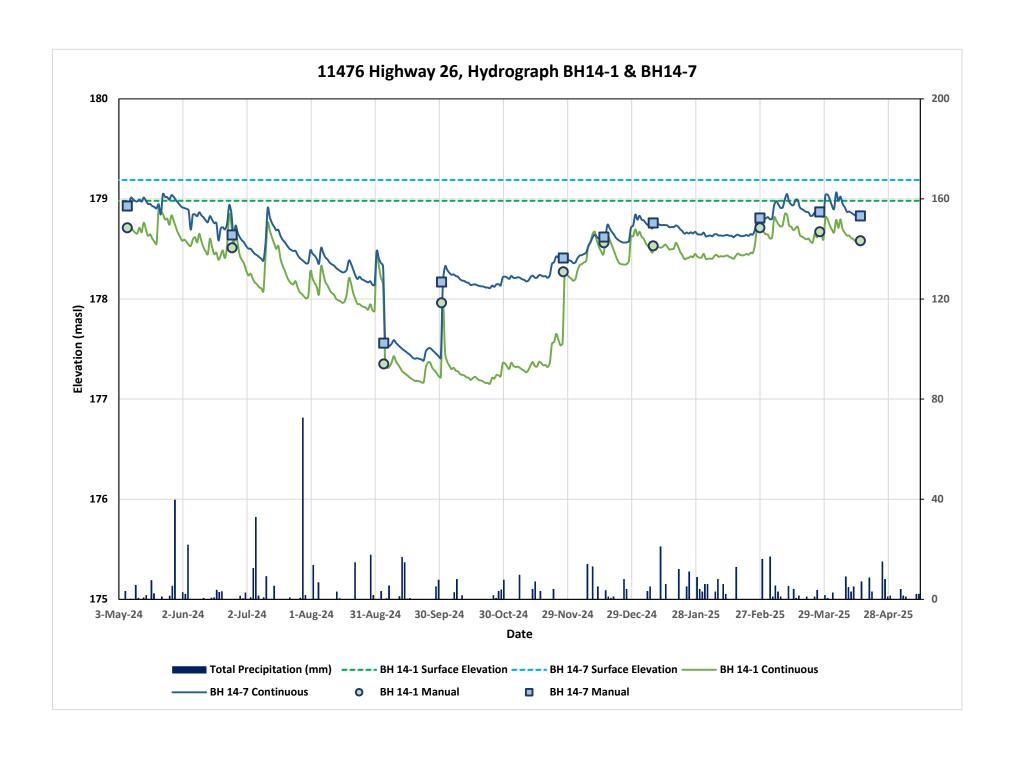
Appendix D- Laboratory Certificate of Analysis

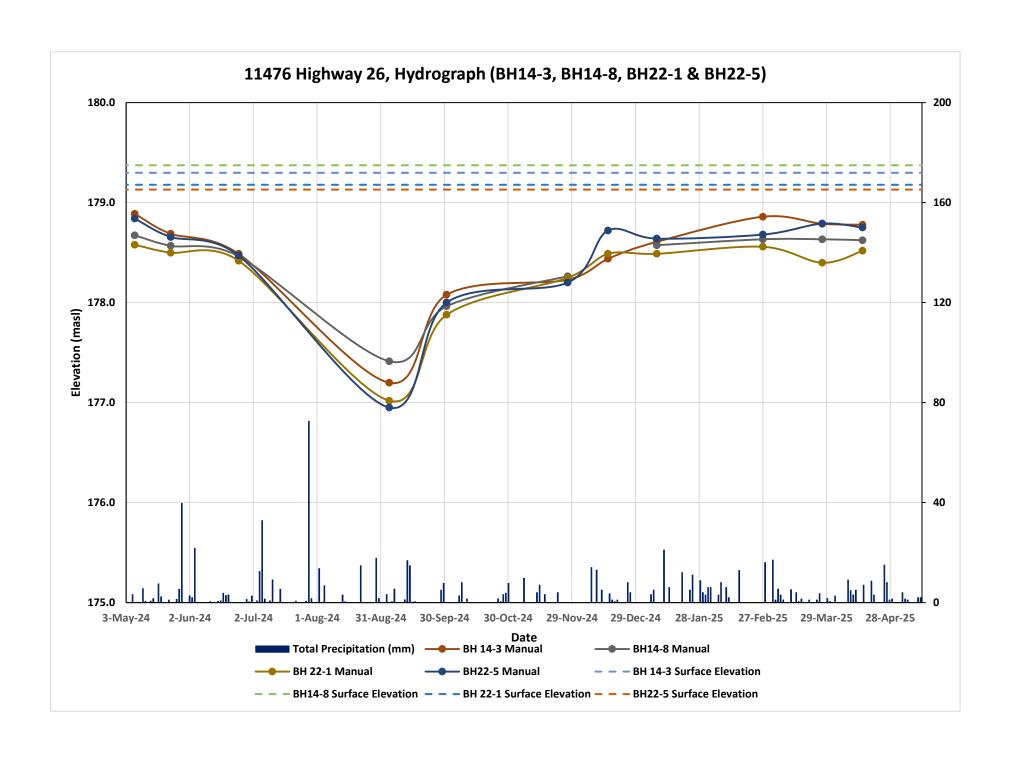
Appendix E- Wetland Risk Evaluation and Feature Based Water Balance Study (GBS Ltd., 2025)

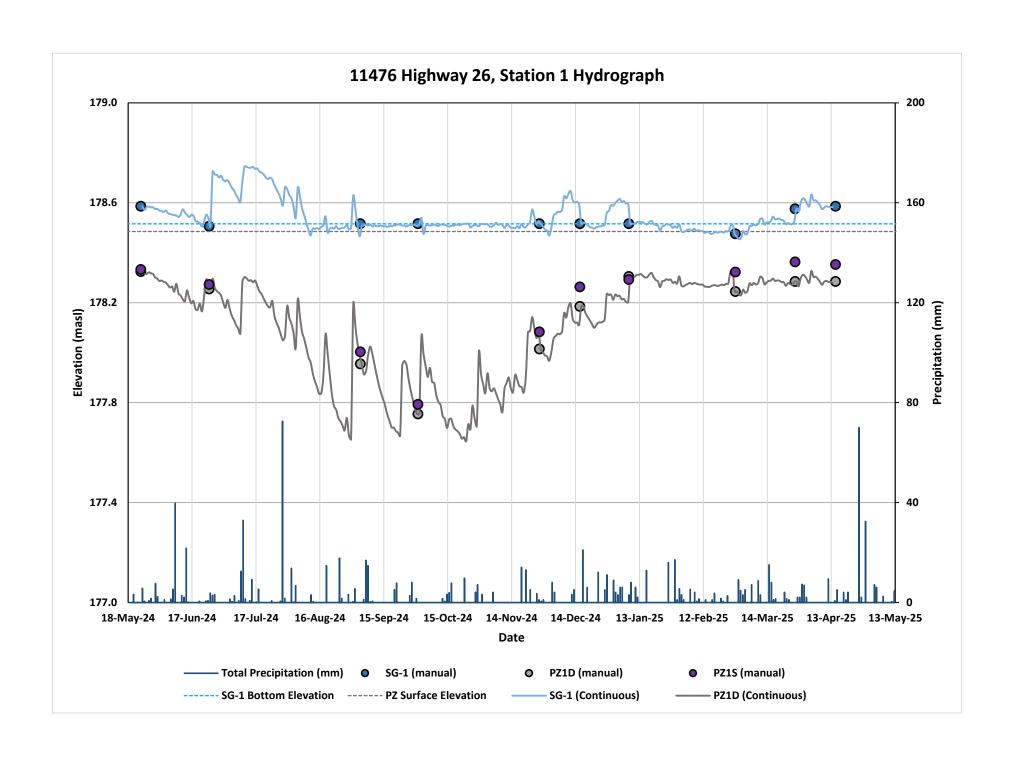
Figures

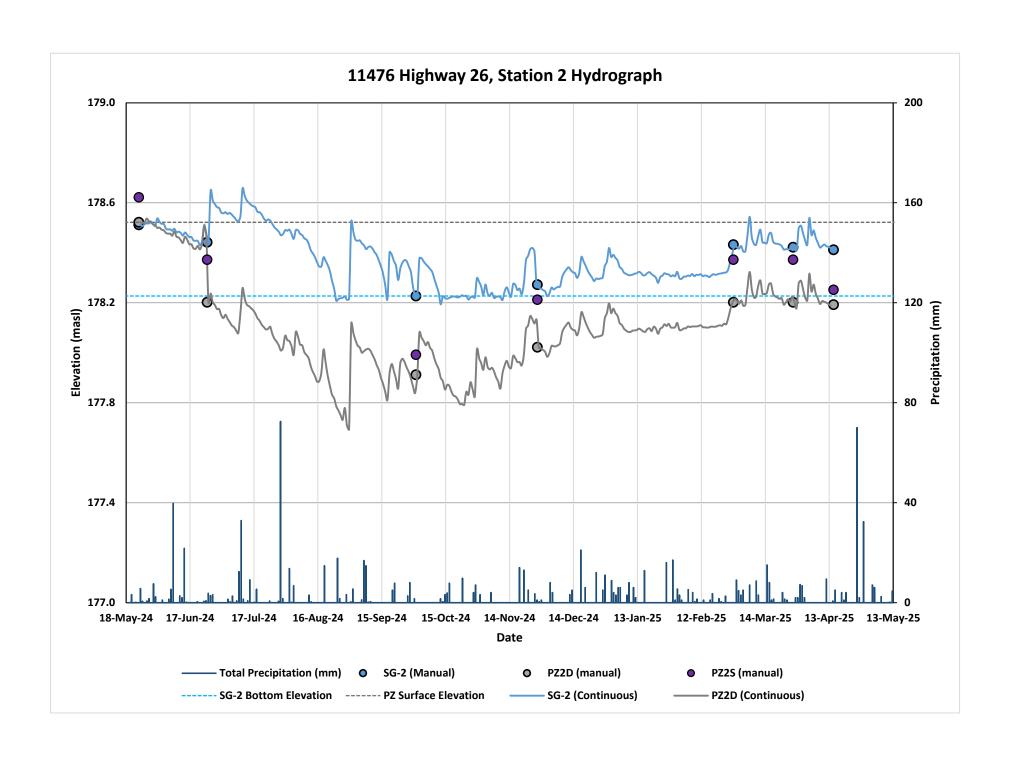
Appendix A

Table 1: Groundwater Monitoring Data Location: 11476 Hwy 26, Collingwood


	Da	te				May 7, 2024		J	une 25, 202	4		September 4	, 2024		October 1, 2	2024	No	vember 27	, 2024	D	ecember 10	5, 2024	J	anuary 8, 2	2025	Fe	bruary 27,	2025	-	Лarch 27, 2	025		April 15,	2025
Well ID	Surface Elevation	S.Up	Well Depth (m)	Well Depth (m)	Water level	Water level	Water Level Elev.	Water level	Water level	Water Level Elev.	Water level	Water level	Water Level Elev.	Water level	Water level	Water Level Elev.																		
			T.O.P	(mbgs)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)	T.O.P	(mbgs)	(masl)
BH 14-1	178.98	0.75	2.12	1.4	1.02	0.27	178.71	1.22	0.5	178.5	1.63	0.88	177.351	1.77	1.02	177.961	1.46	0.71	178.271	1.17	0.42	178.561	1.2	0.45	178.531	1.02	0.27	178.711	1.06	0.31	178.671	1.15	0.40	178.581
BH 14-3	179.30	0.99	2.40	1.4	1.40	0.41	178.89	1.80	0.8	178.5	2.1	1.11	177.198	2.21	1.22	178.078	2.06	1.07	178.228	1.85	0.86	178.438	1.68	0.69	178.608	1.43	0.44	178.858	1.5	0.51	178.788	1.51	0.52	178.778
BH 14-7	179.19	0.77	6.20	5.4	1.03	0.26	178.93	1.32	0.6	178.6	1.63	0.86	177.559	1.79	1.02	178.169	1.55	0.78	178.409	1.34	0.57	178.619	1.2	0.43	178.759	1.151	0.38	178.808	1.09	0.32	178.869	1.13	0.36	178.829
BH14-8	179.37	0.73	2.56	1.8	1.43	0.70	178.67	1.64	0.9	178.5	1.96	1.23	177.413	2.14	1.41	177.963	1.84	1.11	178.263				1.53	0.80	178.573	1.47	0.74	178.633	1.47	0.74	178.633	1.48	0.75	178.623
BH 22-1	179.18	1.08	2.46	1.4	1.68	0.60	178.58	1.84	0.8	178.4	2.16	1.08	177.018	2.38	1.30	177.878	2.01	0.93	178.248	1.77	0.69	178.488	1.77	0.69	178.488	1.7	0.62	178.558	1.86	0.78	178.398	1.74	0.66	178.518
BH22-5	179.13	1.21	2.89	1.7	1.50	0.29	178.84	1.87	0.7	178.5	2.18	0.97	176.950	2.34	1.13	178.000	2.14	0.93	178.200	1.62	0.41	178.720	1.7	0.49	178.640	1.66	0.45	178.680	1.55	0.34	178.790	1.59	0.38	178.750
BH 1	179.20	0.79	2.29	1.5	1.20	0.41	178.79	1.51	0.7	178.5	1.83	1.04	177.366	2.01	1.22	177.976	1.8	1.01	178.186	1.57	0.78	178.416	1.27	0.48	178.716	1.37	0.58	178.616	1.24	0.45	178.746	1.27	0.48	178.716
BH 2	179.27	0.83	2.28	1.5	1.25	0.42	178.85	1.61	0.8	178.5	1.92	1.09	177.349	2.1	1.27	177.999	1.93	1.10	178.169	1.69	0.86	178.409	1.47	0.64	178.629	1.47	0.64	178.629	1.32	0.49	178.779	1.35	0.52	178.749
BH 3	179.14	0.68	2.14	1.5	1.05	0.37	178.77	1.42	0.7	178.4	1.74	1.06	177.401	1.92	1.24	177.901	1.7	1.02	178.121	1.46	0.78	178.361	1.2	0.52	178.621	1.23	0.55	178.591	1.11	0.43	178.711	1.15	0.47	178.671
BH 4	179.06	0.73	2.16	1.4	1	0.27	178.79	1.36	0.6	178.4	1.67	0.94	177.389	1.85	1.12	177.939	1.61	0.88	178.179	1.36	0.63	178.429	1.38	0.65	178.409	1.13	0.40	178.659	1.06	0.33	178.729	1.11	0.38	178.679
BH 5	179.11	0.75	6.04	5.3	1.17	0.42	178.69	1.48	0.7	178.4	1.8	1.05	177.310	1.93	1.18	177.930	1.75	1.00	178.110	1.56	0.81	178.300	1.41	0.66	178.450	1.34	0.59	178.520	1.24	0.49	178.620	1.25	0.50	178.610


Table 2: Surface Water Level Monitoring Location: 11476 Highway 26, Collingwood


	:	SG			24-N	lay-24	25-J	un-24	04-S	ep-24	01-0	Oct-24	27-N	ov-24	16-D	ec-24	08-J	an-25	27-F	eb-25	27-N	1ar-25	14-A	pr-25
SG ID	TOP Elevation (masl)	Depth (top of Casing) Inside	Stick-up (m)	Surface Elev. (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)
SG-1	180.07			178.52	1.48	178.59	1.56	178.51	Dry	178.52	1.59	178.48	1.49	178.58	1.48	178.59								
SG-2	179.65			178.23	1.14	178.51	1.21	178.44	inacce	essible	Dry	178.23	1.38	178.27	inacce	essible	inacc	essible	1.22	178.43	1.23	178.42	1.24	178.41
PZ1D		1.82	1.05	178.49	1.21	178.33	1.28	178.26	1.58	177.96	1.78	177.76	1.52	178.02	1.35	178.19	1.23	178.31	1.29	178.25	1.25	178.29	1.25	178.29
PZ1S		1.76	0.77	178.48	0.92	178.33	0.98	178.27	1.25	178.00	1.46	177.79	1.17	178.08	0.99	178.26	0.96	178.29	0.93	178.32	0.89	178.36	0.90	178.35
PZ2D		3.36	1.38	178.52		178.52	1.70	178.20	inacce	essible	1.99	177.91	1.88	178.02	inacce	essible	inacc	essible	1.70	178.20	1.70	178.20	1.71	178.19
PZ2S		1.92	0.60	178.62		178.62	0.85	178.37	inacce	essible	1.23	177.99	1.01	178.21	inacce	essible	inacc	essible	0.85	178.37	0.85	178.37	0.97	178.25



Appendix B

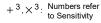
Appendix C

DRILLING DATA PROJECT: Geotechnical Investigation CLIENT: Integricon Property Restoration and Construction Group Inc. Method: Hollow Stem Auger

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

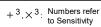
Diameter: 150 mm


REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 2

	BH LOCATION: See Drawing 1 N 4929/16.695 E	559282.851	
1	SUI DDUEILE	CAMDLEC	Τ

SOIL PROFILE		SAM	1PLE	S	3		DYNA RESIS	MIC CC TANCE	NE PEI	VETRA	TION		DI ASTI	_ NATI	JRAL	LIOLID		Л	RE	MAR	(S
DESCRIPTION	TRATA PLOT	JUMBER			BROUND WATER CONDITIONS	:LEVATION	SHEA O UI	R STI NCONF JICK TI	RENGT INED RIAXIAL	H (kF + . ×	Pa) FIELD V & Sensitr LAB V	ANE vity ANE	W _P ⊢ WA1	TER CO			POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (kN/m³)	GR DIST	AIN SI RIBUT (%)	ΠΟ
TOPSOIL: 150mm	\(\frac{1}{2}\cdot \frac{1}{2}\cdot \fra	Z F	-	=		ш					-		'						GK 8	SA SI	_
FILL: silty sand, trace gravel, some roots/organics, wet, very loose	(a)	1 S	S	2			-								c						
SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very				50/	∑	W. L. ´ Aug 05	180.3 5, 2022	m 2													
dense		2 S		100			-								0				5 7	76 15	į .
				F 0.7		180	- - -										-				
END OF BOREHOLE:		3 S	S	100			-								0						
Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.86 Aug 5, 2022 0.64																					
	DESCRIPTION TOPSOIL: 150mm FILL: silty sand, trace gravel, some roots/organics, wet, very loose SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very dense END OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level (mbgl): July 22, 2022 0.86	DESCRIPTION TOPSOIL: 150mm FILL: silty sand, trace gravel, some roots/organics, wet, very loose SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very dense END OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.86	DESCRIPTION TOPSOIL: 150mm FILL: silty sand, trace gravel, some roots/organics, wet, very loose 1 SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very dense 2 SEND OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.86	DESCRIPTION TOPSOIL: 150mm FILL: silty sand, trace gravel, some roots/organics, wet, very loose 1 SS SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very dense 2 SS END OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.86	DESCRIPTION TOPSOIL: 150mm FILL: silty sand, trace gravel, some roots/organics, wet, very loose 1 SS 2 SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very dense 2 SS 100 mm END OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level (mbgl): July 22, 2022 0.86	DESCRIPTION Lot A A B B B B B B B B	DESCRIPTION A	DESCRIPTION Lot Wall Wa	DESCRIPTION Topsoil: 150mm Topsoil:	DESCRIPTION A	DESCRIPTION Lot Lot	DESCRIPTION	DESCRIPTION A	DESCRIPTION Section Part Part	DESCRIPTION Comparison Com	TOPSOIL: 150mm C	TOPSOIL: 150mm 5 2 5 5 5 5 5 5 5 5	TOPSOIL: 150mm	DESCRIPTION A	TOPSOIL: 150mm 5 2	TOPSOIL: 150mm



PROJECT: Geotechnical Investigation DRILLING DATA

CLIENT: Integricon Property Restoration and Construction Group Inc. Method: Hollow Stem Auger

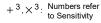
DATUI BH LO	CATION: See Drawing 1 N 4929674.0	96 F	5593	271 10	9			Date:			-						ICL N	J J		
BITEO	SOIL PROFILE	<u> </u>		SAMPL		_		DYNA RESIS	MIC CC	NE PE PLOT	NETRA	ATION		DI ACTI	o NATI	JRAL	LIOLID		F	REMARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STINCONF		0 8 ΓΗ (kF + - ×	Pa) FIELD V & Sensiti	ANE		TER CC	v DNTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU ⁻ (%) GR SA SI
179:0	ASPHALT:50 mm						179													
0.1 178.7 0.3	GRANULAR BASE: sand and gravel, 250mm FILL: silty sand, some gravel, brown, moist, compact	ο	1	SS	10			-												
								- -												
178.2 0.8	SILTY SAND: trace gravel, brown, wet, very dense		2	SS	50/ 100			-									0			
178.1 0.9	END OF BOREHOLE:				mm															
	Nugar refusal at depth of 0.9m on inferred bedrock. Water at depth of 0.8m during drilling.																			

CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA


Method: Hollow Stem Auger

Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 4

SH LO	CATION: See Drawing 1 N 4929702.1	2 E C		SAMPL			l	DYNA	MIC CC	NE PEI	NETRA	ATION						Г		
\neg	SOIL PROFILE	Τ.	*	MIVIPL	.ES	GROUND WATER CONDITIONS		RESIS	STANCE	PLOT	\geq		00	PLASTIC LIMIT	NATU MOIS	JRAL TURE	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m³)	REMARKS AND
m)		STRATA PLOT			SNE	WAT	Z			RENGT			<u> </u>	W _P		TENT V	WL	POCKET PEN. (Cu) (kPa)	ıL UNI	GRAIN SIZ
PTH	DESCRIPTION	TAF	NUMBER		BLOWS 0.3 m	OND	ELEVATION	0 U	NCONF	INED	+	FIÉLD V. & Sensiti	ANE vity			····	——————————————————————————————————————	ŠŠ.	TURA (KN	DISTRIBUTI (%)
70.0		STR/	NO.	TYPE	ż	SRO	E.E.			RIAXIAL 0 60	. ×	LAB V	ANE 00	WAI 1	ER CC		11 (%) 30		≥	GR SA SI
79.0 78:9	ASPHALT:50 mm	0)	_		-												Ť			GIV SA SI
0.1		00						-												
	mm	00																		
		00						ŀ												
78.7		00						L												
0.3	FIL: silty sand with topsoil, trace gravel, brown, moist, loose	\boxtimes	1	SS	6															
		\bowtie						-												
		\bowtie	1																	
		\bowtie						ŀ												
		\otimes																		
		\bowtie																		
		\bowtie						L												
		\bowtie	1																	
70.0		\bowtie						-												
78.2 0.8	SAND: trace gravel, yellowish	KX)			50/	-														
78.1	brown, wet, very dense	:::	2	SS	150 mm			}									ф			
0.9	END OF BOREHOLE:	<u> </u>																T		
	Notes: 1) Augar refusal at depth of 0.9m on																			
	inferred bedrock. 2) Water at depth of 0.8m during																			
	drilling.																			
																		1		
																		1		
																		1		
																		1		
		1	ı	1	İ	ı	I	ı	1	i I		1	I .	1		1	1	1	1	l

PROJECT: Geotechnical Investigation DRILLING DATA

CLIENT: Integricon Property Restoration and Construction Group Inc.

Method: Hollow Stem Auger

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON Diameter: 150 mm REF. NO.: 22-189-400

DATUM: Geodetic Date: Jun-02-2022 ENCL NO.: 5

	IM: Geodetic	74 F		200.07	0			Date:	Jun-0)2-202	2					Εľ	NCL N	0.: 5		
BH LC	OCATION: See Drawing 1 N 4929651.1 SOIL PROFILE	/1 E		SAMPL				DYNA	MIC CC	NE PE E PLOT	NETRA	ATION								DEMARK
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STINCONF	0 6 RENG INED RIAXIAL	0 8 ΓΗ (kF + - ×	Pa) FIELD V & Sensit	OO /ANE tivity 'ANE		TER CO	w O ONTEN		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMARK AND GRAIN SIZ DISTRIBUTI (%)
178.9 178.8 0.1	ASPHALT:50 mm GRANULAR: sand and gravel, 250 mm			<u> </u>	-	00	Ш	-	0 4	0 6	<u> </u>	30 1	00	1	0 2	20 ;	30			GR SA SI
178.6 0.3	SILTY SAND: trace clay, trace gravel, yellowish brown, wet, dense to very dense		1 1	SS	30			- - -						o						
178.0			2	SS	50/ 100 mm		178	-												
0.9	END OF BOREHOLE: Notes: 1) Augar refusal at depth 0.9m on inferred bedrock.																			

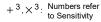
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 6

	SOIL PROFILE		S	AMPL	ES			D R	YNAN	AIC CC TANCE	NE PE	NETR.	ATION		DI ACT	_ NATI	JRAL	1101		F	RE	MAR	KS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER	ELEVATION		2 SHEA O UN	0 4 R STF ICONF	0 6 RENG INED	0 8 TH (kl	Pa) FIELD V	OO ANE vity	PLASTI LIMIT W _P	MOIS CON V	v 	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRA DISTI	AND AIN S	IZE
179.1		STR	NON	TYPE	ż	GRC		'	2 QL				LAB V. 30 1	ANE 00				30		z	GR S	A S	1 (
179:0	ASPHALT:50 mm							T															
0.1	GRANULAR: sand and gravel, 550 mm		1	SS	10		1	79 - - -															
-		13 -																					
178.5		00					::	-															
0.6	GRAVELLY SAND: some silt, trace clay, yellowish brown, wet, very dense					. ∑			'8.4 r 2022														
		.0.																					
		. 0						Ī															
1		.0.						ŀ															
		0.0																					
177.7			2	SS	60		1	78 - -								0					25 5	4 10	3 5
1.4	END OF BOREHOLE:																						
	Notes: 1) Augar refusal at depth of 1.4m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.74 Aug 5, 2022 0.69																						

PROJECT: Geotechnical Investigation
CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	OCATION: N 0 E 1 SOIL PROFILE		S	SAMPL	.ES			DYNA RESIS	MIC CO	ONE PEI E PLOT	NETRAT	ΓΙΟΝ			NATI	DAI				ם בי	/ARK
(m) ELEV DEPTH 178.8	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR ST NCONF UICK T	40 6 RENG FINED RIAXIAL	TH (kF		11 VIL	PLASTIC LIMIT W _P L	w O ER COM	NTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR SA	ND IN SIZ IBUTI (%)
178.9 0.1 178.6 0.2	150mm. sand and gravel		1	SS	15	Ţ	W. L. Jan 19	178.3	m						o)				OK OF	
78.0 0.8	SAND: some silt, trace clay, trace gravel, oxidized, light brown, wet, loose		2	SS	6		W. L. Dec 12 178	2, 2014	m 4							0				4 80) 11
77.3 1.5	END OF BOREHOLE ON	· · ·						- <													
	ASSUMED BEDROCK Notes: 1. Auger refusal at 1.46m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.63 178.17 Jan. 19, 2015 0.46 178.34																				

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/12/2014 DRG. NO.: 3

	SOIL PROFILE		s	AMPL	ES			DYNA RESIS	MIC CO	NE PEN PLOT	NETRAT	TION		DI 40=	NATI	JRAL	LIQUID LIMIT W _L ————————————————————————————————————		F	REMAR	RK!
(m)		-				TER						0 10	00	PLASTI LIMIT	MOIS	TURE TENT	LIQUID LIMIT	EN.	W ⊥IN	AND)
LEV	DESCRIPTION	STRATA PLOT	_		BLOWS 0.3 m	GROUND WATER CONDITIONS	<u>S</u>			RENG		Pa) FIELD VA & Sensitiv		W _P		v >	W _L	XET F u) (kPa	NATURAL UNIT WT (kN/m³)	GRAIN S DISTRIBL	
EPTH	DESCRIPTION	ATA	/BEF	В	BLO 0.3	JNNC FIG	ELEVATION	0 0	NCONF	INED	+	& Sensitiv	vity	WA ⁻	TER CC	NTEN	T (%)	9 Q	ATUF.	(%)	
78.9		STR	NUMBER	TYPE	ž	GRC	H			0 6		0 10					30			GR SA S	SI
78:8	ASPHALT: 25mm	0																			
78.7 0.2	GRANULAR BASE/SUBBASE: 150mm, sand and gravel	o XX						ŀ													
0.2	FILL: silty sand, some gravel,	\otimes	1	SS	15			ŀ							0						
	trace clay, brown, moist to very moist, compact	\bowtie						ŀ													
		\bowtie						-													
		\bowtie	\vdash					ŀ													
78.1		\boxtimes																			
0.8	SAND: some silt, some gravel, trace clay, light brown, very moist to						178														
77.0	wet, compact		2	SS	14		'''	ļ								0					
77.8 77.6	25mm seam of organic material, wet	-				<u> </u>					1								Н		_
1.1	END OF BOREHOLE ON ASSUMED BEDROCK																				
	Notes:																				
	Auger refusal at 1.07m on assumed bedrock																				
	Borehole was wet at bottom upon completion of drilling																				
	aport completion of arming																				
						\ \															
									1												
								ĺ													
					,																
- 1		1				ı	I	I		1		1		1				ı	ıl		

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 4

	SOIL PROFILE		SAN	1PLE	S	œ		DYNA RESIS	MIC CC TANCE	NE PEI PLOT	NETRA	TION		PLASTI	C NATI	JRAL	LIQUID		ΤV		MARK	(S
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR ST NCONF JICK TI	LENG RENG INED RIAXIAL	TH (kf + . ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE		TER CO	w DNTEN	LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTE	(%)	ПС
179.1 179:0	TOPSOIL: 100mm	ν _{/ 1} /γ	Z	_	<u>-</u>	0 0	Ш	- 4	0 4	10 6	8 06	0 10	0	- '	0 2	20	30			GR S	4 SI	_
0.1	FILL: sand, trace silt, trace gravel, trace organics, light brown, moist, very loose to loose		1 S	S	4		179	- - - -							0			-				
178.4 0.8	SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet, loose		2 S	S	9	1	W. L. 1 Jan 19 178	, 2015 	m							0		_		1 9	0 4	
177.6 1.5	END OF BOREHOLE ON							-														_
	ASSUMED BEDROCK Notes: 1. Auger refusal at 1.52m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.99 178.14 Jan. 19, 2015 0.87 178.26																					

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/12/2014 DRG. NO.: 5

	SOIL PROFILE		S	AMPL	ES	<u>~</u>		DYNA RESIS	MIC CO TANCE	NE PEI PLOT	NETRAT	IION		PLASTI LIMIT	C NATU	JRAL	LIQUID LIMIT		TW	REMAR	
(m) ELEV DEPTH 179.2	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF JICK TI	LENG RENG INED RIAXIAL	TH (kF + . ×	Pa) FIELD V. & Sensiti LAB VA	ANE ivity ANE	W _P 	TER CC	v > NTENT	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU (%) GR SA S	SIZ JTI
179:2	ASPHALT: 25mm FILL: silty sand, trace clay, trace gravel, dark brown, trace topsoil, very moist, very loose		1	SS	3		179	- - -									0	-			
1 <u>78.7</u> 0.5	some clay, wet							-													
178.5 178:4 0.9	compact SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet, compact		2	SS	13			- - -								0					
177.9							178											-			
1.4	END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Borehole was wet at bottom upon completion of drilling																				

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 6

	SOIL PROFILE	Ì	SAMPL	ES			DYNAI RESIS	MIC CO TANCE	NE PEN PLOT	NETRA	TION		DI	o NAT	URAI			F	REMARI
(m)		_			TER			0 4			0 10	00	PLAST LIMIT	MOIS CON	TURE	LIQUID LIMIT	Ä.	W LI	AND
EPTH	DESCRIPTION	STRATA PLOT		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI	RENG INED	TH (kf	Pa) FIELD V. & Sensiti	ANE vitv	W _P	,	w 0	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAIN S DISTRIBU (%)
79.1			TYPE	ž	GROU	ELEV	● QI	JICK II	RIAXIAL	. X	LAB VA	ANE			ONTEN 20 (Г (%) 30		Ž	GR SA S
79:8	TOPSOIL: 100mm	211/4				470	-												
0.1 78.8	FILL: sand and gravel, trace silt, trace clay, trace topsoil, reddish brown, dense	\bigotimes_{1}	SS	31		179	-							h					
0.3	some clay, dark brown, moist to very moist		33	31			- - -												
78.4 0.8	silty sand, some gravel, some clay, wet, compact		ss	16			- - -												
1.1	SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet, compact	2 	33	16	-	178	-												
77.5 1.7	END OF BOREHOLE ON						-												
	ASSUMED BEDROCK Notes: 1. Auger refusal at 1.65m on assumed bedrock 2. Borehole was wet at bottom upon completion of drilling																		

PROJECT: Geotechnical Investigation
CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 7

0.1 178.4 0.5	SOIL PROFILE DESCRIPTION TOPSOIL: 100mm FILL:silty sand, some gravel to gravelly, trace to some clay, trace topsoil, light brown, moist, compact	STRATA PLOT	NUMBER	SAMPL	BLOWS 0.3 m	GROUND WATER	N _C	2	20 4	0 6		100	PLA LIMI W _F	STIC NA T CC	TURAL DISTURE DNTENT W	LIQUII LIMI	PEN.	NATURAL UNIT WT (kN/m³)	REM A GRA	IARKS ND
178.8 178.9 0.1 178.4 0.5	TOPSOIL: 100mm FILL:silty sand, some gravel to gravelly, trace to some clay, trace		IMBER		OWS 3 m	WATEF	Z						LIMI	T CC		LIMI	P EN I	UNIT V	A GRA	
178.8 178.9 0.1 178.4 0.5	TOPSOIL: 100mm FILL:silty sand, some gravel to gravelly, trace to some clay, trace		IMBER		0WS 3 m	× ×	Ζ	CUE/	, D OT				W-		W/	W.		l ⊃ ~_	I GRA	IN SIZ
178.9 0.1 178.4 0.5	TOPSOIL: 100mm FILL:silty sand, some gravel to gravelly, trace to some clay, trace		MBER		Ole			SHE	AR STI	RENG	TH (kPa	a)	",			***	TĀŞ	Ϋ́	DISTR	
178: 7 0.1 178.4 0.5	FILL:silty sand, some gravel to gravelly, trace to some clay, trace		` ≥ ∣	!	BL 0.	N E	ELEVATION	O UI	NCONF	INED	TH (kPa	Sensitivity		/ATER (ONTE	IT (9/.)	9 0 0	ATUR.	(%)
178: 7 0.1 178.4 0.5	FILL:silty sand, some gravel to gravelly, trace to some clay, trace		. ⊋	TYPE	ž	SRO SON				RIAXIAL 0 6	X L	AB VAN 100	· '	10	20	30		Z	GR SA	Q1
0.1 178.4 0.5	FILL:silty sand, some gravel to gravelly, trace to some clay, trace		_	\vdash	=			-	.		+	- +		.	Ť	+			GR 3A	. 31
178.4 0.5	gravelly, trace to some clay, trace	\overline{X}						-												
0.5	tonsoil light brown moiet compact	\bowtie						-												
0.5	topoon, ngm brown, moist, compact		1	SS	13			_						0						
0.5		\bowtie						-												
	SAND: some silt, trace clay, trace gravel, oxidized, brown, moist to	1.				Ā	W. L.	ı 178.3 ı	n m											
	very moist, compact						Jan 19	, 2015	5											
178.1		<u></u>						-												
0.8	some clay, wet	T: 1					178				4						4			
		:																		
		• •						_												
		[]	2	SS	12											9				
		$\lceil \cdot \rceil$																		
77 5		·						-												
1.4	AUGER REFUSAL / ROCK	K/	\dashv											+	+		+			
	CORING STARTED Refer Log of																			
	Rock Core BH14-07 RUN 1																			
77.1]											
1.8	RUN 2	X																		
		\mathbb{M}					1 '													
			1																	
						$ \; \; $														
							<u>:</u>													
							3													
						ΙĦ														
						ΙĦ														
						目目	3													
75.5 3.3		¥A					:													
3.3	RUN 3					日日														
						月月														
						F	:													
						目														
						月														
						ΙĒ														
						日日	3													
						目														
						ΙĦ														
		$\sim \sim \sim$, !		r. □`	ા	i	1			- 1	1	- 1	1	1	1	1		
74.0				l j		\vdash	:1													
1 <u>74.0</u> 4.8	RUN 4																			

 $\begin{array}{c|c} \underline{\mathsf{GROUNDWATER}} & \underline{\mathsf{ELEVATIONS}} \\ \underline{\mathsf{Measurement}} & \underline{\overset{\mathsf{1st}}{\bigvee}} & \underline{\overset{\mathsf{2nd}}{\bigvee}} & \underline{\overset{\mathsf{3rd}}{\bigvee}} \\ \underline{\mathsf{4th}} \\ \underline{\mathsf{V}} \end{array}$

Continued Next Page

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{3}, \times^{3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

 \circ 8=3% Strain at Failure

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 7

BH LOCAT	ON:									1/201						RG. N	J ,		
BH LOCAT	SOIL PROFILE			SAMPL	ES.			DYNA	MIC COI TANCE	NE PEN PLOT	NETRA	TION		NAT	LIDAL			Ι.	DEMARI
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТУРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2	0 41 AR STF NCONFI JICK TR	0 6 RENG NED RIAXIAL	0 8 TH (kl	Pa) FIELD V. & Sensiti LAB V.	ANE vity ANE	TER CO	TURE TENT W O ONTEN	LIQUIE LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMARI AND GRAIN S DISTRIBU (%)
172.5 6.3 EN Not 1. ass 2. mo 3. Mo Dat	O OF BOREHOLE Desc. Auger refusal at 1.37m on a med bedrock installed 50 mm diameter intoring well upon completion water Level Measurements in intoring Well: Depth (m) W.L. Elev. (12, 2014 0.57 178.3) 19, 2015 0.48 178.3	m) 25	MON	TYPE	.V.	GRC CON	ELE		0 41	0 6		30 1(00			330			GR SA S

CLIENT: C.C. Tatham & Associates Ltd.

LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

DRG. NO.: 7

REF. NO.: 10001104

Diameter: 150mm

Date: Dec/11/2014

BH LC	OCATION:															
(m) <u>ELEV</u> DEPTH 177.5	ROCK DESCRIPTION Rock Surface LIMESTONE: slightly weathered to	GROUND WATER CONDITIONS	NUMBER SO	RE MPLE 3ZIS	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	HARD LAYER (%)	RQD (%)	FRACTURE INDEX (per 0.3 m)	DISCONTINUITIES	Weathering Index	HYDRAULIC CONDUCTIVITY (cm/sec)	POINT LOAD TEST UCS AXIAL (MPa)*	POINT LOAD TEST UCS DIAMETRAL (MPa)*	UNIAXIAL COMPRESSION (MPa)	DENSITY (g/cm³)
17 7..5	LIMESTONE: slightly weathered to fresh, fine- to coarse-grained, fossiliferous, argillaceous, grey		1	NQ	87	0		0	>25 >25							
1.0			2	NQ	100	93		83	15 6 3							
175.5 3.3					2				1 1	Soft Layer at 3.36m for 30mm						
<u>174.0</u> 4.8			3	NQ	100	92		77	5 0 3							
4.8			4	NQ	100	98		98	0 1 0							
172.5									1 0							
6.3	END OF BOREHOLE	 									1					

PROJECT: Geotechnical Investigation CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	M: Geodetic							Date:	Dec/	11/201	2014 DRG. NO.: 8											
RH LC	OCATION: SOIL PROFILE		,s	SAMPL	.ES	1		DYNAI	MIC CC	NE PEN	NETRA	TION										
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	GROUND WATER CONDITIONS		SHEA O UN	AR ST		0 8 TH (kl	30 1	100 VANE itivity VANE	W _P		TENT w o	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		MAR AND AIN S RIBU (%)) SIZE JTIC
179.2 0.0	TOPSOIL: 125mm	ST	N	TYPE	ż	G. S.	ELE						100	1	0 2	20 ;	30			GR S	SA S	31
179.0 0.1	FILL: fine sand, trace to some gravel, trace silt, trace clay, trace topsoil, trace organics, light brown, moist to very moist, very loose		1	SS	3		179	- - - -							o							
178.4	SAND: trace silt, trace clay, trace gravel, trace mollusks, oxidized, brown, very moist to wet, compact		2	SS	13	™	W. L. 1 Jan 19 178	, 2015 	m							0						
_1 <u>77.7</u> 1.5	some gravel to gravelly, light brown		3	SS	19										0					19 6	64 1	1
<u>2</u> 177.1																						
2.1	END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 2.10m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.90 178.27 Jan. 19, 2015 0.85 178.35																					

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 9

	Jivi. Geodetic							Date.	Dec	1,7201						יוט	KG. INC	J 9			
BH L	OCATION: SOIL PROFILE			SAMPL	FS			DYNA	VIC CO	NE PEN PLOT	NETRA	TION									
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UN	0 4 AR STI NCONF JICK TF	0 6 RENG INED RIAXIAL	0 8 TH (kF + . ×	Pa) FIELD V & Sensit LAB V	OO L ANE ivity ANE OO	w _P ⊢ WA	TER CC	TENT v D ONTENT	•		NATURAL UNIT WT (kN/m³)	REMAR AND GRAIN S DISTRIBU (%)	SIZE TION
17 9.9 - 0.1 179.7 0.2	ASPHALT: 50mm GRANULAR BASE/SUBBASE: 150mm, sand and gravel		1	SS	21			-						(
179.2 - 0.8 -	SAND: trace silt, trace clay, trace gravel, trace mollusks, light brown, wet, compact		. 2	ss	14		179	-								0					
178.6 1.4																					

SPL SOIL LOG 10001104 BH LOGS.GPJ SPL.GDT 2/5/15

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 10

	SOIL PROFILE		,	SAMPL	FS			DYNAI	MIC CO	NE PEN PLOT	NETRA	TION								
	OOIL FIXOUILE	\dashv				H.						_		PLASTIC LIMIT	C NATU	JRAL TURE	LIQUID	 -	NATURAL UNIT WT (kN/m³)	REMAR
(m)		10			ωı	GROUND WATER CONDITIONS	_		0 4			1	00	LIMIT W _P		TENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	ر ^د ر	AND GRAIN S
LEV	DESCRIPTION	STRATA PLOT	œ		BLOWS 0.3 m	V Q.	ELEVATION	SHEA	R STI	RENG	TH (k	Pa) FIELD V & Sensiti	ANF	"P			I	<u>Я</u>	RAL (kN/n	DISTRIBU
EPTH	DEGGINI HON	AT/	NUMBER	ш	0.0	N T	VAT	0 01	NCONF	INED RIAXIAL	+	& Sensiti	vity	WAT	TER CC	NTEN	T (%)	ΘO	DT.	(%)
179.7		STR	N N	TYPE	ž	GR SO N	H					10 10		1			30		_	GR SA S
79:8	TOPSOIL: 100mm	7/ 1/	_	Ė		t	-	t												2 5/1
0.1	FILL: sand and gravel, some silt,	$\times \times$																		
	trace clay, pieces of pyc piping, light	\bowtie																		
	grey, moist, loose	\otimes	1	SS	7			-						0						
		\bowtie						-												
		\bowtie						-												
		\bowtie						-												
70.0		\bowtie					179													
78.9	SAND: some silt, trace clay, trace	$\overset{K\times J}{\cdot}$				1		-												
0.0	gravel, oxidized, light brown, very]						-												
	moist to wet, compact							-												
		· .	2	SS	12			-								0				
		:]						L												
		•]																		
		[
		· •																		
		:				1		L	1											
		•					178													
		[`.					1/8													
		[· -	3	SS	14											o				
		<u>ا</u> ا																		
		. •]																		
		[
4		[• -					\													
77.4 2.3	GRAVELLY SAND: some silt, trace				M															
2.0	clay, greyish brown, wet, compact	٥٥						-												
		0						-												
		Ö	4	SS	23			-						d)					
		• O					177											1		
		0						-												
		0				_		-												
. 70 0			7					-												
76.6 3.1	END OF BOREHOLE ON	~				1													H	
٠	ASSUMED BEDROCK																			
	Notes: 1. Auger refusal and spoon																			
	bouncing at 3.05m on assumed																			
	bedrock																			
	Water level was 2.42m upon completion of drilling																			
		1 1		1	1	1	1	1	I		1	1	1			1	1			

GRAPH NOTES

+ 3 , \times 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

Appendix D

FINAL REPORT

CA40211-MAY24 R1

22-189-402, 11476 Highway 26, Collingwood ON

Prepared for

DS Consultants

FINAL REPORT

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	ILS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	2165
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	dsantos@dsconsultants.ca	SGS Reference	CA40211-MAY24
Project	22-189-402, 11476 Highway 26, Collingwood ON	Received	05/24/2024
Order Number		Approved	05/31/2024
Samples	Solution (2)	Report Number	CA40211-MAY24 R1
		Date Reported	06/03/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:yes

Custody Seal Present:yes

Chain of Custody Number:036148

Phos TR spk low due to sample matrix

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

FINAL REPORT

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 22-189-402, 11476 Highway 26, Collingwood ON

Project Manager: Dorothy Santos

Samplers: Chaitonya

MATRIX: WATER			Sample Number	7	8
			Sample Name	SG-1	SG-2
= PWQO_L / WATER / Table 2 - General - July 1999 P	IBS 3303E		Sample Matrix	Solution	Solution
			Sample Date	24/05/2024	24/05/2024
Parameter	Units	RL	L1	Result	Result
Seneral Chemistry					
Alkalinity	mg/L as CaCO3	2		226	183
Bicarbonate	mg/L as CaCO3	2		226	183
Carbonate	mg/L as CaCO3	2		< 2	< 2
ОН	mg/L as CaCO3	2		< 2	< 2
Colour	TCU	3		46	38
Conductivity	uS/cm	2		466	925
Turbidity	NTU	0.10		40	8.5
Ammonia+Ammonium (N)	as N mg/L	0.1		< 0.1	< 0.1
Total Reactive Phosphorous (o-phosphate	mg/L	0.03		< 0.03	< 0.03
as P)					
Total Organic Carbon	mg/L	1		19	12
etals and Inorganics					
Fluoride	mg/L	0.06		0.14	0.09
Bromide	mg/L	0.3		< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	< 0.06
Sulphate	mg/L	2		< 2	< 2
Hardness	mg/L as CaCO3	0.05		218	213
Aluminum (total)	mg/L	0.001		0.029	0.038
Arsenic (total)	mg/L	0.0002	0.005	0.0013	0.0012
Boron (total)	mg/L	0.002	0.2	0.021	0.012
Barium (total)	mg/L	0.00008		0.0177	0.0205

Client: DS Consultants

Project: 22-189-402, 11476 Highway 26, Collingwood ON

Project Manager: Dorothy Santos

Samplers: Chaitonya

			_		
MATRIX: WATER			Sample Number	7	8
			Sample Name	SG-1	SG-2
= PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Solution	Solution
			Sample Date	24/05/2024	24/05/2024
Parameter	Units	RL	L1	Result	Result
letals and Inorganics (continued)					
Beryllium (total)	mg/L	0.000007	1.1	< 0.000007	< 0.000007
Cobalt (total)	mg/L	0.000004	0.0009	0.000552	0.000446
Calcium (total)	mg/L	0.01		69.9	69.4
Cadmium (total)	mg/L	0.000003	0.0005	0.000005	< 0.000003
Copper (total)	mg/L	0.001	0.005	< 0.001	< 0.001
Chromium (total)	mg/L	0.00008	0.1	0.00020	0.00020
Iron (total)	mg/L	0.007	0.3	2.69	2.13
Potassium (total)	mg/L	0.009		5.66	3.26
Magnesium (total)	mg/L	0.001		10.6	9.64
Manganese (total)	mg/L	0.00001		0.149	0.346
Molybdenum (total)	mg/L	0.0004	0.04	< 0.0004	< 0.0004
Nickel (total)	mg/L	0.0001	0.025	0.0015	0.0008
Sodium (total)	mg/L	0.01		14.7	117
Phosphorus (total)	mg/L	0.003	0.01	0.094	0.095
Lead (total)	mg/L	0.00009	0.025	0.00016	0.00010
Silicon (total)	mg/L	0.02		0.93	2.04
Silver (total)	mg/L	0.00005	0.0001	< 0.00005	< 0.00005
Strontium (total)		0.00008		0.215	0.204
Thallium (total)		0.000005	0.0003	0.000005	< 0.000005
Tin (total)	mg/L	0.00006	3.3000	0.00006	0.00008
Titanium (total)	mg/L	0.0000		0.0000	0.0022
			0.02		
Antimony (total)	mg/L	0.0009	0.02	< 0.0009	< 0.0009

Client: DS Consultants

Project: 22-189-402, 11476 Highway 26, Collingwood ON

Project Manager: Dorothy Santos

Samplers: Chaitonya

MATRIX: WATER			Sample	Number	7	8
			Samp	ole Name	SG-1	SG-2
= PWQO_L / WATER / Table 2 - General - July 199	99 PIBS 3303E		Samp	le Matrix	Solution	Solution
			Sam	ple Date	24/05/2024	24/05/2024
Parameter	Units	RL	L1		Result	Result
Metals and Inorganics (continued)						
Selenium (total)	mg/L	0.00004	0.1		0.00016	0.00010
Uranium (total)	mg/L	0.000002	0.005		0.000029	0.000028
Vanadium (total)	mg/L	0.00001	0.006		0.00014	0.00008
Zinc (total)	mg/L	0.002	0.02		< 0.002	< 0.002
Cation sum	meq/L	-9999			5.31	9.58
Anion Sum	meq/L	-9999			5.22	9.58
Anion-Cation Balance	% difference	-9999			0.79	-0.02
Ion Ratio	-	-9999			1.02	1
Total Dissolved Solids (calculated)	mg/L	-9999			262	519
Conductivity (calculated)	uS/cm	-9999			527	958
Langeliers Index 4° C	@ 4° C	-9999			0.22	0.19
Saturation pH 4°C	pHs @ 4°C	-9999			7.75	7.87
Other (ORP)			1			
рН	No unit	0.05	8.6		7.97	8.06
Chloride	mg/L	1			25	210
Mercury (total)	mg/L	0.00001	0.0002		0.00001	< 0.00001

EXCEEDANCE SUMMARY

				PWQO_L / WATER
				/ Table 2 -
				General - July 1999
				PIBS 3303E
Parameter	Method	Units	Result	L1
6G-1				
Iron	SM 3030/EPA 200.8	mg/L	2.69	0.3

	Phosphorus	SM 3030/EPA 200.8	mg/L	0.094	0.01
6	2				

SG-2

Iron	SM 3030/EPA 200.8	mg/L	2.13	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.095	0.01

20240603 7 / 18

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0665-MAY24	mg/L as	2	< 2	2	20	102	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duplicate LC:		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0257-MAY24	as N mg/L	0.1	<0.1	0	10	94	90	110	103	75	125

20240603 8 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch Units		RL I	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Chloride	DIO8084-MAY24	mg/L	1	<1	ND	20	99	80	120	98	75	125
Sulphate	DIO8084-MAY24	mg/L	2	<2	ND	20	109	80	120	109	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery	Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
Bromide	DIO0646-MAY24	mg/L	0.3	<0.3	ND	20	101	90	110	107	75	125
Nitrite (as N)	DIO0646-MAY24	mg/L	0.03	<0.03	ND	20	97	90	110	97	75	125
Nitrate (as N)	DIO0646-MAY24	mg/L	0.06	<0.06	ND	20	97	90	110	100	75	125
Bromide	DIO0682-MAY24	mg/L	0.3	<0.3	ND	20	97	90	110	94	75	125
Nitrite (as N)	DIO0682-MAY24	mg/L	0.03	<0.03	ND	20	98	90	110	107	75	125
Nitrate (as N)	DIO0682-MAY24	mg/L	0.06	<0.06	ND	20	98	90	110	91	75	125

20240603 9 / 18

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recover	-
								Low	High	(%)	Low	High
Total Organic Carbon	SKA0265-MAY24	mg/L	1	<1	3	20	102	90	110	100	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	ethod Duplic		LCS/Spike Blank			Matrix Spike / Ref.												
	Reference			Blank	RPD	AC	Spike	Recovery L	Recovery Limits (%)		•		•		•		•		,		Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High										
Carbonate	EWL0665-MAY24	mg/L as	2	< 2	ND	10	NA	90	110	NA												
Bicarbonate	EWL0665-MAY24	mg/L as CaCO3	2	< 2	2	10	NA	90	110	NA												
ОН	EWL0665-MAY24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA												

20240603

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0711-MAY24	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0665-MAY24	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0667-MAY24	mg/L	0.06	<0.06	0	10	97	90	110	78	75	125

20240603 11 / 18

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury (total)	EHG0057-MAY24	mg/L	0.00001	< 0.00001	9	20	107	80	120	93	70	130

20240603 12 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(,	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0279-MAY24	mg/L	0.00005	<0.00005	ND	20	100	90	110	80	70	130
Aluminum (total)	EMS0279-MAY24	mg/L	0.001	<0.001	5	20	98	90	110	109	70	130
Arsenic (total)	EMS0279-MAY24	mg/L	0.0002	<0.0002	ND	20	100	90	110	102	70	130
Barium (total)	EMS0279-MAY24	mg/L	0.00008	<0.00008	1	20	96	90	110	102	70	130
Beryllium (total)	EMS0279-MAY24	mg/L	0.000007	<0.000007	ND	20	96	90	110	95	70	130
Boron (total)	EMS0279-MAY24	mg/L	0.002	<0.002	ND	20	98	90	110	95	70	130
Calcium (total)	EMS0279-MAY24	mg/L	0.01	<0.01	2	20	98	90	110	101	70	130
Cadmium (total)	EMS0279-MAY24	mg/L	0.000003	<0.000003	0	20	98	90	110	96	70	130
Cobalt (total)	EMS0279-MAY24	mg/L	0.000004	<0.000004	8	20	101	90	110	100	70	130
Chromium (total)	EMS0279-MAY24	mg/L	0.00008	<0.00008	ND	20	101	90	110	101	70	130
Copper (total)	EMS0279-MAY24	mg/L	0.001	<0.001	ND	20	101	90	110	105	70	130
Iron (total)	EMS0279-MAY24	mg/L	0.007	<0.007	0	20	100	90	110	100	70	130
Potassium (total)	EMS0279-MAY24	mg/L	0.009	<0.009	2	20	99	90	110	107	70	130
Magnesium (total)	EMS0279-MAY24	mg/L	0.001	<0.001	3	20	100	90	110	100	70	130
Manganese (total)	EMS0279-MAY24	mg/L	0.00001	<0.00001	0	20	101	90	110	103	70	130
Molybdenum (total)	EMS0279-MAY24	mg/L	0.0004	<0.0004	ND	20	101	90	110	99	70	130
Sodium (total)	EMS0279-MAY24	mg/L	0.01	<0.01	0	20	109	90	110	107	70	130
Nickel (total)	EMS0279-MAY24	mg/L	0.0001	<0.0001	1	20	106	90	110	104	70	130
Lead (total)	EMS0279-MAY24	mg/L	0.00009	<0.00009	ND	20	99	90	110	99	70	130
Phosphorus (total)	EMS0279-MAY24	mg/L	0.003	<0.003	0	20	98	90	110	NV	70	130

20240603 13 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Antimony (total)	EMS0279-MAY24	mg/L	0.0009	<0.0009	ND	20	106	90	110	97	70	130
Selenium (total)	EMS0279-MAY24	mg/L	0.00004	<0.00004	2	20	98	90	110	98	70	130
Silicon (total)	EMS0279-MAY24	mg/L	0.02	<0.02	4	20	93	90	110	NV	70	130
Tin (total)	EMS0279-MAY24	mg/L	0.00006	<0.00006	11	20	97	90	110	NV	70	130
Strontium (total)	EMS0279-MAY24	mg/L	0.00008	<0.00008	1	20	99	90	110	100	70	130
Titanium (total)	EMS0279-MAY24	mg/L	0.0001	<0.0001	2	20	96	90	110	NV	70	130
Thallium (total)	EMS0279-MAY24	mg/L	0.000005	<0.000005	ND	20	99	90	110	82	70	130
Uranium (total)	EMS0279-MAY24	mg/L	0.000002	<0.000002	1	20	104	90	110	102	70	130
Vanadium (total)	EMS0279-MAY24	mg/L	0.00001	<0.00001	4	20	101	90	110	101	70	130
Zinc (total)	EMS0279-MAY24	mg/L	0.002	<0.002	1	20	99	90	110	130	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High	
рН	EWL0665-MAY24	No unit	0.05	NA	1		101			NA		

20240603 14 / 18

QC SUMMARY

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Reactive Phosphorous (o-phosphate as P)	SKA0262-MAY24	mg/L	0.03	<0.03	ND	10	101	90	110	67	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	te LC:			M	atrix Spike / Ref	L.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0754-MAY24	NTU	0.10	< 0.10	0	10	99	90	110	NA		

20240603 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20240603

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20240603 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

No:036148

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Page______of____

Received Time: 17 : 20 (hr : min)	yy)	Custody Seal I	ntact: Ye	es No	1800		Tempe	g Agent erature l	Jpon R	eceipt	(°C)_	9	9	17						LAB	LIMS #:	al	10211-ma
REPORT INFORMATION		VOICE INFOR	The second second	-									•										10211-mai
Company: OS Consultanto Ltd.	(same as Re	eport Informat	ion)		Quot	ation #:			1								P.O.	#:	ij	THE	5-32-01	- H.	
contact: Posothy Son tos	Company:	[6] - ye	1	- 486	Proje	ect#:	19	22	-1	89	- 6	70	2				Site I	_ocation/	ID:	114	76	Hig	hway 26,
contact: Vorothy Sen tos Address: 6221 Huy 7, Valt	Contact: Ac	cointi.	29												ROU	ND TI	ME (TAT) R	EQUIRE					holidays & weekends).
Vaugham hone: 905-329-2735	Address:	distribution of the same	0			Re	gular	TAT (5	-7day	s)													holidays & weekends). begins next business day
Phone: 905 -329 - 2733	7.3	No. 1	Language Park		RUS	H TAT (Addit	ional C	harge	es Ma	у Арр	ly):		1	Day	2	Days 3	Days [4 Day	s			
ax:	Phone:		te la	198	PLE	ASE CO	NFIR	M RUS	H FE/	ASIBII	LITY V	VITH :	_				/E PRIOR TO						
mail: DSantos @ dsconsul tonb.	Email:				Spec	ify Due	Date:	1-145	363	8			*NO	TE: DF	RINKIN	VG (PC	TABLE) WAT WITH SGS						ON MUST BE SUBMITTED
REG	SEATIONS		740000								A	NA	LYS	IS F	REQ	UE	STED						
O.Reg 153/04 O.Reg 406/19	Other Regulat	tions:	Sewe	er By-Law:		M a	3. 1	4 1	SV	ОС	РСВ	PI	HC	VC	С	Pest	(Otl	her (plea	se specif	y)	SPLP	TCLP	
Table 1 Res/Park Soil Texture:	Reg 347/558		100	Sanitary			5.5										3		190%		Specify	Specify	
Table 2 Ind/Com Coarse		MMER		Storm		la l		, b										54			tests	tests	
Table 3 Agri/Other Medium/Fine Appx.	CCME J	Other:	Mur	nicipality:		(Ilos	N.	Be,B,C			Aroclor						5 \$		1	kg			
Soil Volume		Reportable *See	note			SAR	Hg, Cr	As,Ba,			4						13.4			on Pkg	96	I DM81	COMMENTO
RECORD OF SITE CONDITION (RSC)	YES	NO			(N/N)	yan /S).EC	Suite VS-soil only) Hg.	y Sb.								other	340			izati	Voc		COMMENTS:
					150000000000000000000000000000000000000	JOF (B(HV	Su WS-so	only Se.Ag.TI.		CPs	Total	BTEX				specifi	74			cter	Dioxane	□РСВ	
	DATE	TIME	# OF		Filtered	₩ Hd BH	tals us B(H	tals Mo,Ni,s	only	ABNs,	-	BT	uly		ylu	des	A T		se:	Characterization	ОСР	□ _{B(a)P}	
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED		MATRIX		a S // CN	Me tals pli	Me'	So	CS SAHS	SS	+ 4-	4 ×	STEX	X	ticic	3re	1	j.	O L	DABN	□ Ignit.	
					Field	Metals & Inorganics ind CAVI, CN, Hg pH, (B(HWS), EC, SAR (CI, Na-water)	Full Metals ICP metals plus B(HW	ICP Metals	PAHS	SVOCs all incl PAHs,	PCBs	F1-F4	F1-F4 only	VOCs all incl BTEX	BTEX only	Sec	General	E 49	Sew	Water Chara	Livery Co.	u ignit.	
SG-1	5124124	800	11	Stoream		-	97				-			- "			1		10,				Mon Silter
	7.7		To see the				4					A-133		100					100	200			
3 (4 2	5124724	000	1)	(1.				200						4.5					+	-			Non Silteres
3 SG-2	3109105	1 00 /	11	Stream	~		- 1							-				-	+	+	-		10131000
1	2 8				18														-	-	-		
5				3.51	151																		
i i		. 40	4								100				19.1					PY			
				St. 26.			7														in the		11/17
3	1777		98 - DE	1										1									
9		A THE	The William	1000	J.			10110			1 2				Patti I			8	7	0			
0	THE WAR RE	- 3	Mary State	War .							4			100							1.5	1	11 12
11	Company of the		Tita was a	100											V., 5			100	la Jack		- 1	190	
				65.3W 55		\vdash								- 1				1 2 2	O DEC		-		
Dbservations/Comments/Special Instructions	(2) 10 元 [1] ·			The state of																			100000000000000000000000000000000000000
2007 Tallottor Ottlitteritor Opecial Illation of the		A COMPANY		West a s		No. of the	1			Š		Cont.	1		. 500	Sheet	- Salder				4	737	and the second
sampled By (NAME): Chaiterya			Signature:	de		No. of the			10.1		100	1		1	Date:	5	124	26		(mm/dd	/yy)		Pink Copy - Client
Relinquished by (NAME): Chaitenne	~	to specify and	Signature:	71	/									1000	Date:	5	124	-1		(mm/dd	4-4		Yellow & White Copy - SO

Appendix E

REPORT ON

Wetland Risk Evaluation &
Feature Water Balance Study
Proposed Development
11476 Highway 26, Collingwood, Ontario

Prepared For:

DS Consultants Ltd.

PREPARED BY:

GeoBase Solutions (GBS) Ltd.

Project No: 25-008-100 Date: March 18, 2025 **GeoBase Solutions (GBS) Ltd**. 73 Pear Blossom Way, Holland Landing, ON, L9N 0T1

Table of Contents

1.	INTRO	DDUCTION	1
2.	WETL	AND CATCHMENT	1
		re-development Wetland Catchment	
	2.2 F	Post-Development Wetland Catchment	1
3.	WETL	AND RISK EVALUATION	2
		mpervious Cover Score	
	3.2 C	hange in Catchment Size	3
	3.3 V	Vater Taking from Aquifers Directly Connected to Wetland	
		echarge Areas	
4.		ER BALANCE ASSESSMENT	
		xisting Conditions	
	4.2 P	roposed Development	2
	4.3 V	Vater Balance Components (Thornthwaite Monthly Water Balance Model)	2
	4.3.1P	re-development Water Balance	
		ost-development Water Balance	
	4.3.3V	Vater Balance Summary	8
	4.3.4P	ost-development Water Balance With Mitigation	{
5.	CONC	CLUSIONS AND RECOMMENDATIONS	9
6.	GENE	RAL COMMENTS AND LIMITATIONS OF REPORT	10
FIG	URES		
Figi	JRE 1	Pre-Development Site Model	
Figi	JRE 2	Post-Development Site Model	
API	PENDICE	S:	
Арр	oendix A	Overall Drainage Plan (Drawing ODP-1)	
Арр	endix B	Post-Development Catchment Plan (Drawing DP-2)	
App	endix C	Water Balance Tables	

1. INTRODUCTION

GeoBase Solutions Ltd. (GBS) was retained by DS Consultants (Client), to complete a wetland risk evaluation and water balance study for the proposed development located at 11476 Highway 26 in Collingwood, Ontario (Site). The Site has a total area of approximately 2.7 hectares (ha) and was previously developed as a motel with amenities and paved parking in the south half of the property. A coastal wetland (Subject Wetland), known to be part of the Silver Creek Wetland Complex (CL7), is present in the north portion of the Site.

It is understood that the proposed development will consist of two 6 storey residential buildings consisting of 100 and 94 units with facilities and a private driveway. The development will occupy the south portion of the Site in the location of the vacant motel.

This report provides a wetland risk evaluation using Wetland Water Balance Risk Evaluation guidelines (TRCA, Nov 2017), to assess the magnitude of hydrologic change proposed to the Subject Wetland. The report also provides a feature-based water balance assessment using the Thornthwaite and Mather Soil-Moisture Balance methodology (1957). The water balance was completed within the boundaries of the Subject Wetland catchment to provide support for overall servicing and the integration of Low Impact Development (LID) measures.

2. WETLAND CATCHMENT

2.1 Pre-development Wetland Catchment

Pre-development drainage boundaries were provided by Tatham Engineering (Tatham), in their Stormwater Management Report for the Site, as prepared for Integricon Property Restoration and Construction Group Inc., dated February 17, 2023.

The pre-development mapping provided in drawing ODP-1 (Appendix A), shows drainage areas including catchment 101 which captures the entire Site and external drainage areas 1,3,4,5,6,9,10,20,21,22 and 23. Drainage areas 6 and 10 were found to bypass the Subject Wetland via a ditch and culvert along Lighthouse Lane and were excluded from the hydrologic model prepared to quantify pre-development peak flows and storage estimates within the Subject Wetland. For the purposes of this report, drainage areas 6 and 10 were also excluded resulting in a total catchment area of about 9.0 ha. **Figure 1** shows the total catchment area for the Subject Wetland.

2.2 Post-Development Wetland Catchment

Post-development drainage boundaries were also provided by Tatham Engineering (Tatham), in their Stormwater Management Report. Under proposed conditions, external and internal drainage areas will be maintained. Post-development mapping is provided in drawing DP-2 (Appendix B), and shows that

catchment 201, which captures the same area as pre-development catchment 101, has an increased percent imperviousness from 25% (existing condition) to 29% (proposed condition). As a result, there is an increased impervious area of 0.124 ha in the proposed condition. **Figure 2** shows the total post-development catchment area for the Subject Wetland.

3. WETLAND RISK EVALUATION

To aid in determining the level of risk and evaluation requirements for the Subject Wetland, an assessment was completed using the Wetland Water Balance Risk Evaluation guidelines provided by the Toronto and Region Conservation Authority (TRCA, Nov 2017). The guideline provides criteria used to evaluate the magnitude of potential hydrological impact on a wetland. The criteria include:

- The proportion of impervious cover in the catchment of the wetland that would result from the proposal;
- The degree of change in the size of the wetland catchment;
- Water taking from, or discharge to, surface water bodies or aquifers directly connected to the wetland, and;
- The impact on locally significant recharge areas.

Considering the above criteria, increases to impervious cover and changes to wetland catchment size were evaluated.

3.1 Impervious Cover Score

An increase in the percent of impervious cover within a wetland catchment has the effect of reducing infiltration and potentially decreasing baseflow and/or interflow contributions to the wetland. It further increases runoff contributions and risks of flooding and potentially increases stormwater sediment and contaminant loading. To assess the risk of the proposed impervious surfaces on sensitive features including the subject wetland, the Impervious Cover Score (S) was calculated for the wetland catchment. The equation defining S is as follows:

$$S = \underline{IC \cdot Cdev}$$

where,

IC - is the proportion of impervious cover proposed within the specific catchment (as a percentage between 0 and 100)

Cdev - is the total proposed development area within the catchment (in ha)

C - is the size of the wetland's catchment (in ha).

Results of the calculation of impervious cover (IC) are provided in **Table 3-1** and show that the catchment for the Subject Wetland is presented with low risk based on the proposed development area with a 65% imperviousness.

Table 3-1 – Impervious Cover Score - Probability and Magnitude of Hydrological Change

Subcatchment Area Name	Pre-development Catchment Size (m2)	Proposed Impervious Cover (m2)	Impervious Cover (S)	Sensitive Feature	Expected magnitude of hydrological change
Subject Wetland	89,950	1,240	0.01	Wetland	Low

Note: * Impervious Cover Score (S) calculated using equation 1 (TRCA - Wetland Water Balance Risk Evaluation, Nov 2017)

3.2 Change in Catchment Size

Changes to catchment size directly effects the volume and timing of stormwater contributions to downgradient features. To evaluate the magnitude of hydrological change these effects can have, predevelopment and post-development catchments were compared. **Table 3-2** provides the area breakdown for pre and post-development conditions. The same magnitude thresholds used for impervious cover (10% and 25 %) are used as thresholds to define catchment size alteration. As a result, changes to catchment size for the Subject Wetland is considered to have no risk.

Table 3-2 - Changes to Catchment Size - Probability and Magnitude of Hydrological Change

Subcatchment Area Name	Pre-development catchment area (m2)	Post-Development Catchment Area (m2)	% Change in Catchment Area	Sensitive Feature	Magnitude of Hydrological Change *
Subject Wetland	89,950	89,950	0	Wetland	None

Note: * Based on Table 2: Criteria used to evaluate the probability and magnitude of hydrological change (TRCA - Wetland Water Balance Risk Evaluation, Nov 2017)

3.3 Water Taking from Aquifers Directly Connected to Wetland

When wetlands are directly connected to surface water bodies or to unconfined aquifers, water takings from the contributing water source have the potential to impact wetland hydrology. For the purposes of this evaluation, any water taking which is likely to result in direct alteration of wetland water levels is of potential concern. Permanent or temporary dewatering estimates for the development should be considered. Risk to the Subject Wetland can potentially be mitigated by directing discharged water to the wetland following treatment.

3.4 Recharge Areas

Certain areas within a wetland's surface water and groundwater catchments may be more sensitive to change than others, particularly where these areas act as locally significant groundwater recharge areas.

Considering the water balance in the following section of the report, risks associated with a reduction in groundwater recharge are considered mitigated.

4. WATER BALANCE ASSESSMENT

4.1 Existing Conditions

The Subject Wetland has a total catchment area of 89,950 m² and currently consists of developed and undeveloped areas. **Figure 1** shows the pre-development conceptual model considered for establishing current hydrologic conditions. A summary of pre-development wetland catchment land uses is provided below in **table 4-1**.

Table 4-1 – Summary of Pre-development Conditions

Subcatchment Area Name	Pre-development Catchment Size (ha)	Mature Forest (m2)	Pasture & Shrub (m2)	Landscaped Surface (m2)	Impervious Surface (m2)
Subject Wetland	89,950	28,814	10,074	22,865	28,814

4.2 Proposed Development

The post-development catchment for area for the Subject Wetland will be maintained. It is proposed that the development will increase the amount of impervious surface by 1,240 m². A summary of post-development wetland catchment land uses is provided below in **table 4-2**.

Table 4-2 -Summary of Post-Development Conditions

Subcatchment Area Name	Pre-development Catchment Size (ha)	Mature Forest (m2)	m2) (m2) Surfac (m2)		Impervious Surface (m2)
Subject Wetland	89,950	28,814	8,431	22,650	30,054

4.3 Water Balance Components (Thornthwaite Monthly Water Balance Model)

The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting type method used to analyze the allocation of water among various components of the hydrologic cycle. Inputs to the model are monthly temperature, site latitude, and precipitation. Outputs include monthly potential and actual evapotranspiration, evaporation, water surplus, total infiltration, and total runoff. For ease of calculation, a spreadsheet model was used for the computation.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table, or evaporate/evapotranspiration (ET) from the earth's surface and vegetation. The sum of R and I is termed as the water surplus (S). When long-term averages of P, R, I and ET are used, there

is no net change in groundwater storage (ST). Annually, however, there is a potential for small changes in ST. The annual water budget can be stated as:

P = ET + R + I + ST

the components are discussed in Section 4.3.1 below.

4.3.1 Pre-development Water Balance

To predict outputs of the pre-development water balance, various inputs were entered into the Thornthwaite model including monthly precipitation and temperature, Site latitude, water holding capacity values for native soils and factors of infiltration. Various inputs and outputs of the model are described in detail below. The detailed calculations are presented in **Appendix C**.

Precipitation (P)

Based on Egbert Climate Station Climate Normals, the average precipitation for the area is about 793 mm/year for the period between 1991 and 2020. Average monthly temperature from this climate data set has been used. The monthly distribution of precipitation is presented in **Table 1**, **Appendix C**.

Storage (St) and Evapotranspiration / Evaporation (Et)

Groundwater storage (ST) of native soils for the existing Site was estimated using values of Water Holding Capacity (mm) of respective land use and soil types identified in Table 3.1 of the Storm Water Management (SWM) Planning & Design Manual (MOE, March 2003). The land uses, soil types (fine sandy loam) and respective water holding capacities shown in **Table 4-3** were chosen to represent existing conditions and applied to March for monthly calculations.

Table 4-3 Existing Conditions – Water Holding Capacity and AET of Native Soils in Pervious Areas

Land uses / soil types	Water Holding Capacity (mm/year)	AET (mm/year)
Pervious Area (Forest)	300	556
Pervious Area (Pasture / Shrub)	150	535
Pervious Area (Landscaped)	75	503

Using the procedures outlined in the SWM Planning & Design Manual for each of the above land uses and soil types, the annual change in storage is 0. Groundwater storage is the lowest in September for all land use types, and highest from March to May and December to February. The monthly distributions of ST are presented in **Table 2, Appendix C**.

Project: 25-008-100 Wetland Risk Evaluation & Water Balance Study – Proposed Development 11476 Highway 26, Collingwood, ON

6

Evapotranspiration (Et)

Monthly Potential Evapotranspiration (PET) is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite,1948; Mather, 1978). In the Thornthwaite water balance model, PET is calculated using the Thornthwaite equation (1948);

 $PET = 16 (L/12) \times (N/30) \times (10T/I)a$

Where:

T = the monthly mean temperature in degrees Celsius

N = the number of days in the month

L = the mean monthly hours of daylight

 $a = (6.75 \times 10 - 7) \times 3 - (7.71 \times 10 - 5) \times 2 + (1.792 \times 10 - 2) \times 10 + 0.49239$

I = Sum of 12 monthly heat index values = (T/5)1.514

The calculated unadjusted annual PET for the study area is 495.6 mm/year. Applying daylight correction values for a latitude of 44o, a total adjusted PET is calculated at 576 or about 73% of the total precipitation. A comparison between PET and Precipitation (P) produces a soil moisture deficit in the order of 110 mm by September.

The calculated Actual Evapotranspiration (AET) is based on PET and changes in ST (Δ ST). Where there is not enough P to satisfy PET, a reduction in ST occurs. As a result, volumes of AET are less than PET. The monthly distribution of ST for the land use/soil types representing existing conditions over the wetland catchment produced an annual AET of 556 mm/yr (Forest), 535 mm/yr (Pasture & Shrub) and 503 mm/yr (Landscaped surface).

Precipitation Surplus (S)

Precipitation surplus for pervious surfaces is calculated as P-AET. A surplus of 238 to 290 mm/year is calculated for the various pervious surfaces. Precipitation surplus for impervious surfaces is calculated as P-ET. A surplus of 674 mm/year (85% of P) is calculated for impervious areas and 119 mm/year (15% of P), is considered for evaporation.

Infiltration (I) and Runoff (R)

For pervious areas, precipitation surplus has two (2) components in the Thornthwaite model: a runoff component (overland flow that occurs when soil moisture capacity is exceeded), and an infiltration component. The accumulation of infiltration factors for topography, soil types and cover as detailed in

Table 3.1 of the SWM Planning & Design Manual, give infiltration factors for existing conditions on the Site as described below in **Table 4-4**.

Table 4-4 Existing Conditions – Infiltration Factor

Land uses / soil types	Topography Soil		Cover	Total infiltration factor
Pervious Area (Forest) / Fine Sandy Loam	0.30	0.30	0.20	0.80
Pervious Area (Pasture & Shrub) / Fine Sandy Loam	0.30	0.30	0.15	0.75
Pervious Area (Landscaped) / Fine Sandy Loam	0.30	0.30	0.05	0.65

Considering the above infiltration factors, the respective total annual volume of infiltration for the wetland catchment is estimated to be 11,738 m³/year.

The runoff component calculated in the pre-development model is the remaining volume of precipitation surplus following infiltration. Considering the precipitation surpluses and the total infiltration volume, the total annual volume of runoff directed to the wetland catchment is estimated as 23,772 m³/year.

Detailed calculations and the monthly distribution of infiltration and runoff are presented in **Table 2**, **Appendix C**.

4.3.2 Post-development Water Balance

The majority of the post-development wetland catchment stays the same with the exception of an increase of impervious surface (1,240 m2) and a decrease in pasture & shrub and Landscaped surface (1,643 and 214 m2), respectively. A summary of post-development wetland catchment land uses is provided in table 4-2. To predict outputs of the post-development water balance, the same 30-year average climate data and Site latitude inputs were used. Various inputs and outputs of the post-development model are presented in **Table 3, Appendix C**.

Storage (St), Evaporation/Evapotranspiration (Et/AET) and Precipitation Surplus (S)

The same land uses, soil types and respective water holding capacities used in the pre-development water balance were chosen to represent proposed conditions and applied to March for monthly calculations. The calculated Evaporation and Actual Evapotranspiration (Et/AET) for each of the pervious land uses in the post-development water balance is also the same as those described in the pre-development water balance. The monthly distributions of ST are presented in **Table 3**, **Appendix C**.

Infiltration (I) and Runoff (R)

In the post-development water balance, the accumulation of infiltration factors for topography, soil types and cover are the same as those described in the pre-development water balance. A 10% reduction in the infiltration factor is included to account for soil compaction during construction post-development infiltration factors are provided below in **Table 4-5**.

Table 4-5 Existing Conditions – Infiltration Factor

Land uses / soil types	Topography	Soil	Cover	10% Reduction	Total infiltration factor
Pervious Area (Forest) / Fine Sandy Loam	0.30	0.30	0.20	-	0.80
Pervious Area (Pasture & Shrub) / Fine Sandy	0.30	0.30	0.15	-	0.75
Loam					
Pervious Area (Landscaped) / Fine Sandy Loam	0.30	0.30	0.05	-	0.65
Pervious Area (Landscaped) / Fine Sandy Loam	0.30	0.30	0.05	- 0.065	0.585

Considering the above infiltration factors, the respective total annual volume of infiltration for the post-development wetland catchment is estimated to be 11,303 m³/year.

The runoff component calculated in the post-development model is the remaining volume of precipitation surplus following infiltration. Considering the precipitation surpluses and the total infiltration volume, the total runoff directed to the post-development wetland catchment is estimated at 24,557 m³/year. Detailed calculations and the monthly distribution of infiltration and runoff are presented in **Table 3, Appendix C**.

4.3.3 Water Balance Summary

The results of the pre and post-development water balance shows there is a small infiltration deficit within the developable area of the Site of 435 m³/yr. This area is completely within the wetland catchment. The water balance also shows there to be an increase in the volume of runoff directed to the wetland estimated at 785 m³/yr. These changes to wetland hydrology are the result of increases in impervious surface following development. Results of the analysis are summarised below in **Table 4-6**. The detailed calculations are presented in **Table 5, Appendix C**.

Table 4-6 Summary of Water Balance Analysis- Pre-Development and Post-Development

Characteristic	Pre- Development	Post- Development	Change (Pre- to Post Development)
Proposed Development Area (m²)	89,950	89,950	0
Precipitation (m³/year)	71,366	71,366	0
Total Evapotranspiration (m³/year)	0	448	-448
Total Evaporation (m³/year)	541	438	103
Total Infiltration (m³/year)	306	128	179
Total Runoff (m³/year)	2,758	2,591	167

Note: - ve values represent an increase pre to post-development

4.3.4 Post-development Water Balance With Mitigation

To maintain infiltration across the Site and the wetland catchment, a LID strategy has been provided by Tatham in their Stormwater Management Report for the Site. The strategy relies on the use of a rain garden with a stone storage reservoir with the following dimensions.

Length: 90m Width: 1.5m Depth: 0.6m Void Ratio: 40%

Storage: 27m3 (reported)

Sizing of the facility considered an assumed 15mm/hr infiltration rate including a safety factor of 2. Considering the facilities depth and void ratio, there is a total water depth of 0.24m. Applying the 15mm/hr infiltration rate, the calculated total drawdown time is 1.6 hours and is considered suitable.

The rain garden is designed to accept runoff from the proposed building roofs with a total area of 3000 m². Given the size of the drainage area and the storage volume of the rain garden (27 m³), it is estimated that the reservoir is sized to store a rainfall depth of approximately 9 mm. Using estimated values from Figure 1a - % of Total Annual Average Rainfall Depth Vs. Daily Rainfall Amounts (Wet Weather Flow Management Guidelines, City of Toronto, 2006), the gallery will store roof runoff totally about 67% of the total annual rainfall depth.

Based on the above details, it is estimated that the runoff available for infiltration via the rain garden is 1,416 m³/yr. Detailed calculations and the monthly distribution of the mitigated water balance for areas contributing to the rain garden are provided in **Table 4, Appendix C**.

As a result of applying the infiltration benefits of the rain garden, the total site infiltration deficit is removed and an increase in annual site infiltration of 982 m³/yr is estimated. The increased infiltration has a negative effect on available runoff to the wetland with a pre to post-development runoff deficit estimated at 631 m³/yr. A summary of water balance results is provided in **Table 5**, **Appendix C**.

5. CONCLUSIONS AND RECOMMENDATIONS

Based on results of this Wetland Risk Evolution, the proposed development will maintain the size of the wetland catchment and will slightly increase impervious surfaces by approximately 1%. Using Wetland Water Balance Risk Evaluation guidelines (TRCA, Nov 2017), the magnitude of hydrologic change is considered low risk. As a result, the feature based water balance assessment completed in this report is considered acceptable given the low level of risk to the wetland.

The mitigated water balance completed for the wetland catchment shows there is an increase in annual site infiltration of 982 m³/yr and a decrease in runoff estimated at 631 m³/yr. Considering that the reduction in runoff is small (2.7% of the total annual runoff available to the wetland), and the increase in infiltration upgradient of the wetland provides additional groundwater contributions, potential risks to the wetland are considered very low. The LID design provided by Tatham appears to provide a suitable amount of mitigation to mitigate potential risks to the wetland.

10

6. GENERAL COMMENTS AND LIMITATIONS OF REPORT

GBS should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, GBS will assume no responsibility for interpretation of the recommendations in the report.

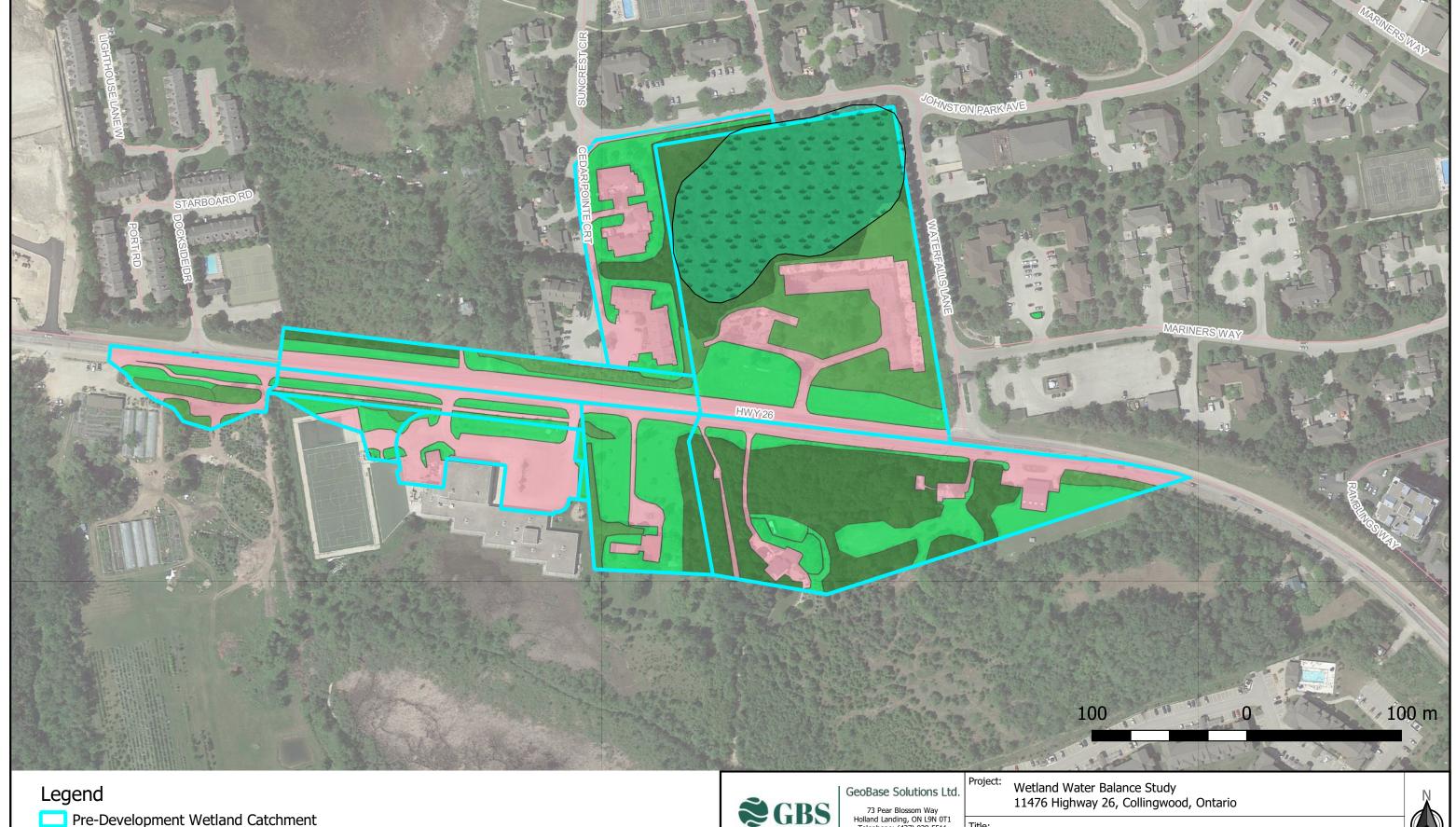
This report is intended solely for the Client named and the owner of the Site who is understood to be Integricon Property Restoration and Construction Group Inc. The material in it reflects our best judgment in light of the information available to GBS at the time of preparation. Unless otherwise agreed in writing by GBS, it shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. No portion of this report may be used as a separate entity, it is written to be read in its entirety.

The conclusions and recommendations given in this report are based on designs and information made available to GBS at the time of writing. The information contained herein in no way reflects on the environmental aspects of the project, including any subsurface and/or groundwater conditions.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. GBS accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.


GeoBase Solutions (GBS) Ltd.

Prepared By:

Scott Watson, B.A.T

Principal

Figures

Pre-Development Wetland Catchment

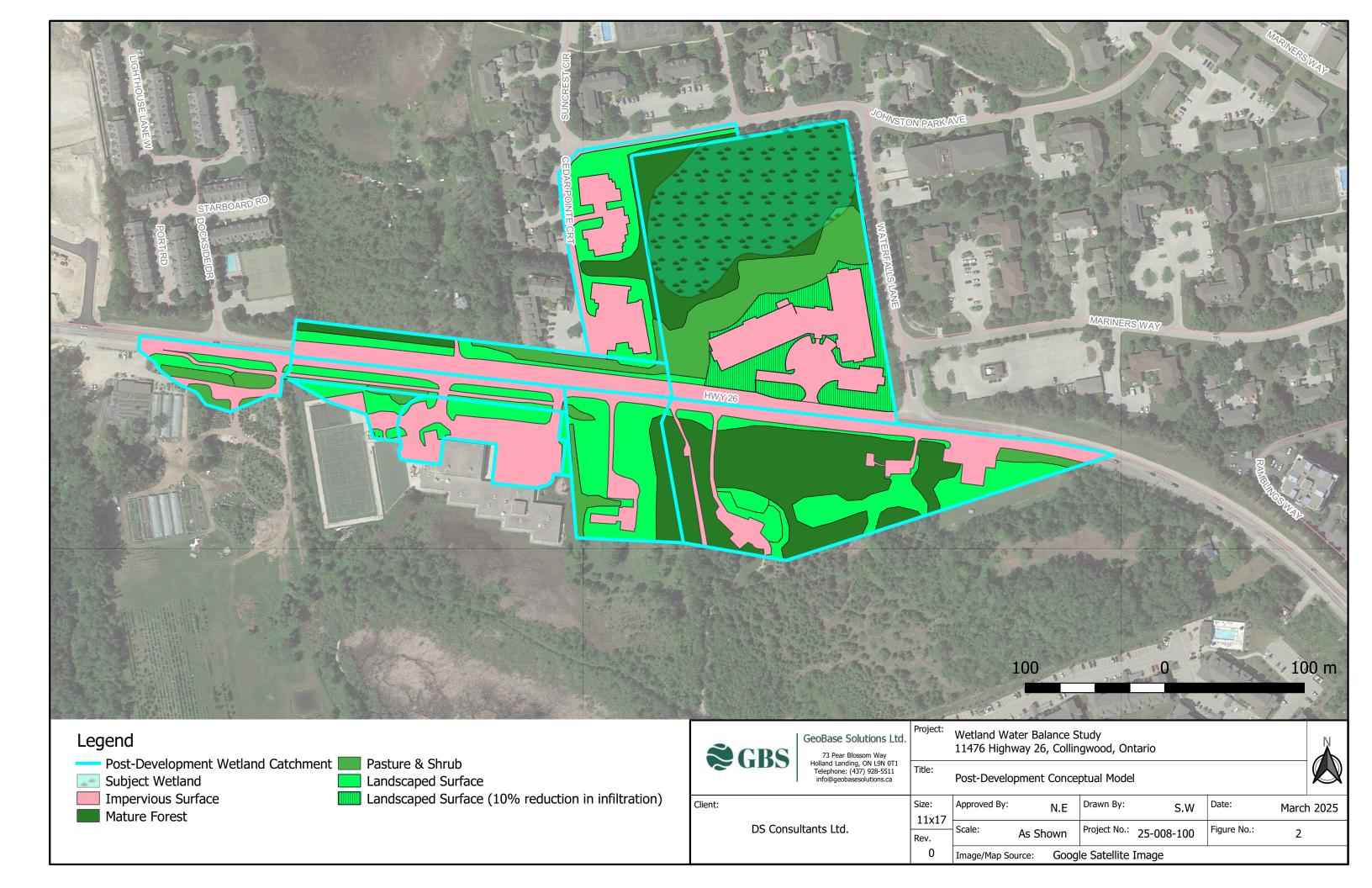
Subject Wetland

Impervious Surface

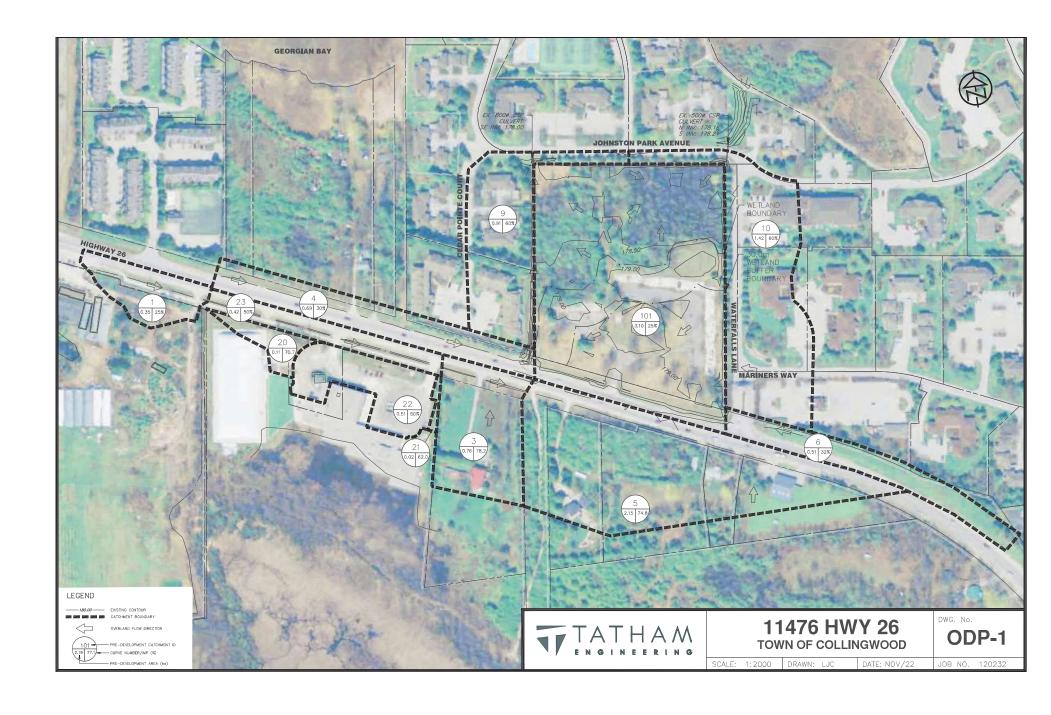
Landscaped Surface

Pasture & Shrub Mature Forest

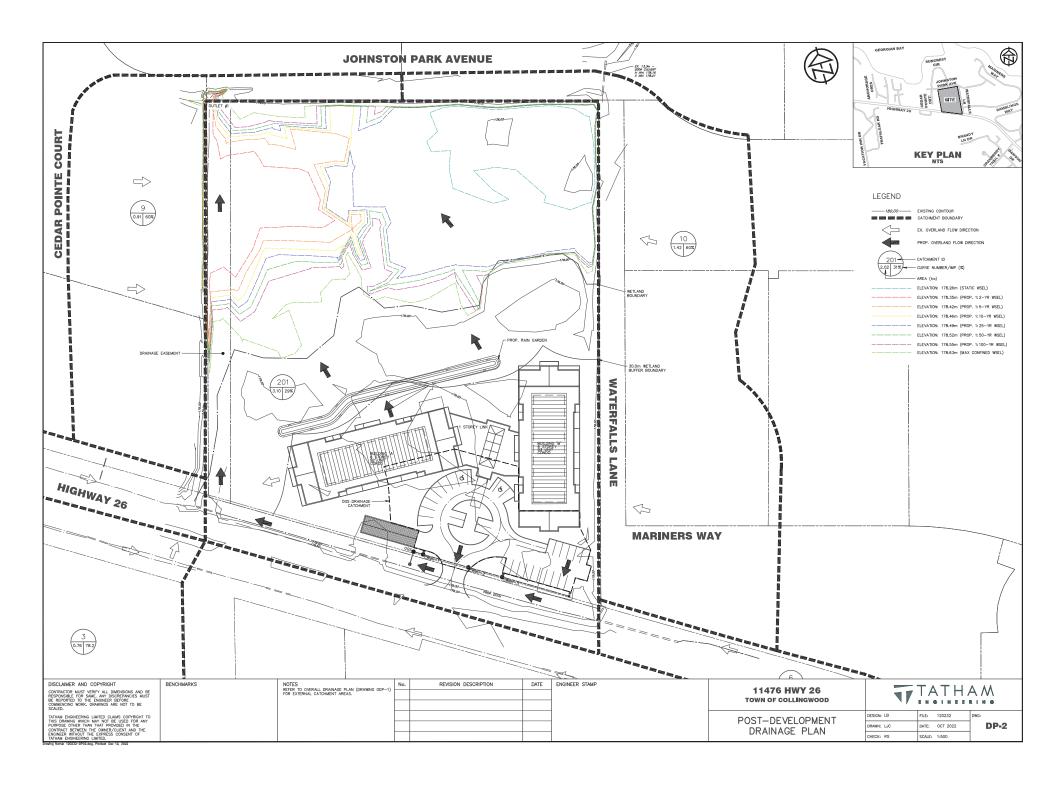
73 Pear Blossom Way Holland Landing, ON L9N 0T1 Telephone: (437) 928-5511 info@geobasesolutions.ca


Pre-Development Conceptual Model

DS Consultants Ltd.


ze:	Approved By:	N.E	Drawn By:	
1x17				
Scale:		As Shown	Project No.:	25-008
0	Image/Map So	urce: Goog	le Satellite	Image

re-Development	Concep	tuai Model	
approved By:	NF	Drawn By:	


March 2025 S.W Project No.: 25-008-100

Appendix A

Appendix B

Appendix C

TABLE 1
CLIMATE NORMALS 1991-2020 (EGBERT CLIMATE STATION)
11476 Highway 26, Collingwood, ON

Station	Climate ID	WMO ID	TC ID	<u>Latitude</u>	<u>Longitude</u>	Elevation (m)
EGBERT	6.11E+03	71296	XET	44°14'00.0	79°47'00.000" W	251

			Thornthy	waite (1948)			
Month	Mean Temperature (°C)	Heat Index	Unadjusted Potential Evapotranspiration (mm)	Daylight Correction Value	Adjusted Potential Evapotranspiration (mm)	Total Precipitation (mm)	
January	-7.2	0.0	0.0	0.77	0.0	54.7	
February	-6.4	0.0	0.0	0.87	0.0	44.7	
March	-1.3	0.0	0.0	0.99	0.0	47.9	
April	5.6	1.2	25.7	1.12	28.7	61.6	
May	12.3 3.9		59.4	1.23	72.9	73.9	
June			86.4 1.29		111.0	83.0	
July	20.1	8.2	100.1	1.26	126.0	77.9	
August	19.2	7.7	95.3	1.16	111.0	82.6	
September	15.3	5.4	74.9	1.04	78.1	72.3	
October	8.9	2.4	42.1	0.92	38.6	65.4	
November	2.7	2.7 0.4 11.8		0.81	9.5	71.8	
December	-3.2	0.0	0.0	0.75	0.0	57.6	
TOTALS		35.9	495.6		576.0	793.4	

Notes: Daylight Correction values obtained from Instruction and Tables For Computing Potential Evapotranspiration and The Water Balance (Thornthwaite & Mather, 1957)

TABLE 2 PRE-DEVELOPMENT SITE WATER BALANCE 11476 Highway 26, Collingwood, ON

Cata	chments and Hydrologic Components						Month							Total
Catt		March	April	May	June	July	August	September	October	November	December	January	February	
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	28.75	72.93	111.04	125.97	111.03	78.08	38.64	9.54	0.00	0.00	0.00	576
	P - Total Precipitation (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
	P-PET (mm)	47.90	32.85	0.97	-28.04	-48.07	-28.43	-5.78	26.76	62.26	57.60	54.70	44.70	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-28.04	-76.10	-104.53	-110.32	-83.55	-21.29	0.00	0.00	0.00	-
-	Soil Moisture Storage (mm) Actual Potential Evapotranspiration (mm)	300.00	300.00	300.00	271.96	223.90	195.47	189.68	216.45	278.71	300.00	300.00	300.00	-
-	Actual Potential Evapotranspiration (mm) P-AET (mm)	0.00	28.75	72.93	109.73	117.62	102.47	76.01	38.64	9.54	0.00	0.00	0.00 44.70	556
-	Actual Soil Moisture Deficit (mm)	47.90 0.00	32.85 0.00	0.97	-26.73 -26.73	-39.72 -66.45	-19.87 -86.32	-3.71 -90.03	26.76 -63.27	62.26 -1.00	57.60 0.00	54.70 0.00	0.00	238
-	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.73	39.72	19.87		-63.27	-62.26	-1.00	0.00	0.00	
-	Precipitation Surplus (mm)	47.90	32.85	0.00	0.00	0.00	0.00	3.71 0.00	0.00	0.00	56.60	54.70	44.70	238
Pervious Area	MECP Infiltration Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	236
(Forest)	Run-Off Coefficient	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
(1.51.511)	Infiltration (mm)	38.32	26.28	0.78	0.00	0.00	0.00	0.00	0.00	0.00	45.28	43.76	35.76	190
-	Run-Off (mm)	9.58	6.57	0.19	0.00	0.00	0.00	0.00	0.00	0.00	11.32	10.94	8.94	48
-	Catchment Area (m ²) = 28814	3.30	0.57	0.13	0.00		Volumes (Pervi		0.00	0.00	11.52	10.54	0.54	
	AET (m³)	0.00	828.38	2101.33	3161.69	3389.26	2952.59	2190.23	1113.25	274.80	0.00	0.00	0.00	16012
	Infiltration (m³)	1104.16	757.26	22.44	0.00	0.00	0.00	0.00	0.00	0.00	1304.60	1260.91	1030.40	5480
	Run-Off (m³)	276.04	189.32	5.61	0.00	0.00	0.00	0.00	0.00	0.00	326.15	315.23	257.60	1370
	Soil Moisture Storage (mm)	150.00	150.00	150.00	121.96	73.90	45.47	39.68	66.45	128.71	150.00	150.00	150.00	-
	Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	108.42	109.28	93.91	73.94	38.64	9.54	0.00	0.00	0.00	535
	P-AET (mm)	47.90	32.85	0.97	-25.42	-31.38	-11.31	-1.64	26.76	62.26	57.60	54.70	44.70	258
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-25.42	-56.80	-68.11	-69.75	-42.99	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	25.42	31.38	11.31	1.64	-26.76	-42.99	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	19.28	57.60	54.70	44.70	258
Pervious Area	MECP Infiltration Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	-
(Pasture /	Run-Off Coefficient	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	-
Sili db)	Infiltration (mm)	35.93	24.64	0.73	0.00	0.00	0.00	0.00	0.00	14.46	43.20	41.03	33.53	194
	Run-Off (mm)	11.98	8.21	0.24	0.00	0.00	0.00	0.00	0.00	4.82	14.40	13.68	11.18	65
	Catchment Area (m²) = 10074	Monthly Volumes (Pervious Area)												
	AET (m³)	0.00	289.61	734.63	1092.14	1100.86	946.02	744.86	389.20	96.07	0.00	0.00	0.00	5393
<u> </u>	Infiltration (m³)	361.89	248.20	7.35	0.00	0.00	0.00	0.00	0.00	145.65	435.18	413.27	337.72	1949
	Run-Off (m ³)	120.63	82.73	2.45	0.00	0.00	0.00	0.00	0.00	48.55	145.06	137.76	112.57	650
_	Soil Moisture Storage (mm)	75.00	75.00	75.00	46.96	0.00	0.00	0.00	26.76	75.00	75.00	75.00	75.00	-
' <u> </u>	Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	105.80	92.95	82.60	72.30	38.64	9.54	0.00	0.00	0.00	503
_	P-AET (mm)	47.90	32.85	0.97	-22.80	-15.05	0.00	0.00	26.76	62.26	57.60	54.70	44.70	290
_	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-22.80	-37.85	-37.85	-37.85	-11.08	0.00	0.00	0.00	0.00	-
-	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	22.80	15.05	0.00	0.00	-26.76	-11.08	0.00	0.00	0.00	-
I	Precipitation Surplus (mm) MECP Infiltration Factor	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	51.18	57.60	54.70	44.70	290
Pervious Area (Landscaped)	Run-Off Coefficient	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	-
(Lanuscapeu)	Run-Off Coefficient Infiltration (mm)	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	-
-	Infiltration (mm) Run-Off (mm)	31.14 16.77	21.35 11.50	0.63	0.00	0.00	0.00	0.00	0.00	33.27 17.91	37.44 20.16	35.56 19.15	29.06 15.65	188 101
	, ,	16.//	11.50	U.34	0.00		Volumes (Pervi		0.00	17.91	20.16	19.15	15.65	101
	Catchment Area (m²) = 22865 AET (m³)	0.00	657.33	1667.43	2418.98	2125.25	1888.61	1653.11	883.38	218.06	0.00	0.00	0.00	11512
-	Infiltration (m³)	711.89	488.23	14.47	0.00	0.00	0.00	0.00	0.00	760.67	856.05	812.95	664.33	4309
	Run-Off (m ³)	383.32	262.89	7.79	0.00	0.00	0.00	0.00	0.00	409.59	460.95	437.74	357.72	2320
	Precipitation Surplus (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
Impondent Acc	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
Impervious Area (Buildings and	Evaporation (mm)	7.19	9.24	11.09	12.45	11.69	12.39	10.85	9.81	10.77	8.64	8.21	6.71	119
Driveway)	Run-Off (mm)	40.72	52.36	62.82	70.55	66.22	70.21	61.46	55.59	61.03	48.96	46.50	38.00	674
	Catchment Area (m²) = 28814				,		Volumes (Imperv							
	Evaporation (m ³)	207.03	266.24	319.41	358.74	336.69	357.01	312.49	282.67	310.33	248.96	236.42	193.20	3429
	Run-Off (m³)	1173.17	1508.71	1809.97	2032.85	1907.94	2023.05 Il Catchment Vol	1770.78	1601.78	1758.53	1410.75	1339.72	1094.80	19432
	Total AET (m³)	0.00	1775.32	4503.39	6672.81	6615.37	5787.23	4588.19	2385.82	588.92	0.00	0.00	0.00	32917
	Total Evaporation (m ³)	207.03	266.24	319.41	358.74	336.69	357.01	312.49	282.67	310.33	248.96	236.42	193.20	3429
	Total Infiltration (m³)	2177.94	1493.68	44.26	0.00	0.00	0.00	0.00	0.00	906.31	2595.82	2487.13	2032.44	11738

TABLE 3
POST-DEVELOPMENT SITE WATER BALANCE
11476 Highway 26, Collingwood, ON

Catchments and Hydrologic Components			Month											Total
Catchr	ments and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	0.00	28.75	72.93	111.04	125.97	111.03	78.08	38.64	9.54	0.00	0.00	0.00	576	
	P - Total Precipitation (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
	P-PET (mm)	47.90	32.85	0.97	-28.04	-48.07	-28.43	-5.78	26.76	62.26	57.60	54.70	44.70	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-28.04	-76.10	-104.53	-110.32	-83.55	-21.29	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	300.00	300.00	300.00	271.96	223.90	195.47	189.68	216.45	278.71	300.00	300.00	300.00	-
	Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	109.73	117.62	102.47	76.01	38.64	9.54	0.00	0.00	0.00	556
	P-AET (mm)	47.90	32.85	0.97	-26.73	-39.72	-19.87	-3.71	26.76	62.26	57.60	54.70	44.70	238
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.73	-66.45	-86.32	-90.03	-63.27	-1.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.73	39.72	19.87	3.71	-26.76	-62.26	-1.00	0.00	0.00	-
	Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	0.00	56.60	54.70	44.70	238
Pervious Area	MECP Infiltration Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	-
(Forest)	Run-Off Coefficient	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	-
	Infiltration (mm)	38.32	26.28	0.78	0.00	0.00	0.00	0.00	0.00	0.00	45.28	43.76	35.76	190
	Run-Off (mm)	9.58	6.57	0.19	0.00	0.00	0.00	0.00	0.00	0.00	11.32	10.94	8.94	48
	Catchment Area (m²) = 28814					Monthly	Volumes (Pervi	ous Area)					•	
	AET (m³)	0.00	828.38	2101.33	3161.69	3389.26	2952.59	2190.23	1113.25	274.80	0.00	0.00	0.00	16012
	Infiltration (m³)	1104.16	757.26	22.44	0.00	0.00	0.00	0.00	0.00	0.00	1304.60	1260.91	1030.40	5480
	Run-Off (m³)	276.04	189.32	5.61	0.00	0.00	0.00	0.00	0.00	0.00	326.15	315.23	257.60	1370
	Soil Moisture Storage (mm)	150.00	150.00	150.00	121.96	73.90	45.47	39.68	66.45	128.71	150.00	150.00	150.00	-
	Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	108.42	109.28	93.91	73.94	38.64	9.54	0.00	0.00	0.00	535
	P-AET (mm)	47.90	32.85	0.97	-25.42	-31.38	-11.31	-1.64	26.76	62.26	57.60	54.70	44.70	258
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-25.42	-56.80	-68.11	-69.75	-42.99	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	25.42	31.38	11.31	1.64	-26.76	-42.99	0.00	0.00	0.00	-
<u> </u>	Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	19.28	57.60	54.70	44.70	258
Pervious Area	MECP Infiltration Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
(Pasture / Shrub)	Run-Off Coefficient	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	-
	Infiltration (mm)	35.93	24.64	0.73	0.00	0.00	0.00	0.00	0.00	14.46	43.20	41.03	33.53	194
Pervious Area (Pasture / Shrub)	Run-Off (mm)	11.98	8.21	0.24	0.00	0.00	0.00	0.00	0.00	4.82	14.40	13.68	11.18	65
	Catchment Area (m²) = 8431					Monthly	Volumes (Pervi	ous Area)			-			
	AET (m³)	0.00	242.37	614.81	914.01	921.30	791.72	623.36	325.72	80.40	0.00	0.00	0.00	4514
	Infiltration (m³)	302.87	207.71	6.15	0.00	0.00	0.00	0.00	0.00	121.89	364.20	345.86	282.63	1631
	Run-Off (m³)	100.96	69.24	2.05	0.00	0.00	0.00	0.00	0.00	40.63	121.40	115.29	94.21	544
	Soil Moisture Storage (mm)	75.00	75.00	75.00	46.96	0.00	0.00	0.00	26.76	75.00	75.00	75.00	75.00	-
	Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	105.80	92.95	82.60	72.30	38.64	9.54	0.00	0.00	0.00	503
	P-AET (mm)	47.90	32.85	0.97	-22.80	-15.05	0.00	0.00	26.76	62.26	57.60	54.70	44.70	290
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-22.80	-37.85	-37.85	-37.85	-11.08	0.00	0.00	0.00	0.00	
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	22.80	15.05	0.00	0.00	-26.76	-11.08	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	51.18	57.60	54.70	44.70	290
Pervious Area	MECP Infiltration Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	-
(Landscaped)	Run-Off Coefficient	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	
	Infiltration (mm)	31.14	21.35	0.63	0.00	0.00	0.00	0.00	0.00	33.27	37.44	35.56	29.06	188
	Run-Off (mm)	16.77	11.50	0.34	0.00	0.00	0.00	0.00	0.00	17.91	20.16	19.15	15.65	101
	Catchment Area (m²) = 18595	10.77	11.50	1 0.54	0.00		/ Volumes (Pervi		0.00	17.51	20.10	1 15.15	15.05	101
	AET (m³)	0.00	534.60	1356.09	1967.32	1728.43	1535.97	1344.44	718.44	177.34	0.00	0.00	0.00	9363
	Infiltration (m ³)	578.97	397.07	11.77	0.00	0.00	0.00	0.00	0.00	618.64	696.21	661.16	540.29	3504
	Run-Off (m ³)	311.75	213.81	6.34	0.00	0.00	0.00	0.00	0.00	333.11	374.88	356.01	290.92	1887
	Kun-Oπ (m)	311./3	213.01	0.34	0.00	0.00	0.00	0.00	0.00	333.11	3/4.00	330.01	290.92	1007

TABLE 3
POST-DEVELOPMENT SITE WATER BALANCE
11476 Highway 26, Collingwood, ON

	Cata	hments and Hydrologic Components						Month							Total
	, • •			April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)			28.75	72.93	111.04	125.97	111.03	78.08	38.64	9.54	0.00	0.00	0.00	576
		P - Total Precipitation (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
		P-PET (mm)	47.90	32.85	0.97	-28.04	-48.07	-28.43	-5.78	26.76	62.26	57.60	54.70	44.70	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-28.04	-76.10	-104.53	-110.32	-83.55	-21.29	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	46.96	0.00	0.00	0.00	26.76	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	105.80	92.95	82.60	72.30	38.64	9.54	0.00	0.00	0.00	503
		P-AET (mm)	47.90	32.85	0.97	-22.80	-15.05	0.00	0.00	26.76	62.26	57.60	54.70	44.70	290
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-22.80	-37.85	-37.85	-37.85	-11.08	0.00	0.00	0.00	0.00	
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	22.80	15.05	0.00	0.00	-26.76	-11.08	0.00	0.00	0.00	
	Pervious Area	Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	51.18	57.60	54.70	44.70	290
	(Landscaped with 10% reduction in infiltration)	MECP Infiltration Factor	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	-
		Run-Off Coefficient	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	-
		Infiltration (mm)	28.02	19.22	0.57	0.00	0.00	0.00	0.00	0.00	29.94	33.70	32.00	26.15	170
		Run-Off (mm)	19.88	13.63	0.40	0.00	0.00	0.00	0.00	0.00	21.24	23.90	22.70	18.55	120
ent		Catchment Area (m ²) = 4055	Monthly Volumes (Pervious Area)												
Ę.		AET (m³)	0.00	116.58	295.72	429.00	376.91	334.94	293.18	156.67	38.67	0.00	0.00	0.00	2042
Catc		Infiltration (m ³)	113.63	77.93	2.31	0.00	0.00	0.00	0.00	0.00	121.41	136.64	129.76	106.04	688
pu		Run-Off (m ³)	80.61	55.28	1.64	0.00	0.00	0.00	0.00	0.00	86.13	96.93	92.05	75.22	488
Vetla		Precipitation Surplus (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
>	_	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	
	Impervious Area	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
	(Buildings and	Evaporation (mm) Run-Off (mm)	7.19 40.72	9.24	11.09	12.45	11.69 66.22	12.39 70.21	10.85 61.46	9.81	10.77	8.64	8.21	6.71	119
	Driveway) —	Catchment Area (m ²) = 30054	40.72	52.36	62.82	70.55		/0.21 Volumes (Imperv	02.10	55.59	61.03	48.96	46.50	38.00	674
	_	Evaporation (m ³)	215.94	277.70	333.15	374.18	351.18	372.37	325.94	294.83	323.68	259.67	246.60	201.51	3577
	-	Run-Off (m³)	1223.66	1573.64	1887.86	2120.33	1990.04	2110.11	1846.98	1670.72	1834.21	1471.46	1397.37	1141.91	20268
								l Catchment Vol			,				
		Total AET (m ³)	0.00	1721.93	4367.95	6472.01	6415.90	5615.23	4451.21	2314.07	571.21	0.00	0.00	0.00	31929
		Total Evaporation (m ³)	215.94	277.70	333.15	374.18	351.18	372.37	325.94	294.83	323.68	259.67	246.60	201.51	3577
		Total Infiltration (m ³)	2099.62	1439.97	42.67	0.00	0.00	0.00	0.00	0.00	861.94	2501.64	2397.69	1959.35	11303
		Total Runoff (m ³)	1993.01	2101.28	1903.49	2120.33	1990.04	2110.11	1846.98	1670.72	2294.08	2390.82	2275.95	1859.87	24557

TABLE 4
POST-DEVELOPMENT SITE WATER BALANCE WITH MITIGATION
11476 Highway 26, Collingwood, ON

Catchments and Hydrologic Components								Month							
	Catchments and Hydrologic Components			April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)			28.75	72.93	111.04	125.97	111.03	78.08	38.64	9.54	0.00	0.00	0.00	576
		P - Total Precipitation (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
		P-PET (mm)	47.90	32.85	0.97	-28.04	-48.07	-28.43	-5.78	26.76	62.26	57.60	54.70	44.70	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-28.04	-76.10	-104.53	-110.32	-83.55	-21.29	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	300.00	300.00	300.00	271.96	223.90	195.47	189.68	216.45	278.71	300.00	300.00	300.00	-
		Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	109.73	117.62	102.47	76.01	38.64	9.54	0.00	0.00	0.00	556
		P-AET (mm)	47.90	32.85	0.97	-26.73	-39.72	-19.87	-3.71	26.76	62.26	57.60	54.70	44.70	238
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.73	-66.45	-86.32	-90.03	-63.27	-1.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.73	39.72	19.87	3.71	-26.76	-62.26	-1.00	0.00	0.00	-
		Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	0.00	56.60	54.70	44.70	238
	Pervious Area	MECP Infiltration Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	-
	(Forest)	Run-Off Coefficient	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	-
		Infiltration (mm)	38.32	26.28	0.78	0.00	0.00	0.00	0.00	0.00	0.00	45.28	43.76	35.76	190
		Run-Off (mm)	9.58	6.57	0.19	0.00	0.00	0.00	0.00	0.00	0.00	11.32	10.94	8.94	48
		Catchment Area (m ²) = 28814					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	0.00	828.38	2101.33	3161.69	3389.26	2952.59	2190.23	1113.25	274.80	0.00	0.00	0.00	16012
		Infiltration (m ³)	1104.16	757.26	22.44	0.00	0.00	0.00	0.00	0.00	0.00	1304.60	1260.91	1030.40	5480
		Run-Off (m ³)	276.04	189.32	5.61	0.00	0.00	0.00	0.00	0.00	0.00	326.15	315.23	257.60	1370
		Soil Moisture Storage (mm)	150.00	150.00	150.00	121.96	73.90	45.47	39.68	66.45	128.71	150.00	150.00	150.00	
		Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	108.42	109.28	93.91	73.94	38.64	9.54	0.00	0.00	0.00	535
	Pervious Area (Pasture / Shrub)	P-AET (mm)	47.90	32.85	0.97	-25.42	-31.38	-11.31	-1.64	26.76	62.26	57.60	54.70	44.70	258
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-25.42	-56.80	-68.11	-69.75	-42.99	0.00	0.00	0.00	0.00	-
Ħ		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	25.42	31.38	11.31	1.64	-26.76	-42.99	0.00	0.00	0.00	
E.		Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	19.28	57.60	54.70	44.70	258
Wetland Catchn		MECP Infiltration Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	-
ě		Run-Off Coefficient	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	-
tlar		Infiltration (mm)	35.93	24.64	0.73	0.00	0.00	0.00	0.00	0.00	14.46	43.20	41.03	33.53	194
Ň		Run-Off (mm)	11.98	8.21	0.24	0.00	0.00	0.00	0.00	0.00	4.82	14.40	13.68	11.18	65
		Catchment Area (m ²) = 8431	Monthly Volumes (Pervious Area)												
		AET (m³)	0.00	242.37	614.81	914.01	921.30	791.72	623.36	325.72	80.40	0.00	0.00	0.00	4514
		Infiltration (m ³)	302.87	207.71	6.15	0.00	0.00	0.00	0.00	0.00	121.89	364.20	345.86	282.63	1631
		Run-Off (m ³)	100.96	69.24	2.05	0.00	0.00	0.00	0.00	0.00	40.63	121.40	115.29	94.21	544
		Soil Moisture Storage (mm)	75.00	75.00	75.00	46.96	0.00	0.00	0.00	26.76	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	105.80	92.95	82.60	72.30	38.64	9.54	0.00	0.00	0.00	503
		P-AET (mm)	47.90	32.85	0.97	-22.80	-15.05	0.00	0.00	26.76	62.26	57.60	54.70	44.70	290
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-22.80	-37.85	-37.85	-37.85	-11.08	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	22.80	15.05	0.00	0.00	-26.76	-11.08	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	51.18	57.60	54.70	44.70	290
	Pervious Area	MECP Infiltration Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	-
	(Landscaped)	Run-Off Coefficient	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	-
		Infiltration (mm)	31.14	21.35	0.63	0.00	0.00	0.00	0.00	0.00	33.27	37.44	35.56	29.06	188
		Run-Off (mm)	16.77	11.50	0.34	0.00	0.00	0.00	0.00	0.00	17.91	20.16	19.15	15.65	101
		Catchment Area (m ²) = 18595					Monthly	y Volumes (Pervi	ous Area)						
		AET (m³)	0.00	534.60	1356.09	1967.32	1728.43	1535.97	1344.44	718.44	177.34	0.00	0.00	0.00	9363
		Infiltration (m ³)	578.97	397.07	11.77	0.00	0.00	0.00	0.00	0.00	618.64	696.21	661.16	540.29	3504
		Run-Off (m ³)	311.75	213.81	6.34	0.00	0.00	0.00	0.00	0.00	333.11	374.88	356.01	290.92	1887

TABLE 4
POST-DEVELOPMENT SITE WATER BALANCE WITH MITIGATION
11476 Highway 26, Collingwood, ON

		Month												Total
Catchr	ments and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Iotai
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	28.75	72.93	111.04	125.97	111.03	78.08	38.64	9.54	0.00	0.00	0.00	576
	P - Total Precipitation (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
	P-PET (mm)	47.90	32.85	0.97	-28.04	-48.07	-28.43	-5.78	26.76	62.26	57.60	54.70	44.70	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-28.04	-76.10	-104.53	-110.32	-83.55	-21.29	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	75.00	75.00	75.00	46.96	0.00	0.00	0.00	26.76	75.00	75.00	75.00	75.00	-
	Actual Potential Evapotranspiration (mm)	0.00	28.75	72.93	105.80	92.95	82.60	72.30	38.64	9.54	0.00	0.00	0.00	503
	P-AET (mm)	47.90	32.85	0.97	-22.80	-15.05	0.00	0.00	26.76	62.26	57.60	54.70	44.70	290
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-22.80	-37.85	-37.85	-37.85	-11.08	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	22.80	15.05	0.00	0.00	-26.76	-11.08	0.00	0.00	0.00	-
Pervious Area	Precipitation Surplus (mm)	47.90	32.85	0.97	0.00	0.00	0.00	0.00	0.00	51.18	57.60	54.70	44.70	290
(Landscaped	MECP Infiltration Factor	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	0.585	-
with 10% reduction in	Run-Off Coefficient	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415	-
infiltration)	Infiltration (mm)	28.02	19.22	0.57	0.00	0.00	0.00	0.00	0.00	29.94	33.70	32.00	26.15	170
illilitiation)	Run-Off (mm)	19.88	13.63	0.40	0.00	0.00	0.00	0.00	0.00	21.24	23.90	22.70	18.55	120
I –	Catchment Area (m ²) = 4055	Monthly Volumes (Pervious Area)												
	AET (m³)	0.00	116.58	295.72	429.00	376.91	334.94	293.18	156.67	38.67	0.00	0.00	0.00	2042
	Infiltration (m³)	113.63	77.93	2.31	0.00	0.00	0.00	0.00	0.00	121.41	136.64	129.76	106.04	688
	Run-Off (m³)	80.61	55.28	1.64	0.00	0.00	0.00	0.00	0.00	86.13	96.93	92.05	75.22	488
	Precipitation Surplus (mm)	47.90	61.60	73.90	83.00	77.90	82.60	72.30	65.40	71.80	57.60	54.70	44.70	793
	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
l	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
Impervious Area (Buildings and	Evaporation (mm)	7.19	9.24	11.09	12.45	11.69	12.39	10.85	9.81	10.77	8.64	8.21	6.71	119
Driveway)	Run-Off (mm)	40.72	52.36	62.82	70.55	66.22	70.21	61.46	55.59	61.03	48.96	46.50	38.00	674
Driveway)	Catchment Area (m ²) = 27054	Monthly Volumes (Impervious Area)												
	Evaporation (m ³)	194.38	249.98	299.90	336.83	316.13	335.20	293.40	265.40	291.37	233.75	221.98	181.40	3220
	Run-Off (m ³)	1101.51	1416.56	1699.41	1908.68	1791.40	1899.48	1662.62	1503.95	1651.12	1324.58	1257.89	1027.93	18245
_	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
_	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
Impervious Area	Evaporation (mm)	7.19	9.24	11.09	12.45	11.69	12.39	10.85	9.81	10.77	8.64	8.21	6.71	119
(Buildings to	Run-Off (mm)	40.72	52.36	62.82	70.55	66.22	70.21	61.46	55.59	61.03	48.96	46.50	38.00	674
Infiltration	Catchment Area (m ²) = 3000					Monthly	Volumes (Imper	vious Area)						
Chamber 2)	Evaporation (m³)	21.56	27.72	33.26	37.35	35.06	37.17	32.54	29.43	32.31	25.92	24.62	20.12	357
	Infiltration - Efficiency ~ 67%	85.50	109.96	131.91	148.16	139.05	147.44	129.06	116.74	128.16	102.82	97.64	79.79	1416
	Run-Off (m ³)	36.64	47.12	56.53	63.50	59.59	63.19	55.31	50.03	54.93	44.06	41.85	34.20	607
							al Catchment Vo							
	Total AET (m ³)	0.00	1721.93	4367.95	6472.01	6415.90	5615.23	4451.21	2314.07	571.21	0.00	0.00	0.00	31929
	Total Evaporation (m ³)	215.94	277.70	333.15	374.18	351.18	372.37	325.94	294.83	323.68	259.67	246.60	201.51	3577
	Total Infiltration (m ³)	2185.12	1549.93	174.58	148.16	139.05	147.44	129.06	116.74	990.10	2604.46	2495.33	2039.14	12719
	Total Runoff (m ³)	1907.51	1991.33	1771.58	1972.17	1850.99	1962.67	1717.93	1553.98	2165.92	2288.00	2178.31	1780.08	23140

TABLE 5 WATER BUDGET SUMMARY 11476 Highway 26, Collingwood, ON

Total Site		Month													
i otai site	March	April	May	June	July	August	September	October	November	December	January	February	Total		
		·			Pr	e-Development									
Total AET (m³)	0	1775	4503	6673	6615	5787	4588	2386	589	0	0	0	32917		
Total ET (m³)	207	266	319	359	337	357	312	283	310	249	236	193	3429		
Total Infiltration (m³)	2178	1494	44	0	0	0	0	0	906	2596	2487	2032	11738		
Total Runoff (m³)	1953	2044	1826	2033	1908	2023	1771	1602	2217	2343	2230	1823	23772		
-	Post-Development without Mitigation														
Total AET (m³)	0	1722	4368	6472	6416	5615	4451	2314	571	0	0	0	31929		
Total ET (m³)	216	278	333	374	351	372	326	295	324	260	247	202	3577		
Total Infiltration (m³)	2100	1440	43	0	0	0	0	0	862	2502	2398	1959	11303		
Total Runoff (m³)	1993	2101	1903	2120	1990	2110	1847	1671	2294	2391	2276	1860	24557		
Post-Development Deficit without Mitigation (-ve value implies a net gain)															
Total AET (m³)	0	53	135	201	199	172	137	72	18	0	0	0	988		
Total ET (m³)	-9	-11	-14	-15	-14	-15	-13	-12	-13	-11	-10	-8	-148		
Total Infiltration (m³)	78	54	2	0	0	0	0	0	44	94	89	73	435		
Total Runoff (m³)	-40	-58	-78	-87	-82	-87	-76	-69	-77	-48	-46	-37	-785		
					Post-Developn	nent Deficit with I	Mitigation								
Total AET (m³)	0	1722	4368	6472	6416	5615	4451	2314	571	0	0	0	31929		
Total ET (m³)	216	278	333	374	351	372	326	295	324	260	247	202	3577		
Total Infiltration (m³)	2185	1550	175	148	139	147	129	117	990	2604	2495	2039	12719		
Total Runoff (m³)	1908	1991	1772	1972	1851	1963	1718	1554	2166	2288	2178	1780	23140		
				Post-Develo	pment Deficit wi	th Mitigation (-ve	value implies a ne	et gain)							
Total AET (m³)	0	53	135	201	199	172	137	72	18	0	0	0	988		
Total ET (m³)	-9	-11	-14	-15	-14	-15	-13	-12	-13	-11	-10	-8	-148		
Total Infiltration (m³)	-7	-56	-130	-148	-139	-147	-129	-117	-84	-9	-8	-7	-982		
Total Runoff (m³)	46	52	54	61	57	60	53	48	51	55	52	43	631		

