PRELIMINARY HYDROGEOLOGICAL INVESTIGATION

Proposed Residential and Commercial Development 11476 Highway 26 Collingwood, Ontario

PREPARED FOR:

Integricon Property Restoration and Construction Group Inc.

DS Project No: 22-189-400 **Date:** February 15, 2023

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.DSConsultants.ca **DS Project No. 22-189-400**

February 15, 2023

Integricon Property Restoration and Construction Group Inc.(IPCG) 219 Westcreek Drive Vaughan, Ontario L4L 9T7

Attention: Jill Brennan

Director of New Developments via email: jill.brennan@ipcg.ca

RE: Preliminary Hydrogeological Investigation – 11476 Highway 26, Collingwood, ON

DS Consultants Limited (DS) was retained by Integricon Property Restoration and Construction Group Inc. (IPCG) to complete a preliminary hydrogeological investigation for the proposed development at 11476 Highway 26, Collingwood, Ontario (Site). The site is currently vacant and will be developed for residential and commercial use. The northern portion of the site is covered with a wooded area and the southern portion is covered with a demolished building structure. The proposed development will consist of two mixed-use buildings A and B with a common one (1) level of underground parking (P1). The existing ground elevation at the Site is about 181-178.9 meters above sea level (masl) with an elevation difference of 2.1 m and the proposed finished floor elevation is 181.5 masl. At the time of writing this report, no detailed below-grade designs were available. The assumed P1 floor level would be approximately 3 m below the proposed finish floor level (Elev. 178.5 masl).

The preliminary hydrogeological investigation for the site includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, an assessment of the hydrogeological constraints, impacts of the proposed development on the local groundwater and provides an estimation of construction dewatering requirements during the proposed development phase. This investigation is based on monitoring wells installed by DS and SPL in support of the geotechnical and hydrogeological investigations at the Site.

If needed, the results of the investigation can be used in support of an application for a Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment, Conservation and Parks (MECP) and a potential discharge permit from the Town of Collinwood.

Based on the results of our investigation, the following conclusions and recommendations are presented:

1. Based on the MECP water well records search, there are thirteen (13) water well records within a 500 meters-radius of the Site. Of these, four (4) water wells are noted as domestic (DO) water supply well and one (1) is noted as a commercial water supply well. All other wells are noted as test holes, dewatering well or monitoring well or not-in-use well.

- 2. In December 2014, SPL Consultants Ltd. drilled eleven (11) boreholes to bedrock depth between 1.4 and 3.1 mbgs. One (1) borehole was drilled and cored into bedrock to a depth of 5.2 mbgs as part of this geotechnical investigation. Also, SPL installed four (4) monitoring wells. Of these, three (3) monitoring wells were screened between 1.5 and 1.8 mbgs into the overburdened sand and the other well was screened into the bedrock at a depth of 5.5 mbgs. In July 2022, DS installed an additional two (2) overburden monitoring wells at the site to depths of 1.4 and 1.6 mbgs, the bedrock depth at the site.
- 3. The study area (500 m radius) lies within the Simcoe Lowlands physiographic region of southern Ontario and is characterized by the sand plain physiographic landform. The surficial geology in the study area consists of sand, gravel and minor silt and clay of coarse-textured lacustrine deposits and Paleozoic bedrock. Based on the subsurface investigation, soils at the site consist of sand to the bedrock depth between 1.4 and 2.1 meters below the existing ground surface.
- 4. Six (6) monitoring wells were used for the current groundwater assessment. DS measured groundwater levels in all monitoring wells on August 5, 2022. Groundwater was found in overburden monitoring wells between 0.37 mbgs and 0.88 mbgs and the bedrock well at 0.52 mbgs.
- 5. Single Well Response Tests (SWRTs) were completed in monitoring wells on July 21, 2022, to estimate hydraulic conductivity (k) for the representative geological units in which the well screens were completed. The value of calculated hydraulic conductivity (k) for sand ranges from 2.5×10^{-5} to 1.0×10^{-5} m/s. The k-value for the bedrock is 7.0×10^{-7} m/s.
- 6. DS completed a preliminary water balance study for the site. To inform the design of Low Impact Development (LID) measures, a Thornthwaite monthly water balance model was completed and used to evaluate pre-development and post-development hydrological conditions at the Site Based on the results of the pre-development and post-development water balance completed, the proposed development is expected to produce a decrease in annual infiltration (3,020 m³/year) and an increase in annual runoff (11,972 m³/year). The effects are the result of increased impervious areas, replacing pervious areas of the Site. The results can be used to design appropriate LID measures to compensate for any anticipated changes or deficits in site hydrology.
- 7. Dewatering requirements (Short-term and Long-term Discharge):

The requirements for dewatering or groundwater control during the construction period are as follows.

Underground Level (P1)	Flow Rate Q- without a safety factor (L/day)	Flow Rate Q- with a safety factor x 2.0 (L/day)	Stormwater Removal (if needed) (@ 10 mm/24 hrs.) (L/day)	Total Flow Rate (L/day)
Short-term Discharge	86,000	172,000	180,000	352,000
Long-term Discharge	32,000	64,000	-	64,000

The estimations of dewatering flow rates are based on the k-values which were obtained from on-site in-situ permeability tests and assuming no hydraulic connection to a nearby Lake. Due to the proximity of Georgian Bay, DS recommends conducting a long-term pumping test (24 hrs) to better establish aquifer properties such as transmissivity and storativity and obtain a more accurate dewatering estimate.

- 8. Dewatering permits requirements: The pumping rates during the construction of buildings with a P1 level is less than 400,000 L/day and therefore, a PTTW application is not likely to be required but an EASR application may be required to be submitted to the MECP for short-term dewatering. A permit is not required if water taking is maintained below the 50,000 L/day. Also, the anticipated permanent drainage volume for buildings is more than 50,000 L/day and therefore, a PTTW is expected permanently. However, this requirement can be changed based on the actual permanent volumes after the construction of the building.
- 9. One (1) groundwater sample (unfiltered) was collected from monitoring well BH 14-7 on July 22, 2022, and submitted to SGS Laboratory in Mississauga, Ontario for analysis. SGS Laboratory is a Canadian Association of Laboratory Accreditation Inc. (CALA) and Canadian Standard Association (CSA) certified. The unfiltered groundwater sample was analyzed and compared against the Town of Collingwood Sewer Use By-law (No. 2009-118) and for groundwater discharge options.
- 10. Groundwater quality analysis indicated that no parameters were in exceedance of the Town of Collingwood Sanitary and Storm Sewer Use Criteria. Therefore, groundwater can be discharged into the Town's sewers without treatment. However, a discharge permit may be required from the town/ if groundwater is discharged into sewers for the short-term term and long-term dewatering.
- 11. Based on the MECP WWRs, groundwater users are not expected in the maximum predicted radius of Influence of 103 meters. However, a door-to-door water well survey may be requested by the Region before the start of construction to establish baseline groundwater conditions within a 500 m area or the zone of influence.
- 12. There is a wetland area located at the north half portion of the site. Georgian Bay is located about 140 m northwest of the northern side of the Site. Impacts on surface water features due to potential dewatering activities are expected since surface water bodies are existed at the Site or near the predicted zone of influence (103 m from the center of excavation).
- 13. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Month: Coden

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

P.A-Patel

Prepared By:

Reviewed By:

Pradeep Patel, M.Sc., P.Geo. Project Manager

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Table of Contents

1.	INTRODUCTION				
	1.1	Purpose	1		
	1.2	Scope of Work	1		
2.	FIELD\	NORK	2		
3.	DUVCI	CAL SETTING	•		
э.	PHISI	CAL SETTING	∠		
	3.1	Physiography and Drainage	2		
	3.2	Geology	3		
	3.2.1	Quaternary Geology	3		
	3.2.2	Bedrock Geology	3		
	3.2.3	Site Geology	3		
	3.3	Hydrogeology	3		
	3.3.1	Local Groundwater Use	3		
	3.3.2	Groundwater Conditions	4		
	3.3.3	Hydraulic Conductivity	4		
	3.3.4	Groundwater Quality	5		
4.	DRAFT	SITE WATER BALANCE	5		
	4.1	Existing Conditions (Pre-Development)	5		
	4.2	Proposed Development (Post-Development)			
	4.3	Water Balance Components (Thornthwaite Monthly Water Balance Model)			
	4.4	Water Balance Analysis			
	4.4.1	Water Balance- Pre-Development	7		
	4.4.2	Water Balance- Post-Development (Without mitigation)	8		
	4.4.3	Water Balance Results- Pre-Development to Post-Development Changes	8		
5.	CONST	TRUCTION DEWATERING	8		
	5.1	Estimation of Flow Rate - Unsealed Excavation	9		
	5.2	Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)-P1 Level (Buildings)			
	5.3	Permanent Drainage (Long-term Discharge) or Foundation Drains			
	5.4	Permit Requirements			
	5.4.1	Environmental Activity and Sector Registry (EASR) / Permit to Take Water (PTTW)			
		Application	10		
	5.4.2	Discharge Permits (Construction Dewatering)	11		
6.	POTEN	NTIAL IMPACTS			
	6.1	Local Groundwater Use	11		
	6.2	Current PTTW Search			
	6.3	Source Protection Area			
	6.4	Highly Vulnerable Aquifer			
	6.5	Wellhead Protection Area			

	6.6	Intake Protection Zone	11
	6.7	Surface Water	12
	6.8	Point of Discharge and Groundwater Quality	12
7.	MON	ITORING AND MITIGATION	12
8.	3. LIMITATIONS		12
9.	CONS	ULTANTS QUALIFICATIONS	14
10.	REFER	RENCES	15
_3.			

FIGURES:

FIGURE 1	Site Location and MECP Water Well Records
FIGURE 2	Surficial Geology
FIGURE 3	Borehole and Monitoring Well Location Plan
FIGURE 4	Geological Cross-Section Along A-A'
FIGURE 5	Pre-Development Land Use
FIGURE 6	Post-Development Land Use

APPENDICES:

Appendix A	Borehole Logs
Appendix B	MECP Water Wells Records
Appendix C	Hydraulic Conductivity Analysis
Appendix D	Groundwater Quality Certificate of Analysis
Appendix E	Site Water Balance Analysis

1. INTRODUCTION

DS Consultants Limited (DS) was retained by Integricon Property Restoration and Construction Group Inc. (IPCG) to complete a preliminary hydrogeological investigation for the proposed development at 11476 Highway 26, Collingwood, Ontario (Site). The location of the Site is shown in **Figure 1**. The site is currently vacant and will be developed for residential and commercial use. The northern portion of the site is covered with a wooded area and the southern portion is covered with a demolished building structure. The proposed development will consist of two mixed-use buildings A and B with a common one (1) level of underground parking(P1). The existing ground elevation at the Site is about 181-178.9 meters above sea level (masl) with an elevation difference of 2.1 m and the proposed finished floor elevation is 181.5 masl. At the time of writing this report, no detailed below-grade designs were available. The assumed P1 floor level would be approximately 3 m below the proposed finish floor level (Elev. 178.5 masl).

The preliminary hydrogeological investigation for the site includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, an assessment of the hydrogeological constraints, impacts of the proposed development on the local groundwater and provides an estimation of construction dewatering requirements during the proposed development phase. This investigation is based on monitoring wells installed by DS and SPL Consultants Ltd. in support of the geotechnical and hydrogeological investigations at the Site.

1.1 Purpose

The purpose of this investigation was to review and determine the need for dewatering, estimate dewatering rates, assess groundwater quality and determine the need for a Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) from the Ministry of Environment, Conservation and Parks (MECP) in addition to requirements to obtain discharge permits from the Town of Collingwood, if needed. Potential impacts related to construction dewatering and associated monitoring/mitigation measures were also investigated.

1.2 Scope of Work

The scope of work for this investigation included:

- (i) Site visits;
- (ii) Collecting and interpreting available reports and data including the MECP Water Well Records (WWR), geotechnical, hydrogeological and environmental studies completed at the Site;
- (iii) In-situ hydraulic conductivity testing in newly installed monitoring wells;
- (iv) Site-Specific Water Balance Analysis;

- (v) Estimation of temporary groundwater flow rate during the construction;
- (vi) Assessing groundwater quantity and quality to evaluate discharge options; and,
- (vii) Data analyses and report preparation.

2. FIELDWORK

- In December 2014, SPL Consultants Ltd. drilled eleven (11) boreholes to bedrock depth between 1.4 and 3.1 mbgs. One (1) borehole was drilled and cored into bedrock to a depth of 5.2 mbgs as part of this geotechnical investigation. Also, SPL installed four (4) monitoring wells. Of these, three (3) monitoring well was screened between 1.5 and 1.8 mbgs into the overburdened sand and the other well was screened into the bedrock at a depth of 5.5 mbgs. In July 2022, DS installed an additional two overburden monitoring wells at the site to depths of 1.4 and 1.6 mbgs, the bedrock depth at the site.
- A total of six (6) monitoring wells were used to access the groundwater conditions at the Site. All
 monitoring wells available with water were developed before use to allow for groundwater level
 monitoring, hydraulic conductivity testing, and assess groundwater quality.
- Four (4) single well response tests (SWRTs) were completed in monitoring wells by performing a
 rising head test to estimate the hydraulic conductivity value of formations/soils at the Site.
- One (1) unfiltered groundwater sample was collected to assess discharge options for dewatering water during construction. The groundwater sample was compared against the Town of Collingwood Sewer Use By-law.

3. PHYSICAL SETTING

Available topographic maps and environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. The borehole logs from all investigations at the Site as well as the Ministry of the Environment, Conservation and Parks Water Wells Records (MECP WWRs) were used to interpret the geological and hydrogeological conditions at the Site.

3.1 Physiography and Drainage

The site is situated within the Blue Mountains Watersheds within the jurisdiction of the Nottawasaga Valley Conservation Authority. The area is characterized by gently rolling land, and slopes north. There is a wetland area located at the north half portion of the site. The topography at the site is flat and gently slopes north with a surface elevation ranging from 181-178.9 masl. Georgian Bay is located about 140 m northwest of the northern side of the Site.

3.2 Geology

The following presents a brief description of regional and site geology based on the review of available information and site-specific soil investigations by DS and Pinchin.

3.2.1 Quaternary Geology

The study area (500 m radius) lies within the Simcoe Lowlands physiographic region of southern Ontario and is characterized by the sand plain physiographic landform. The surficial geology in the study area consists of sand, gravel and minor silt and clay of coarse-textured lacustrine deposits and Paleozoic bedrock. The surficial geology map is shown in **Figure 2.**

3.2.2 Bedrock Geology

Available published mapping indicates that the bedrock in the area is the Limestone of the Lindsay Formation (Simcoe Group) (MNDM Map 2544 Bedrock Geology of Ontario). Based on the review of local boreholes and well record information the depth to bedrock is estimated to be approximately 1.5-2 m below ground level.

3.2.3 Site Geology

On-site subsurface soils were interpreted from the boreholes/monitoring wells (BHs/MWs) drilled by DS and SPL. The locations of the BHs/MWs are shown in **Figure 3** and detailed subsurface conditions are presented on the borehole Logs in **Appendix A**. The geological cross-section (A-A') is presented in **Figure 7**. The subsurface conditions in the boreholes are summarized in the following paragraphs.

<u>Fill:</u> Fill material consisting of sandy silt and containing organics was encountered in all boreholes and was extended to a depth of about 0.5 m below the existing ground surface(mbgs).

<u>Sand deposits:</u> Below the fill material, sand was encountered in all the boreholes and extended to the bedrock depths between 1.4 and 2.1 m mbgs.

<u>Limestone Bedrock:</u> Based on the subsurface investigation, the bedrock depth at the site is between 1.4 and 2.1 meters below the existing ground surface.

3.3 Hydrogeology

The hydrogeology at the Study site was evaluated using the on-site monitoring wells installed by DS and PSPL, local domestic wells and existing hydrogeological reports for the area.

3.3.1 Local Groundwater Use

As part of the hydrogeological study, DS completed a search of the Ministry of the Environment, Conservation and Parks (MECP) Water Well Record (WWR) database. Based on the MECP water well records search, there are thirteen (13) water well records within a 500 meters-radius of the Site (Appendix

B). Of these, four (4) water wells are noted as domestic (DO) water supply well and one (1) is noted as a commercial water supply well. All other wells are noted as test holes, dewatering well or monitoring well or not-in-use well. **Figure 1** shows the MECP water well location plan. The study area is served by a municipal water supply.

3.3.2 Groundwater Conditions

Six (6) monitoring wells were used for the current groundwater assessment. DS measured groundwater levels in all monitoring wells on August 5, 2022. **Table 3-1** presents the groundwater levels in all monitoring wells. Groundwater was found in overburden monitoring wells between 0.37 and 0.88 mbgs and bedrock well at 0.50 mbgs and the groundwater flow is expected to be north to the northeast towards Georgian Bay. The groundwater flow direction is presented in **Figure 4**.

Well ID	Ground Elevation (masl)	Well Depth (mbgs)	Screened Interval (mbgs)	Formation	Depth to Water (mbgs)	Groundwater Elevation (masl)
BH/MW 22-1	181.0	1.6	0.8-1.6	Sand	0.63	180.37
BH/MW 22-5	179.1	1.4	0.8-1.4	Sand	0.69	178.41
BH/MW 14-1	178.8	1.3	0.5-1.3	Sand	0.37	178.43
BH/MW 14-3	179.1	1.5	0.7-1.5	Sand	0.73	178.37
BH/MW 14-8	178.8	1.8	1.0-1.8	Sand	0.88	177.92
BH/MW 14-7	179.2	5.5	2.5-5.5	Limestone	0.50	178.70

Table 3-1: Groundwater Levels in Monitoring Wells

3.3.3 Hydraulic Conductivity

A single well response test (SWRT) was completed in monitoring wells with sufficient water on July 21, 2022, to estimate hydraulic conductivity (k) for the representative geological units in which the well screens were completed. The test was completed by performing a rising head test with the use of a one-litre bailer to 'instantaneously' remove water from the well. A data logger was placed in the well to monitor recovery. The hydraulic conductivity (k) value was calculated using the Bouwer & Rice method. **Table 3-2** presents the Hydraulic Conductivity (k) result for the representative geological unit. The value of calculated hydraulic conductivity (k) for sand ranges from 2.5×10^{-5} to 1×10^{-5} m/s. The k-value for the bedrock is 7.0×10^{-7} m/s. The hydraulic testing results are provided in **Appendix C.**

Table 3-2: Hydraulic Conductivity (k) Test Result

Well ID	Screened Interval (mbgs)	Screened Formation	K- Value (m/s)
BH/MW 22-1	0.8-1.6	Sand	2.5 × 10 ⁻⁵
BH/MW 22-5	0.8-1.4	Sand	1.4 × 10 ⁻⁵
BH/MW 14-1	0.5-1.3	Sand	1.0 × 10 ⁻⁵
BH/MW 14-7	2.5-5.5	Limestone	7.0 × 10 ⁻⁷

3.3.4 Groundwater Quality

One (1) groundwater sample (unfiltered) was collected from monitoring well BH 14-7 on July 22, 2022, and submitted to SGS Laboratory in Mississauga, Ontario for analysis. SGS Laboratory is a Canadian Association of Laboratory Accreditation Inc. (CALA) and Canadian Standard Association (CSA) certified. The unfiltered groundwater sample was analyzed and compared against the Town of Collingwood Sewer Use By-law (No.2009-118) for groundwater discharge options. Groundwater quality analysis indicated that no parameters were in exceedance of the Town of Collingwood Sanitary and Storm Sewer Use Criteria. The certificate of analysis is provided in **Appendix D.**

4. DRAFT SITE WATER BALANCE

DS completed a preliminary water balance study for the site. The Site is currently vacant land. The Site is proposed to be developed for a mixed-use occupying an area of about 28,169 m² (2.82 ha). To inform the preliminary design of Low Impact Development (LID) measures, a Thornthwaite monthly water balance model was completed and used to evaluate pre-development and post-development hydrological conditions at the Site. The results can be used to design appropriate LID measures to compensate for any anticipated changes or deficits in site hydrology.

4.1 Existing Conditions (Pre-Development)

The Site has a total area of 28,169 m² and includes approximate pervious areas totalling 14397 m² of wooded area and 9927 m² of vacant area and an impervious area of 3,845 m². **Figure 5** shows the predevelopment conceptual model considered for establishing current hydrologic conditions.

4.2 Proposed Development (Post-Development)

For the water balance calculations in this report, it is estimated that the proposed mixed-use development will have impervious areas (including building, paved/road/driveway/walkway) of about 12,395 m² and the remaining area of 15,774 m² will be developed as a pervious area. **Figure 6** shows the post-development conceptual model considered for establishing post-hydrologic conditions.

4.3 Water Balance Components (Thornthwaite Monthly Water Balance Model)

The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting type method used to analyze the allocation of water among various components of the hydrologic cycle. Inputs to the model are monthly temperature, Site latitude, precipitation, and stormwater run-on. Outputs include monthly potential and actual evapotranspiration, evaporation, water surplus, total infiltration, and total runoff. For ease of calculation, a spreadsheet model was used for the computation.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table, or evaporate/evapotranspiration (ET) from the earth's surface and vegetation. The sum of R and I is termed the water surplus (S). When long-term averages of P, R, I and ET are used, there is no

net change in groundwater storage (ST). Annually, however, there is a potential for minor changes in ST. The annual water budget can be stated as P = ET + R + I + ST and the components are discussed below.

Precipitation (P)

Based on the precipitation data from the Thornbury Slama Weather Station in Ontario, the average precipitation for the area is about 992 mm/year for the period between 1981 and 2010. Also, the average monthly temperature from this station has been used. The monthly distribution of precipitation is presented in **Table E-1, Appendix E.**

Storage (ST)

Groundwater storage (ST) of native soils for the existing Site was estimated using values of Water Holding Capacity (mm) of respective land use and soil types identified in Table 3.1 of the Storm Water Management (SWM) Planning & Design Manual (MOE, March 2003). The land uses, soil types and respective water-holding capacities shown in **Table 4-1** were chosen to represent existing conditions and applied to March for monthly calculations.

Table 4-1: Water Holding Capacity of Native Soils in Pervious Areas

Land Uses	Soil Types(pre- and post- development	Water Holding Capacity (mm/year) Pre-Development Post-Developmen	
	development	Pre-Development	Post-Development
Open Space- Wooded area	Sandy Loam/Sandy Loam	300	300
Open Space- Pervious area	Sandy Loam/Clay Loam	75	100

Using the procedures outlined in the SWM Planning & Design Manual for the above land use and soil type, the annual change in storage is zero (0).

Evapotranspiration (ET)

Monthly Potential Evapotranspiration (PET) is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite,1948; Mather, 1978). In the Thornthwaite water balance model, PET is calculated using the Hamon equation (Hamon, 1061).

PET Hamon = 13.97 * d * D2 * Wt

Where:

d = the number of days in the month

D = the mean monthly hours of daylight in units of 12 hours

Wt = a saturated water vapour density term = 4.95 * e0.627/100

T = the monthly mean temperature in degrees Celsius

The calculated Actual Evapotranspiration (AET) is based on PET and changes in ST (Δ ST). Where there is not enough P to satisfy PET, a reduction in ST occurs. As a result, volumes of AET are less than PET. Also, it is assumed that evaporation will occur and will amount to 15% of the total precipitation for an impervious cover.

Precipitation Surplus (S)

Precipitation surplus is calculated as P–ET. For pervious areas, ET is considered AET and for impervious areas, ET is evaporation.

Infiltration (I) and Runoff (R)

For pervious areas, precipitation surplus has two components in the Thornthwaite model: a runoff component (overland flow that occurs when soil moisture capacity is exceeded) and an infiltration component. The accumulation of infiltration factors for topography, soil types and the cover as prescribed in Table 3.2 of the SWM Planning & Design Manual, MECP (2003) gives infiltration factors for existing conditions on the Site as shown below in **Table 4-2**. The runoff component calculated in the predevelopment and post-development is the remaining volume of precipitation surplus following AET, ET and infiltration.

Land Uses Soil Cover Runoff Topography Infiltration factor Coefficient **Pre- Development Conditions Open Space-Wooded Area** 0.3 0.3 0.2 0.80 0.20 0.3 0.1 0.70 **Open Space- Pervious Area** 0.3 0.30 **Post-Development Conditions** 0.3 0.2 Urban Lawn/Landscape 0.1 0.60 0.40

Table 4-2: Pre-Development and Post-Development Conditions – Infiltration Factors

4.4 Water Balance Analysis

To predict outputs of the pre-development and post-development water balance, various inputs were entered into the Thornthwaite model including monthly precipitation and temperature, Site latitude, water holding capacity values for native soils and factors of infiltration as discussed in section 4.3. The analysis is summarised below, and the detailed calculations are presented in **Appendix E.**

4.4.1 Water Balance- Pre-Development

The average precipitation for the area is about 992 mm/year. For the pervious area, the calculated PET is 579 mm/year or about 58 % of the total precipitation. The monthly distribution of ST for the pervious area in sandy loam produced a unit area annual AET of 556 mm and 500 mm. For the impervious areas, it is assumed that evaporation will occur and will amount to 15% of total precipitation. Given a pervious area

of 24,324 m2 and an impervious area of 3,845 m2, the pre-development is expected to produce an evapotranspiration/AET of 13,541 m³/year, an infiltration of 8,441 m³/year and a runoff of 5,962 m³/year. The detailed calculations are presented in **Table E-2, Appendix E.**

4.4.2 Water Balance- Post-Development (Without mitigation)

A post-development water balance was completed using the conceptual plan for future development. In the post-construction scenario, changes in land use will result in about 13,395 m² of impervious surfaces and 15,774 m² of pervious areas (landscaped/wooded area). The monthly distribution of ST for the landscaped area produced an annual AET of 512 mm and for the wooded area produced an annual AET of 512 mm. For the impervious areas, it is assumed that evaporation will occur and will amount to 15% of total precipitation. Given a total pervious and impervious area, the proposed development is expected to produce an evapotranspiration/AET of 10,551 m³/year, an infiltration of 5,421 m³/year and a runoff of 11,972 m³/year. The detailed calculations are presented in **Table E-3, Appendix E.**

4.4.3 Water Balance Results- Pre-Development to Post-Development Changes

Based on the results of the pre-development and post-development water balance completed, the proposed development is expected to produce a decrease in annual infiltration (3,020 m³/year) and an increase in annual runoff (11,972 m³/year). The effects are the result of increased impervious areas, replacing pervious areas of the Site. The analysis is summarized below in **Table 4-3**.

Table 4-3: Summary of Water Balance- Pre-Development and Post-Development (Without Mitigation)

Development Stage	Unit	Infiltration	Runoff	Evaporation/AET
Pre-Development	m³/year	8,441	5,962	13,541
Post-Development (No mitigation)	m³/year	5,421	11,972	10,551
Change (Pre- to Post-Development)- No Mitigation	Change- m³/year	-3,020	+ 6,009	-2,990
Note: -ve- Decrease, + ve- Increase				

5. CONSTRUCTION DEWATERING

Based on the available conceptual design the proposed development will consist of a common one (1) level of underground parking (P1) with the assumed finished floor level at 3 metres below the average ground level(mbgl). Below is a summary of the below-grade construction:

a. The area for dewatering: 18,000 m²

b. Underground Structure: P1 Underground Parking (P1)

c. Considered Average Grade: 181.5 masl

d. Lowest Finished Floor Level (P1): 3 mbgs (Elev. 178.5 masl)

e. Deepest Excavation (Elevator Pit and Sump): 5 mbgs (Elev. 176.5 masl)

f. Highest Groundwater Elevation: 180.4 masl

5.1 Estimation of Flow Rate - Unsealed Excavation

This section calculates the estimated dewatering required during the construction of the proposed buildings based on the above-noted k-value, the highest groundwater elevations at the site using the steady-state flow equation for unsealed excavation as follows. The estimated flow rates for the proposed buildings are summarised in **Table 5-1**.

$$Q_R = K x \frac{H^2 - h^2}{0.733} x Log (R_0/r_e)$$

$$r_e = \left(\frac{(a x b)}{\pi}\right)^{0.5}$$

$$R_0 = (r_e + 3000)(H - h)(k^{0.5})$$

Table: 5-1 Estimation of Flow Rate (Short-term Discharge) – P1 Level (Buildings)

Parameters	P1 Level
K -Hydraulic conductivity(geomean) (m/s)-Sand/Bedrock	2 x 10 ⁻⁵ /7x 10 ⁻⁷
H-Distance from water level to the bottom of an aquifer (m)	4.5
h -Depth of water in the well while pumping (m)	0.0
Approximate Area (a x b) m ²	18,000
r _e -equivalent radius, where a and b excavation dimensions (m)	76
R _o - Radius of the cone of depression	103(Max)
Estimated Flow Rate- L/day (without safety factor)	86,000
Estimated Flow Rate- L/day (with safety factor x2)	172,000

The following assumptions were made while estimating the flow rate.

- 1. No recharge from the nearby lake.
- Bedrock is competent and the effect of structural features such as joints, fractures etc. on permeability (secondary permeability) is limited. K-values can be different with depth based on the nature of the bedrock.

5.2 Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)-P1 Level (Buildings)

The estimated flow rate during the construction of buildings with a P1 level would be 172,000 L/day. The estimated stormwater that may be required to be removed is about 180,000 L/day. The estimated flow rates are summarised in **Table 4-2.**

The estimations of dewatering flow rates are based on the k-values which were obtained from on-site insitu permeability tests and represent the permeability value of the immediate area of these monitoring wells. Due to the proximity of Georgian Bay, DS recommends conducting a long-term pumping test (24 hrs) to better establish aquifer properties such as transmissivity and storativity and obtain a more accurate dewatering estimate. This test is best done when the actual design is available to strategically position the depth and location of the pumping wells for future use during construction.

Level	Flow Rate Q- without a safety factor (L/day)	Flow Rate Q- with a safety factor x 1.5 (L/day)	Stormwater Removal (if needed) (@ 10 mm/24 hrs.) (L/day)	Total Flow Rate (L/day)
P1	86,000	172,000	180,000	352,000

Table 5-2: Total Construction Dewatering (Short-term Discharge)- P1 Level (Buildings)

5.3 Permanent Drainage (Long-term Discharge) or Foundation Drains

Following the construction of the underground structure, long-term groundwater flow to the underfloor drainage system for the building will be a function of the upward flux and drainage along the foundation wall. The estimated permanent flow rate for buildings after construction would be 64,000 L/day with a safety factor of x 2. The estimated permanent drainage flow rates for the P1 level estimated using a steady-state flow equation are summarised in **Table 5-3.**

Table 5-3: Post-Construction Dewatering - Long-term Discharge -P1 level (Buildings)

Parameters	P1 Level(Buildings)
K -Hydraulic conductivity (m/s)	2 x10 ⁻⁵
H-Distance from water level to the bottom of an aquifer (m)	1
h -Depth of water in the well while pumping (m)	0
Approximate Area (a x b) m ²	18,000
re-equivalent radius, where a and b excavation dimensions (m)	76
Ro- Radius of the cone of depression	89
Estimated Flow Rate- L/day (without safety factor)	32,000
Estimated Flow Rate- L/day (with safety factor x 2)	64,000

5.4 Permit Requirements

5.4.1 Environmental Activity and Sector Registry (EASR) / Permit to Take Water (PTTW) Application

An Environmental Activity Sector Registration (EASR) is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/ day.

The pumping rates during the construction of buildings with a P1 level is less than 400,000 L/day and therefore, a PTTW application is not likely to be required but an EASR application may be required to be submitted to the MECP for short-term dewatering. Also, the anticipated permanent drainage volume for buildings is more than 50,000 L/day and therefore, a PTTW is expected permanently. However, this requirement can be changed based on the actual permanent volumes after the construction of the building.

5.4.2 Discharge Permits (Construction Dewatering)

A discharge permit will be required from the Town of Collingwood if private water is to be sent to the sewer system for short- and long-term discharge.

6. POTENTIAL IMPACTS

The following are the predicted potential impacts because of construction dewatering:

6.1 Local Groundwater Use

The area is fully serviced by a municipal water supply. Use of groundwater as a source of drinking water is not expected within a 500-meter radius of the Site and therefore, no short-term or long-term impacts are anticipated to private water wells because of dewatering activities.

6.2 Current PTTW Search

The MECP PTTW Open Data Catalogue was searched within a 1 km radius of the Site. The search indicated that there are no active PTTWs within 1000 meters of the Site. Groundwater interferences are not expected for the Site because of pumping activities in the surrounding area if any.

6.3 Source Protection Area

The Site is located within the Nottawasaga Valley Source Protection Area (S.P.A). The Source Protection Plan contains policies aimed at protecting drinking water sources by reducing or eliminating significant threats to the source of municipal drinking water. The study area is serviced by municipal water. Therefore, no impacts are anticipated on the drinking water supply within the zone of influence.

6.4 Highly Vulnerable Aquifer

The Site is located within a Highly Vulnerable Aquifer (HVA) with a vulnerability score of 6. This score indicates that groundwater is highly vulnerable to contamination from the surface.

6.5 Wellhead Protection Area

The Site and the study area are not located around municipal wells. Also, the Site does not fall within the wellhead protection area (WHPA)-E for water quality.

6.6 Intake Protection Zone

The Site and the study area are not located within a water intake protection zone (IPZ). No IPZ impacts are anticipated due to the proposed temporary or long-term dewatering.

6.7 Surface Water

There is a wetland area located at the north half portion of the site. Georgian Bay is located about 140 m northwest of the northern side of the Site. Impacts on surface water features due to potential dewatering activities are expected since surface water bodies are existed at the Site or near the predicted zone of influence (103 m from the center of excavation).

6.8 Point of Discharge and Groundwater Quality

Groundwater quality analysis indicated that no parameters were in exceedance of the Town of Collingwood Sanitary and Storm Sewer Use Criteria. Therefore, groundwater can be discharged into the Town's sewers without treatment. However, a discharge permit may be required from the town/the Region if the water is discharged into sewers for the short-term term and long-term dewatering.

7. MONITORING AND MITIGATION

Based on the finding of hydrogeological assessment and associated potential impacts due to development, the following monitoring and mitigation program is provided:

- A baseline private well survey and groundwater monitoring may be required before the construction to confirm groundwater users within the predicted zone of influence or 500 meters radius.
- Baseline groundwater quality has been assessed and established before construction. However, groundwater quality can change based on several factors (land-use change, spills, etc.) and should be monitored during construction dewatering and after construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and the Town of Collingwood.
- If a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality, and any adverse impacts as a result of dewatering.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

8. LIMITATIONS

This report was prepared for the sole use of the addressee to provide an assessment of the hydrogeological conditions on the property. The information presented in this report is based on information collected during the completion of the hydrogeological investigation. DS Consultants Ltd. was required to use and rely upon various information sources produced by other parties. The information provided in this report reflects DS's judgment in light of the information available at the time

of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of these documents or findings, conclusions, and recommendations represented herein, is at the sole risk of said users. The conclusions drawn from the Hydrogeological report were based on information at selected observation and sampling locations. Different conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. DS Consultants Ltd. cannot be held responsible for hydrogeological conditions at the Site that was not apparent from the available information.

Should you have any questions regarding these findings, please contact the undersigned.

PRADEEPKUMAR A, PATEI PRACTISING MEMBER

DS Consultants Ltd.

Prepared By:

Pradeep Patel, P.Geo. Hydrogeologist

-Patel

Reviewed By:

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

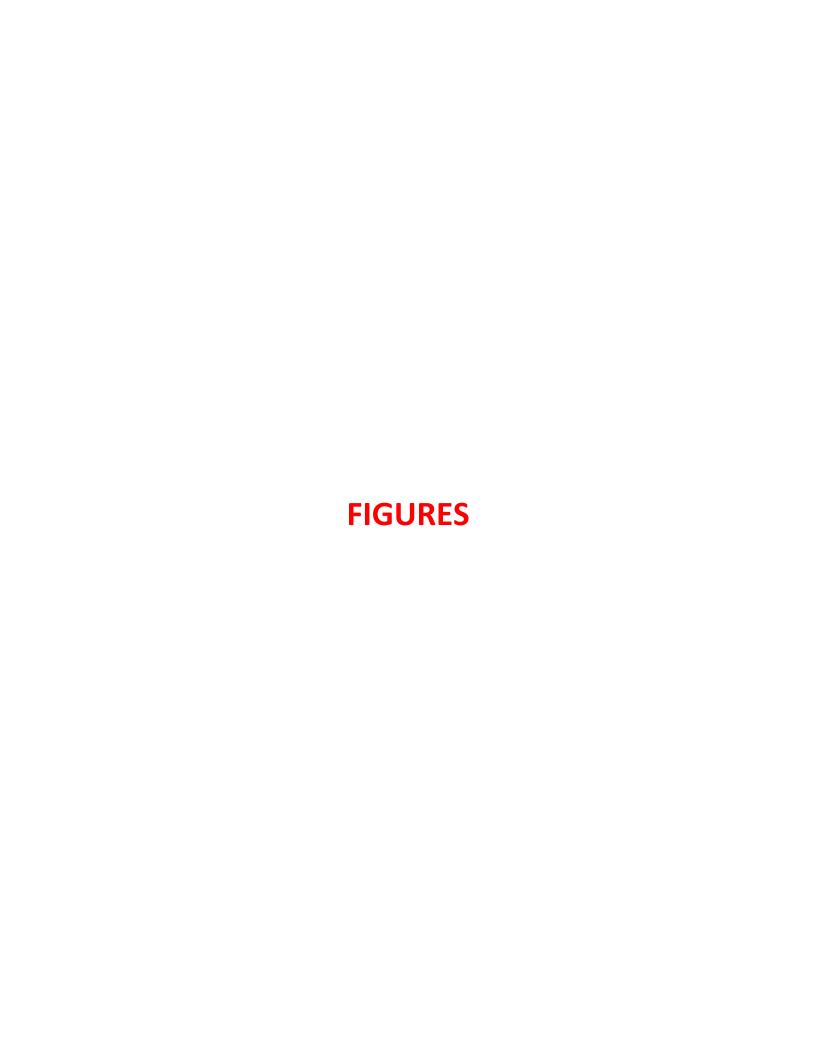
9. CONSULTANTS QUALIFICATIONS

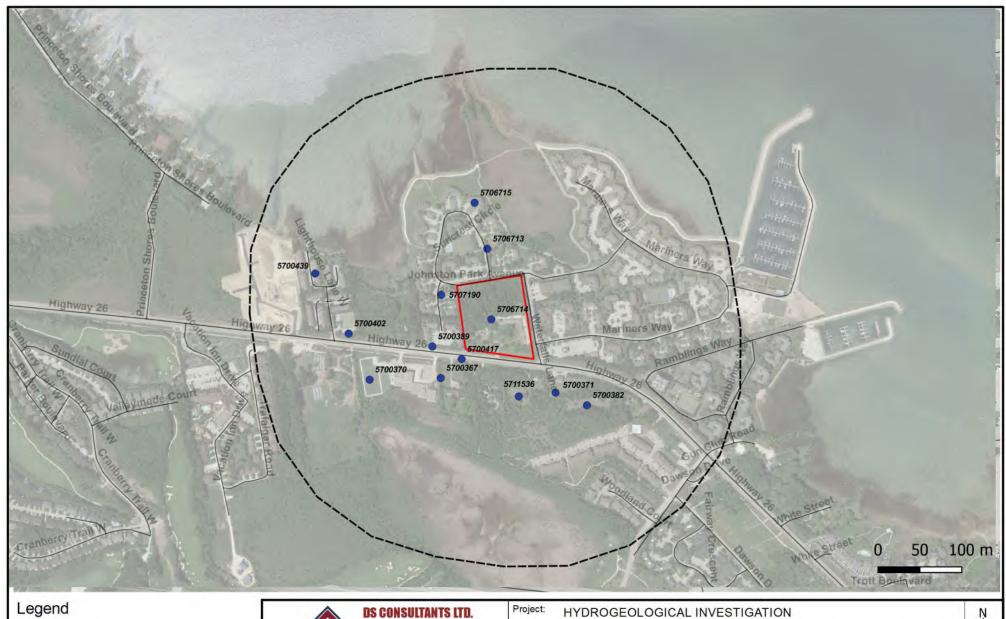
Martin Gedeon, M.Sc., P.Geo., QP_{ESA}, is a Professional Geoscientist (P.Geo.) with over 26 years of experience as an environmental/hydrogeological consultant in the areas of groundwater and soil monitoring, environmental site assessments, environmental due diligence, and remediation. Martin has significant experience in physical and contaminant hydrogeology across Canada and overseas and has provided hydrogeological/environmental technical support on various projects. Martin has prepared hundreds of hydrogeological reports in support of permit applications for a private sector development application, municipal dewatering operations, and provincial infrastructure projects across the province.

Pradeep Patel, M.Sc., P.Geo. is a hydrogeologist at DS Consultants Ltd. and has more than 10 years of experience working in the environmental industry. He participates in numerous Hydrogeological and Geotechnical investigation projects. His experience includes the preparation of construction dewatering activities and hydrogeological investigations in support of Environmental Activity and Sector Registry (EASR) and Permit to Take Water (PTTW) applications.

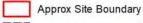
10. REFERENCES

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.


Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.


Ontario Regulation 153/04 made under the Environmental Protection Act, July 1, 2011.

Ontario Regulation 245/11- Environmental Activity and Sector Registry. www.mndm.gov.on.ca/ogsearth


Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.

500m Buffer

Registered Water Well (MECP WWR)

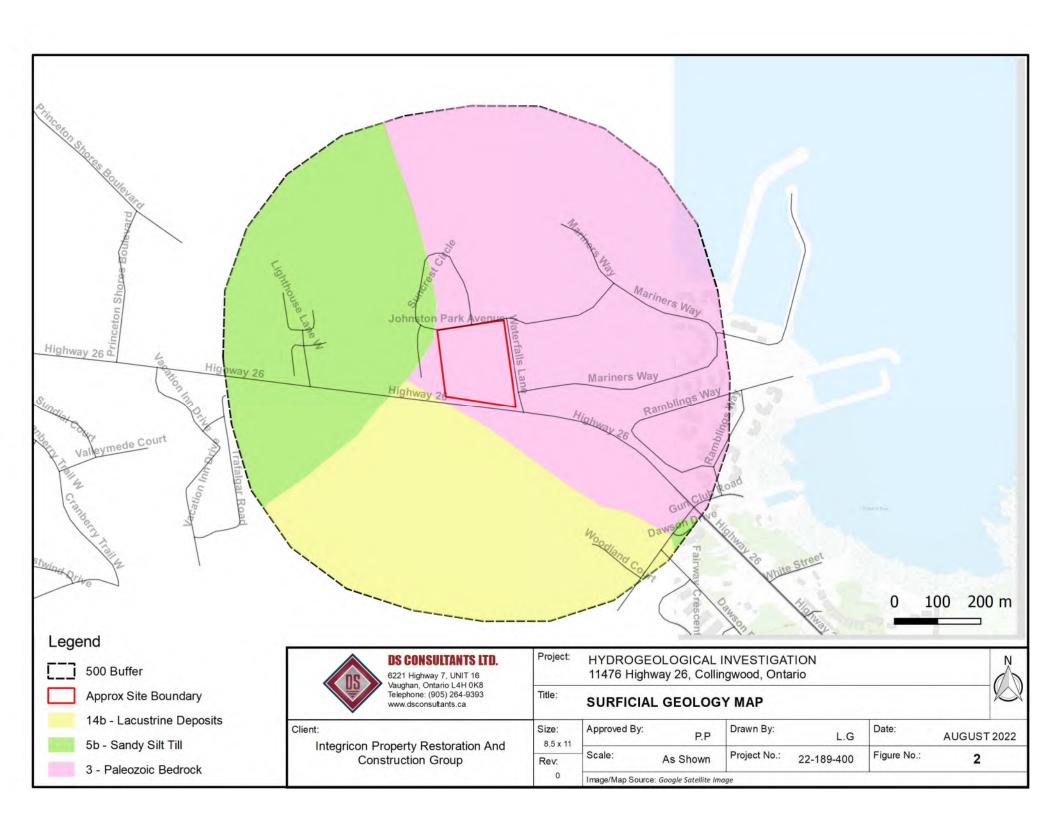
6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Integricon Property Restoration And Construction Group

Project:	HYDROGEOLOGICAL INVESTIGATION
	11476 Highway 26, Collingwood, Ontario

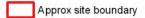
As Shown

Title: SITE LOCATION AND MECP WELL RECORDS


Size: 8.5 x 11	Approved By:	P.P	Drawn By:	L.G	Date:	AUGUST 2022
0.0 X 11	O. oles		Destant Man		Ciarrie Na	
Pov	Scale:	As Shown	Project No.:	22-189-400	Figure No.:	1

22-189-400

Image/Map Source: Google Satellite Image


Rev:

Legend

Monitoring Well (DS 2022)

Borehole (DS 2022)

Monitoring Well (SPL 2014)

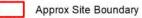
Borehole (SPL 2014)

DS CONSULTANTS LTD.

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Client:

Integricon Property Restoration And Construction Group


Project:	HYDROGEOLOGICAL INVESTIGATION
	11476 Highway 26, Collingwood, Ontario

Title:

BOREHOLE AND MONITORING WELL LOCATIONS

Size: 8.5 x 11	Approved By:	P.P	Drawn By:	L.G	Date:	AUGUST 2022
Rev:	Scale:	As Shown	Project No.:	22-189-400	Figure No.:	3
0	Image/Map Source	e: Google Satellite In	nage			

Monitoring Well (DS 2022) Borehole (DS 2022)

Monitoring Wells (SPL 2014)

Borehole (SPL 2014)

Groundwater Flow Direction Groundwater Contours

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

WW.doconbakan

Integricon Property Restoration And Construction Group

Project: HYDROGEOLOGICAL INVESTIGATION 11476 Highway 26, Collingwood, Ontario

Title:

GROUNDWATER FLOW DIRECTION MAP

Size:	App
8.5 x 11	-
Rev:	Sca

Approved By:	P.P	Drawn By:
Scale:	As Shown	Project No.

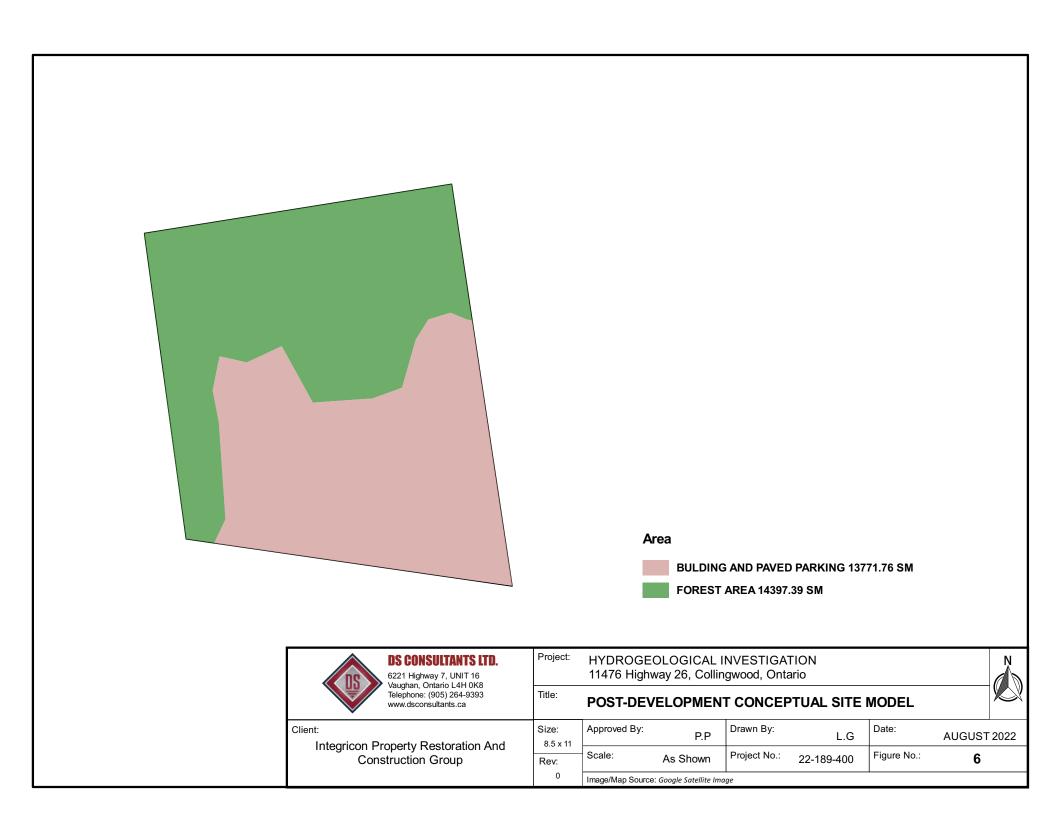
Diawii by.	L.G
Project No.:	22-189-400

	Date:	AUGUST 2022
Ī	Figure No.:	4

Image/Map Source: Google Satellite Image

DS CONSULTANTS LTD.

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca


Integricon Property Restoration And Construction Group

Project: HYDROGEOLOGICAL INVESTIGATION 11476 Highway 26, Collingwood, Ontario

Title:

PRE-DEVELOPMENT CONCEPTUAL SITE MODEL

Size: 8.5 x 11	Approved By:	P.P	Drawn By:	L.G	Date:	AUGUST 20)22
Rev:	Scale:	As Shown	Project No.:	22-189-400	Figure No.:	5	
0	Image/Map Source	e: Google Satellite Ima	ge				

Rev.

Scale:

Project No:

As Shown


Figure No.

22-189-400

7

RESTORATION &

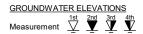
CONSTRUCTION GROUP

Appendix A: Borehole Logs

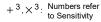
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

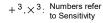
Date: Jun-02-2022 ENCL NO.: 2

	SOIL PROFILE		S	AMPL	.ES	ω.		DYNA RESIS	MIC CO STANCI	NE PE PLOT	NETR/	ATION		PLASTI	NATI	JRAL	LIQUID		ΤΛ	RE	MAR	≀KS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION	SHE/	AR ST NCONF UICK T	RENG INED RIAXIA	TH (ki + L ×	Pa) FIELD V & Sensit LAB V	ANE ivity ANE	PLASTIC LIMIT W _P I WAT	ER CC	v ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR.	AND AIN S RIBU (%)	SIZI
0.0	TOPSOIL: 150mm	7/1/2																				
180.8	FILL: silty sand, trace gravel, some roots/organics, wet, very loose		1	SS	2			- - -								c						
180.2	CAND					<u>∑</u>	W. L. Aug 0	180.3 5, 202	m 2													
0.8	SAND: some silt, trace rootlets, trace clay, trace gravel, wet, very dense		2	SS	50/ 100 mm		180	-								0				5 7	76 1	5
								-														
170.4			3	SS	50/ 100											0						
1.6	END OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.86 Aug 5, 2022 0.64				mm		10															

CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 3

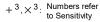
	SOIL PROFILE		S	AMPL	ES			DYNA	MIC CC STANCE	NE PE	NETRA	ATION			, 	IDA:				DEMAG
						GROUND WATER CONDITIONS		ı				0 1	00	PLASTIC LIMIT	C MOIS	JRAL TURE	LIQUID LIMIT W _L ——I	z	T WT	REMAR! AND
(m)		[0]			SNE	WAN	z		AR STI				1	W _P	CON	V	\mathbf{W}_{L}	ET PE (kPa)	L UNI	GRAIN SI
LEV EPTH	DESCRIPTION	ΙĀ	ËR		BLOWS 0.3 m		ATIC		NCONF		1 (Kr +	FIELD V. & Sensiti	ANE	-			_	(OCK	(kN	DISTRIBUT (%)
		STRATA PLOT	NUMBER	TYPE	<u> </u>	NO ON O	ELEVATION	● Q	UICK TI	RIAXIA	L×	LAB V	ANE		TER CC	NTEN	T (%)	<u> </u>	NA.	(70)
79.0	ASPHALT:50 mm	Ś	z	<u></u>	F	00	ш 179		20 4	0 6	8 0	0 10	00	1	0 2	0 3	80	-		GR SA SI
7 9 : 8							179													
0.1	gravel, 250mm	٥ 0						L												
	•	:0:																		
		0.						L												
70.7		0.																		
78.7	FILL: silty sand, some gravel,	ΧX	1	SS	10			ŀ												
	brown, moist, compact	\bowtie																		
		\boxtimes						ŀ												
	•	XX																		
		\bowtie						F												
		\bowtie																		
		XX						ŀ												
		\bowtie																		
		\bowtie						ŀ												
78.2		\bowtie																		
0.8				00	50/	1		ŀ												
78.1	wet, very dense		2	SS	100 mm												0			
0.9	END OF BOREHOLE:																			
	Notes: 1) Augar refusal at depth of 0.9m on																			
	Augar refusal at depth of 0.9m on inferred bedrock.																			
	Water at depth of 0.8m during drilling.																			
																		1		
																		1		
																		1		
																		1		
																		1		
								1										1		

CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA


Method: Hollow Stem Auger

Diameter: 150 mm REF. NO.: 22-189-400

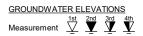
Date: Jun-02-2022 ENCL NO.: 4

	SOIL PROFILE		S	AMPL	ES			DYNA RESIS	MIC CO STANCE	NE PE E PLOT	NETR/	ATION		DI ACTI	_ NATI	JRAL	LIQUID LIMIT W _L ——I		П	REMAR	٦K
(m)		Τ̈́				GROUND WATER CONDITIONS		1		0 6			00	PLASTIC LIMIT	MOIS CON	TURE TENT	LIQUID	a) EN	NATURAL UNIT WT (kN/m³)	AND)
	DESCRIPTION	STRATA PLOT	<u>س</u>		BLOWS 0.3 m	NO NO	NO.			RENG	ΓΗ (kF	Pa)	ANIE	W _P ⊢	v	v 	W _L	E KE	₹AL U kN/m³	GRAIN S DISTRIBU	
LEV EPTH	DESCRIPTION	ATA	NUMBER	Ш	0.0	NO FIG	ELEVATION		NCONF	INED RIAXIAL	+	FIELD V. & Sensiti	ANE vity	WAT	ER CC	NTEN	IT (%)	80	MTUF ((%)	
79.0		STR	S	TYPE	þ	GRC	H			0 6			00	1			30		_	GR SA S	SI
78:9	ASPHALT:50 mm																				
0.1	GRANULAR: sand and gravel, 200	00						-													
	mm	11 -																			
		00																			
78.7	FIL: silty sand with topsoil, trace	lo C						L													
0.3	gravel, brown, moist, loose	\otimes	1	SS	6																
		\bowtie						ŀ													
		\otimes	1																		
		\otimes						-													
		\otimes																			
		\bowtie						ŀ													
		\otimes																			
		\otimes																			
		\otimes						L													
78.2 0.8	SAND: trace gravel, yellowish	XX			50/																
	brown, wet, very dense		2	SS	150			-									•				
78.1 0.9	END OF BOREHOLE:	+	\vdash		mm																_
0.5	Notes:																				
	1) Augar refusal at depth of 0.9m on inferred bedrock.																				
	Water at depth of 0.8m during drilling.																				
	dilling.																				
- 1		1	1	Ì	I	I	ı	ı	1	1		I	1	1	i l	1	1	1	1	l	

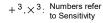
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

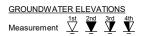
Date: Jun-02-2022 ENCL NO.: 5

	SOIL PROFILE	171 E 559308.876 SAMPLES						DYNAMIC CONE PENETRATION RESISTANCE PLOT						PI ASTI	NATI	JRAL	LIQUID LIMIT W _L ————————————————————————————————————		<u></u>	REMAR	٦K
(m)		77				ATEF		ı		0 6			00	PLASTI LIMIT	MOIS CON	TURE TENT	LIMIT	PEN.	NT (AND	
LEV EPTH	DESCRIPTION	STRATA PLOT	_ ∠		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			RENG	ΓΗ (kF	Pa)	ΔNE	W _P	\ 	v >	W _L	E KET	NATURAL UNIT WT (kN/m³)	GRAIN S DISTRIBU	
EPTH	DESCRIFTION	₹¥	NUMBER	Й	0.0	NUC	:VAT		NCONF	INED RIAXIAL	+ ×	FIELD V. & Sensiti	ivity ANF	WAT	ER CC	NTEN	IT (%)	§ 0	NATUE ()	(%)	
78.9		STF	Š	TYPE	ż	GR	EE			0 6			00	1	0 2		30			GR SA S	31
78:8	ASPHALT:50 mm																				
0.1	GRANULAR: sand and gravel, 250	00																			
	mm	11 -																			
		00						ļ													
		60																			
78.6		0	1	SS	30			-						0							
0.3	SILTY SAND: trace clay, trace gravel, yellowish brown, wet, dense			00										_							
	to very dense							ŀ													
								}													
								}													
		hh						ŀ													
		Hili																			
					50/			ŀ													
			2	SS	100																
78.0 0.9	END OF BOREHOLE:	1,1	_		mm		178											┾			_
0.9	Notes:																	1			
	 Augar refusal at depth 0.9m on inferred bedrock. 																				
	illered bedrock.																				
																		1			
																		1			
																		1			

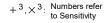
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

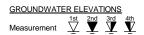

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 6

	OCATION: See Drawing 1 N 4929709.0 SOIL PROFILE			AMPL					DYNA RESIS	MIC CO	NE PE E PLOT	NETR	ATION		DI ACT	_ NATI	URAL	1101		۲	RE	MAR	KS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER	IDITIONS	ELEVATION	SHEA O UI	AR ST	RENG	0 8 TH (kl	Pa) FIELD V.	OO L	PLASTI LIMIT W _P 	MOIS CON V	w >	LIQUID LIMIT W _L ——I	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRA DISTI	AND AIN S	IZE
179.1		STR	NON	TYPE	ŗ	GRC	ර්	ELE					LAB V.	ANE 00	1 1			30		z	GR S	A S	1 (
179:0	ASPHALT:50 mm																						
0.1	mm	00000000000000000000000000000000000000	1	SS	10			179	-														
		00																					
0.6	GRAVELLY SAND: some silt, trace clay, yellowish brown, wet, very dense					- 	۲۰l۱	W. L. Aug 05															
<u>1</u>									-														
			2	SS	60			178	-							0			_		25 5	4 10	3 5
177.7 1.4	END OF BOREHOLE:	α, ·.				1.1	낵																_
	Notes: 1) Augar refusal at depth of 1.4m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.74 Aug 5, 2022 0.69																						


PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	JM: Geodetic DCATION: N 0 E 1							Date: I	Dec/12/2	2014					DF	RG. NO	D.: 2			
DITE	SOIL PROFILE		S	SAMPL	.ES			DYNAM RESIST	C CONE ANCE PL	PENETR	ATION >		DI ACTI	o NATI	JRAL	LIQUID		F	REMA	ARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	20 SHEAF O UNO	40 R STRE CONFINE CK TRIAX	60 NGTH (80 1 kPa) FIELD \ & Sensi	OO	W _P	C NATU MOIS CONT V TER CC	TENT v > NTENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AN GRAIN DISTRII	ND N SIZ BUTI(6)
17 9.9 0.1 178.6 0.2	ASPHALT: 50mm GRANULAR BASE/SUBBASE: 150mm, sand and gravel FILL: silty sand, some clay, trace gravel, light brown to brown, moist o very moist, loose	° °		SS	15			-							0					
178.0 0.8	SAND: some silt, trace clay, trace					¥ ¥	Jan 19 W. L.	178.3 m 9, 2015 178.2 m 2, 2014												
0.0	gravel, oxidized, light brown, wet, loose		2	SS	6		170	-							0				4 80	11
177.3 1.5	END OF BOREHOLE ON																			
	ASSUMED BEDROCK Notes: 1. Auger refusal at 1.46m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.63 178.17 Jan. 19, 2015 0.46 178.34																			

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	JM: Geodetic OCATION: N 0 E 2							Date:	Dec/	12/201	4					DF	RG. NO	D.: 3			
DITE	SOIL PROFILE		S	SAMPL	.ES			DYNAI RESIS	MIC CC	NE PEI	NETRA	TION			NATI	IDAI				REM	N DIV C
(m) ELEV DEPTH 178.9	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHE <i>A</i> O UI • QI	AR ST NCONF	0 6 RENG INED RIAXIAL	TH (kl	0 1	AŃE	PLASTIC LIMIT W _P WATI	ER CO	v > NTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AN GRAIN DISTRII	ND N SIZ BUTI(6)
17 8 : 8	ASPHALT: 25mm GRANULAR BASE/SUBBASE:		1	SS	15			-							0						
178.1 0.8 177.8	trace clay, light brown, very moist to wet, compact		2	SS	14		178	-								0					
1.1	END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 1.07m on assumed bedrock 2. Borehole was wet at bottom upon completion of drilling																				

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	SOIL PROFILE		S	AMPL	ES	œ		DYNA RESIS	MIC CO TANCE	NE PEI PLOT	NETRA	TION		PLASTI LIMIT	C NAT	URAL	LIQUID		۲		MARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	L AR STI NCONF JICK TE	LENG RENG INED RIAXIAL	TH (kf + . ×	Pa) FIELD VA & Sensiti LAB VA	ANE vity ANE	W _P ⊢ WA	TER CO	w O ONTEN	LIMIT W _L → 1 T (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTE	(%)
179:0	TOPSOIL: 100mm	7/ 1 ^N	$\overline{}$	•	-			-								<u> </u>				OI C	
0.1	FILL: sand, trace silt, trace gravel, trace organics, light brown, moist, very loose to loose		1	SS	4		179	- - - -							0						
0.8	SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet, loose		2	SS	9	Y	W. L. 1 Jan 19 178	, 2015 	m							0		-		1 90	0 4
177.6 1.5	END OF BOREHOLE ON	• • •																			
	ASSUMED BEDROCK Notes: 1. Auger refusal at 1.52m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.99 178.14 Jan. 19, 2015 0.87 178.26																				

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/12/2014 DRG. NO.: 5

	M: Geodetic CATION:							Date:	Dec/1	2/201	4					DF	RG. NO	J.: 5		
BH LO	SOIL PROFILE			SAMPL	FS	1		DYNAI	MIC CO TANCE	NE PEN	NETRA	TION								
\neg	23.21.101.12	1.	\vdash			GROUND WATER CONDITIONS						0 10	00	PLASTI LIMIT	C NATU	JRAL TURE	LIQUID LIMIT W _L T (%)	zi.	T WT	REMARKS AND
(m)		STRATA PLOT	1		\ <u>\</u> \\\	WAT	z					l		W _P	CON	N N	WL	ET PE KPa)	LUNI (m)	GRAIN SIZ
LEV EPTH	DESCRIPTION	Α	쏦		BLOWS 0.3 m	9 5	ELEVATION		AR STI		1H (KF	つる) FIELD V/ & Sensiti	ANE					ŠŠ.	URAI (RN/	DISTRIBUT
-' '''		RAT	NUMBER	TYPE		N O	E A		JICK TE		. ×	LAB VA	vity NE	WA	TER CC	NTENT	「(%)	ď.	ΑΨ	(%)
79.2		S	ž	≥	ż	8 8	ᆸ	2	0 4	0 6	0 8	0 10	00	1	0 2	0 3	0			GR SA SI
79:8	ASPHALT: 25mm							ŀ												
	FILL: silty sand, trace clay, trace gravel, dark brown, trace topsoil,	\times						ŀ												
	very moist, very loose	\times					179											1		
		\otimes	1	SS	3			-									0			
78.7		\otimes						ŀ												
0.5	some clay, wet	\times	1					ŀ												
	•	\otimes	┰			1		-												
78.5								L												
78:8	compact	\times																		
0.9	SAND: trace silt, trace clay, trace	* *.	1		40			L								_				
	gravel, oxidized, brown, wet, compact	·	2	SS	13											0				
	compact	. • `																		
		' '	╁			1		ŀ												
		· .					178					1						1		
77.9 1.4	END OF BOREHOLE ON	+ •	┝	\vdash	_	-												\vdash	\vdash	
4	ASSUMED BEDROCK																			
	Notes:									K										
	Auger refusal at 1.37m on assumed bedrock																			
	Borehole was wet at bottom					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \														
	upon completion of drilling																			
					M															
		1																		
			1															1		
			1															1		
			1															1		
			1															1		
1		1		1																

GRAPH NOTES + 3 , \times 3 : Numbers refer to Sensitivity

 \circ 8=3% Strain at Failure

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario


DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	SOIL PROFILE		S	AMPL	ES			DYNAI RESIS	MIC CO TANCE	NE PEN PLOT	NETRA	TION			NAT	ΠRΔΙ				REMARK
()						TER			0 4				00	PLASTI LIMIT	C MOIS	TURE	LIQUIE LIMIT	ä.	TW TII	AND
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	GROUND WATER CONDITIONS	Z	SHE/	AR ST	1				W _P		w 0	W_{L}	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAIN SIZ
EPTH	DESCRIPTION	TAI	3ER		0.3	S E	ATIC	0 UI	AR STI	INED	+	FIELD V & Sensit	ANE ivity	l '		_		Š Š	TUR,	(%)
		TRA	NUMBER	TYPE	ž	SROI SONI	ELEVATION	● QI	JICK II	RIAXIAL	. ×	LAB V	ANÉ 00			ONTEN 20 :	T (%) 30		Ž	
179.1 179:8	TOPSOIL: 100mm	7/ 1/V.	_		F	0 0			<u> </u>			-	1			<u> </u>	1	<u> </u>		GR SA SI
79:0	FILL: sand and gravel, trace silt,	\times					179													
	trace clay, trace topsoil, reddish	\bowtie					'''													
78.8 0.3	_ brown, dense some clay, dark brown, moist to	\bowtie	1	SS	31			-							þ					
	very moist	\bowtie						-												
		\bowtie																		
		\bowtie				-		L												
78.4 0.8		\boxtimes						ŀ												
8.0	silty sand, some gravel, some clay, wet, compact	\bowtie						-												
	wet, compact	\bowtie						-												
78.1			2	SS	16			-							(
1.1	SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet,						178													
	compact	[∙ ∤						-												
								F d												
		. ·]						-												
								}												
77.5 1.7	END OF BOREHOLE ON	\vdash												 				\vdash		
	ASSUMED BEDROCK					\ \ \														
	Notes: 1. Auger refusal at 1.65m on																			
	assumed bedrock																			
	Borehole was wet at bottom upon completion of drilling																			
				7																
					\prec															
					ľ															
																		1		
- 1		1 I			I	I	1	ı	l	l	1	1	1	1	1	1	1	1	i l	

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	IM: Geodetic							Date:	Dec/	11/201	4					DF	RG. NO	D.: 7			
BHLO	OCATION: SOIL PROFILE			SAMPL	FS	1		DYNA	MIC CC	NE PEN	NETRA	ΓΙΟΝ		1							
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR ST NCONF		0 8 TH (kF + ×	0 1 Pa) FIELD V & Sensit LAB V	ANE ivity	W _P ⊢ WA	TER CO	w o ONTEN	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	MARKS AND AIN SIZE RIBUTION (%)
178.9 0.1 - - - 178.4 - 0.5	TOPSOIL: 100mm FILL:silty sand, some gravel to gravelly, trace to some clay, trace topsoil, light brown, moist, compact SAND: some silt, trace clay, trace		1	SS	13	Ā		- - -							0						<u> </u>
178.1 - 0.8	gravel, oxidized, brown, moist to very moist, compact		2	SS	12		W. L. Jan 19	178.3 i 9, 2015 - -	m 5												
177.5 1.4	AUGER REFUSAL / ROCK CORING STARTED Refer Log of Rock Core BH14-07			33	12			-													
_1 <u>77.1</u> 1.8	RUN 1			<																	
								1													
175.5 3.3	RUN 3																				
174.0																					

Continued Next Page **GROUNDWATER ELEVATIONS**

GRAPH NOTES

 $+3, \times^3$: Numbers refer to Sensitivity

 \bigcirc $^{\mbox{\bf 8}=3\%}$ Strain at Failure

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

BH LOCATION:					Dato.	Dec/1	1,201	•					Di	RG. NO	J 1			
SOIL PROFILE		SAMPL	.ES		DYNA! RESIS	MIC COI	NE PEN PLOT	NETRA	TION		<u> </u>	. NATI	IRAI			L	REMA	RKS
(m) ELEV DEPTH DESCRIPTION	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	SHEA O UN • QL	0 4	0 6 RENG NED RIAXIAL	0 8 TH (kf + ×	30 1	ANE ivity ANE 00	W _P WA	TER CC	w DNTEN	LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANI GRAIN DISTRIB (%)	D SIZE UTIOI)
RUN 4(Continued) END OF BOREHOLE Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.57 178.25 Jan. 19, 2015 0.48 178.34																		

LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

DRG. NO.: 7

REF. NO.: 10001104

Diameter: 150mm

Date: Dec/11/2014

BH LO	OCATION:															
(m) <u>ELEV</u> DEPTH 177.5	ROCK DESCRIPTION Rock Surface	GROUND WATER CONDITIONS	NUMBER SO	RE MPLE 3ZIS	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	HARD LAYER (%)	RQD (%)	FRACTURE INDEX (per 0.3 m)	DISCONTINUITIES	Weathering Index	HYDRAULIC CONDUCTIVITY (cm/sec	POINT LOAD TEST UCS AXIAL (MPa)*	POINT LOAD TEST UCS DIAMETRAL (MPa)*	UNIAXIAL COMPRESSION (MPa	DENSITY (g/cm³)
17 7 . \$ 177.1 1.8	LIMESTONE: slightly weathered to fresh, fine- to coarse-grained, fossiliferous, argillaceous, grey		1	NQ	87	0		0	>25 >25 >25							
			2	NQ	100	93		83	6 3 0							
175.5 3.3					2				1	Soft Layer at 3.36m for 30mm						
			3	NQ	100	92		77	0 3							
4.8									0							
			4	NQ	100	98		98	0 1 0							
172.5 6.3	END OF BOREHOLE	-														

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	SOIL PROFILE		S	AMPL	ES	2		DYNA RESIS	MIC CC STANCE	NE PEI PLOT	NETRA	TION		PLASTI	C NATI	JRAL	LIQUID		ΛΤ	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK TI	LENG RENG INED RIAXIAL	TH (kf + . ×	Pa) FIELD V. & Sensiti LAB V.	ANE vity ANE	W _P ⊢ WA	TER CC	NTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
0.0 179.0 0.1	TOPSOIL: 125mm FILL: fine sand, trace to some gravel, trace silt, trace clay, trace topsoil, trace organics, light brown,	<u>∵</u>	1	SS	3		179	-							0					
178.4 0.8	moist to very moist, very loose SAND: trace silt, trace clay, trace gravel, trace mollusks, oxidized,		-	30	3	<u></u>	W. L.	- - - 178.3	m											
177.7	brown, very moist to wet, compact		2	SS	13		Jan 19	, 2019 -								•				
1.5	some gravel to gravelly, light brown		3	SS	19		1								0					19 64 11
2.1	END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 2.10m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well:					-														
	Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.90 178.27 Jan. 19, 2015 0.85 178.35																			

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

SOIL PROFILE SAMPLES (m) ELEV DEPTH DESCRIPTION DESCRIPTION DESCRIPTION SAMPLES SAMPL	BH L	OCATION:							Date.								٥,	KG. INC	J 0		
179.0 ASPHALT: 50mm GRANULAR RASE/SUBBASE: 179.1 FILL: silly send, some gravel, trace to some clay, light brown, moist to very moist, compact 179.2 SAND: trace silt, trace clay, trace gravel, trace mollusks, light brown, wet, compact 179.6 END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon completion of drilling				5	SAMPL	ES			DYNAI RESIS	MIC CO TANCE	NE PEN PLOT	IETRA	TION		DI ACTI	_ NATI	JRAL	1101110		-	REMARK
179.0 SARNULAR BASESUBBASE: 0 150mm, sand and gravel 1 SS 21	ELEV DEPTH		STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	R STI NCONF JICK TE	L RENG INED RIAXIAL	TH (kf + ×	Pa) FIELD V. & Sensiti LAB VA	ANE ivity ANE	W _P ⊢ WAT	TER CC	TURE TENT	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
FILL: silty sand, some gravel, trace to some clay, light thrown, moist to very moist, compact 1 SS 21 SAND: trace silt, trace clay, trace wet, compact 1 SS 21 SAND: trace silt, trace clay, trace wet, compact 1 2 SS 14 178.6 1.4 END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon completion of drilling	17 9.9 - 0.1	ASPHALT: 50mm GRANULAR BASE/SUBBASE:	1						-												
SAND: trace slit, trace clay, trace grayel, trace mollusks, light brown, wet, compact 178.6 178.6 1.4 END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon completion of drilling	0.2	FILL: silty sand, some gravel, trace to some clay, light brown, moist to		1	SS	21			- - -						d)					
1.4 END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon	- 0.8 -	gravel, trace mollusks, light brown,						179	-												
ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon		END OF BODEHOLE ON		2	SS	14			-								0				
		ASSUMED BEDROCK Notes: 1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon																			

CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

	SOIL PROFILE		S	AMPL	ES	<u>ر</u>		DYNA RESIS	MIC CO TANCE	NE PEI PLOT	NETRA	TION		PLASTIC	C NATI	JRAL	LIQUID		ΤW	REMARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	JICK TF	LENG RENG INED RIAXIAL	TH (kl + . ×	Pa) FIELD V & Sensit LAB V/	ANE	W _P	CON N	NTENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI DISTRIBUT (%)
179.7 179:8	TOPSOIL: 100mm	×1 1/2	_		-		├"													GIC OA OI
0.1	FILL: sand and gravel, some silt, trace clay, pieces of pvc piping, light grey, moist, loose		1	SS	7		179	-						0						
0.8	SAND: some silt, trace clay, trace gravel, oxidized, light brown, very moist to wet, compact		2	SS	12		173	- - - -								0				
		\cdots																		
							470	-												
		• • •	3	SS	14		178									0				
				<																
2.3	GRAVELLY SAND: some silt, trace clay, greyish brown, wet, compact		4	SS	23			-						q)					
176.6							177	-										-		
3.1	END OF BOREHOLE ON ASSUMED BEDROCK Notes: 1. Auger refusal and spoon bouncing at 3.05m on assumed bedrock 2. Water level was 2.42m upon completion of drilling																			

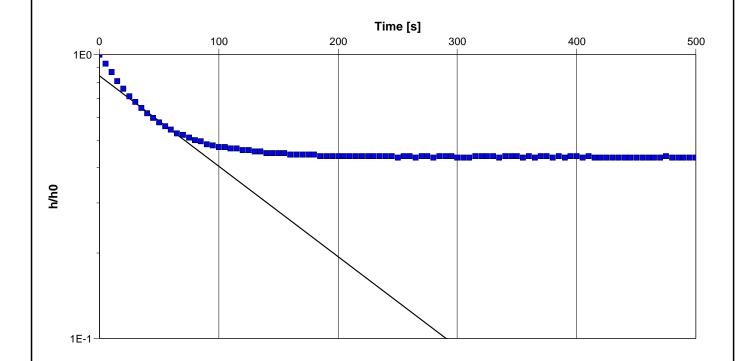
Appendix B: MECP Water Well Record Summary

Table: MECP Water Wells Records (500 m Radius)

Project: 22-189-400

Location: 11476 Highway 26, Collingwood, ON

MOECC WWR	Easting	Northing	De	pth	Thic	kness		Strati	graphy		Water	Found	Sta	tic Level	Water Kind	d Date Completed	Status	Water Use
ID	UTM N17	UTM N17	(ft)	(m)	(ft)	(m)	Color	Primary	Secondary	Tertiary	(ft)	(m)	(ft)	(m)	water Killu	Date Completed	Status	water use
5700382	559513	4929509	12	3.7	12	3.7	-	MSND	-	-	18	5.5	_	_	Not Stated	12/Oct/55	_	_
3700362	559515	4929309	28	8.5	16	4.9	-	LMSN	-	-	10	5.5		-	Not Stated	12/00/33	-	
			1	0.3	1	0.3	Brown	Clay	-	-								Domestic
5711536	559350	4929530	6	1.8	5	1.5	Grey	Clay	Gravel	STNS	15	4.6	-	-	Fresh	9/Oct/74	Water supply	
			30	9.1	24	7.3	Grey	SHLE	-	-	1							
5700389	559143	4929649	18	5.5	18	5.5	-	Clay	BLDR	-						2/Oct/57	144-4	Commonial
5700369	559143	4929649	36	11.0	18	5.5	-	LMSN	-	-	1 -	-	-	-	-	2/00/57	Water supply	Commercial
5700367	559163	4929574	3	0.9	3	0.9	-	MSND	-	-	35	10.7		-	Fresh	29/Sep/50	Water supply	Domestic
5/0036/	559163	4929574	35	10.7	32	9.8	-	SHLE	-	-	- 35	10.7	-					
5700070	550000	550000 4000570 9 2.7 9 2.7 - Clay MSND	LMSN	40	5 4004		1	Fresh	12/Feb/52	\// atas aah.	Domestic							
5700370	558993	4929570	18	5.5	9	2.7	-	LMSN	-	-	18	5.4864	-	-	Fresn	12/Feb/52	Water supply	Domestic
	559213	4929619	4	1.2	4	1.2	-	Loam	-	-					Sulphur	22/Jun/64 V	Water supply	Domestic
5700417			8	2.4	4	1.2	Grey	Clay	STNS	-	17	5.1816	-	-				
			18	5.5	10	3.0	White	MSND	-	-								
5700371	559438	4929539	5	1.5	5	1.5	-	Gravel	LMSN	-	16	4.8768	_	_	Fresh	18/Feb/52	Water supply	Domestic
3700371	333430	4929339	16	4.9	11	3.4	-	LMSN	-	-	10	4.0700			1 16311			
5706713	559274	4929884	14	4.3	14	4.3	-	MSND	-	-	20	6.096	_	_	Fresh	18/Feb/52	Water supply	Domestic
0700710	000277	1020001	25	7.6	11	3.4	-	LMSN	-	-		0.000		<u> </u>	1 16311		ттаког оарргу	
			2	0.6	2	0.6	-	Loam	-	-								Domestic
5700402	558943	4929680	5	1.5	3	0.9	Yellow	Clay	-	-	53	16.154	-	-	-	31/Dec/60	Water supply	
			8	2.4	3	0.9	-	Gravel	-	-	_							
			54	16.5	46	14.0	-	LMSN	-	-								
5706714	559284	4929714	13	4.0	13	4.0	-	MSND	-	-	25	7.62	-	-	Fresh	5/Jun/68	Water supply	Domestic
			25	7.6	12	3.7	-	LMSN	-	-								
5706715	559244	4929994	14	4.3	14	4.3	-	HPAN	-	-	23	7.0104	-	-	Fresh	6/Jun/68	Water supply	Domestic
<u> </u>			25 7	7.6	7	3.4	- Descrip	Rock MSND	- Class	-	1							-
5707190	559164	4929774	25	2.1 7.6	18	2.1 5.5	Brown Grey	Rock	Clay	-	18	5.4864	-	-	-	6/Jun/70	Water supply	
-			15	4.6	15	4.6	Giey	PRDG	-	-	+	 		-	1			-
5700439	558863	4929825	40	12.2	25	7.6	Grev	LMSN	-			-	-	-	-	28/Apr/67	Water supply	Domestic
		40	12.2	∠5	7.0	Giey	LIVION	-		1	1		<u> </u>		4.74.	ouppiy	1	

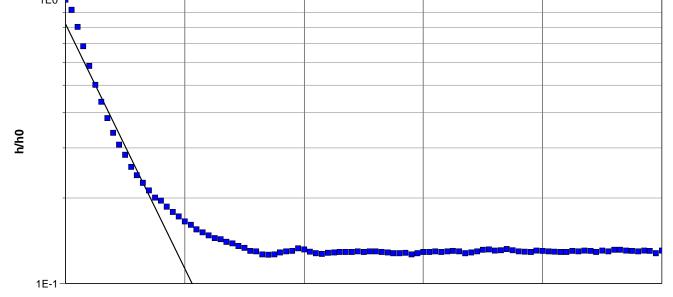

Appendix C: Hydraulic Conductivity Analysis

Slug Test Analysis Report Project: Hydrogeological Investigation Number: 22-189-400

Client: IPR And Construction Group Inc.

Location: Collingwood, ONSlug Test: BH14-1Test Well: BH14-1Test Conducted by: LGTest Date: 7/21/2022Analysis Performed by:Bouwer & RiceAnalysis Date: 7/26/2022

Aquifer Thickness: 1.50 m



0-1-1-4:	:	D 0 D:	
Calculation	usina	Bouwer & Rice	,

Observation Well	Hydraulic Conductivity [m/s]	
BH14-1	1.02×10^{-5}	

Slug Test Analysis Report Project: Hydrogeological Investigation Number: 22-189-400 Client: IPR And Construction Group Inc. Location: Collingwood, ON Test Well: BH14-7 Slug Test: BH14-7 Test Conducted by: LG Test Date: 7/21/2022 Analysis Performed by: Analysis Date: 7/26/2022 Aquifer Thickness: 5.40 m Time [s] 1000 200 400 600 800 1E0 1E-1 Calculation using Bouwer & Rice Hydraulic Conductivity Observation Well [m/s] BH14-7 7.12×10^{-7}

Slug Test Analysis Report Project: Hydrogeological Investigation Number: 22-189-400 Client: IPR And Construction Group Inc. Location: Collingwood, ON Test Well: BH22-1 Slug Test: BH22-1 Test Conducted by: LG Test Date: 7/21/2022 Bouwer & Rice Analysis Date: 7/26/2022 Analysis Performed by: Aquifer Thickness: 5.40 m Time [s] 200 500 100 300 400 1E0

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity [m/s]	
BH22-1	2.57 × 10 ⁻⁵	

Slug Test Analysis Report Project: Hydrogeological Investigation Number: 22-189-400 Client: IPR And Construction Group Inc. Location: Collingwood, ON Slug Test: BH22-5 Test Well: BH22-5 Test Conducted by: LG Test Date: 7/21/2022 Bouwer & Rice Analysis Date: 7/26/2022 Analysis Performed by: Aquifer Thickness: 1.50 m Time [s] 500 100 200 300 400 1E-1 Calculation using Bouwer & Rice Hydraulic Conductivity Observation Well [m/s] 1.39×10^{-5} BH22-5

Appendix D: Groundwater Quality Certificate of Analysis

CA40248-JUL22 R2

22-189-400, Collingwood

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Lili Ghasemi	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	Lili.ghasemi@dsconsultants.ca	SGS Reference	CA40248-JUL22
Project	22-189-400, Collingwood	Received	07/22/2022
Order Number		Approved	08/23/2022
Samples	Ground Water (1)	Report Number	CA40248-JUL22 R2
		Date Reported	08/23/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 032982

Revision 1 - Sample ID updated from MW-1 to BH14-7 as per client request

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mo

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 18

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 22-189-400, Collingwood

Project Manager: Lili Ghasemi

Samplers: Lili Ghasemi

MATRIX: WATER			Sample Number	8	
			Sample Name	BH14-7	
_1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 33	03E		Sample Matrix	Ground Water	
			Sample Date	22/07/2022	
Parameter	Units	RL	L1	Result	
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	
Total Suspended Solids	mg/L	2		191	
Total Kjeldahl Nitrogen	as N mg/L	0.5		2.3	
Metals and Inorganics					
Cyanide (total)	mg/L	0.01		< 0.01	
Sulphate	mg/L	2		27	
Fluoride	mg/L	0.06		0.06	
Sulphide	mg/L	0.02		< 0.02	
Aluminum (total)	mg/L	0.001		0.843	
Antimony (total)	mg/L	0.0009	0.02	< 0.0009	
Arsenic (total)	mg/L	0.0002	0.005	0.0006	
Bismuth (total)	mg/L	0.00001		0.00001	
Cadmium (total)	mg/L	0.000003	0.0001	0.000176	
Chromium (total)	mg/L	0.00008	0.1	0.00175	
Cobalt (total)	mg/L	0.000004	0.0009	0.000502	
Copper (total)	mg/L	0.0002	0.001	0.0037	
Iron (total)	mg/L	0.007	0.3	5.09	
Lead (total)	mg/L	0.00009	0.005	0.00080	
Manganese (total)	mg/L	0.00001		0.250	
Molybdenum (total)	mg/L	0.00004	0.04	0.00068	
Nickel (total)	mg/L	0.0001	0.025	0.0020	
Phosphorus (total)	mg/L	0.003	0.01	0.469	

SGS

FINAL REPORT

CA40248-JUL22 R2

Client: DS Consultants

Project: 22-189-400, Collingwood

Project Manager: Lili Ghasemi

Samplers: Lili Ghasemi

		S	Sample Number	8
			Sample Name	BH14-7
)3E			Sample Matrix	Ground Water
			Sample Date	22/07/2022
Units	RL	L1		Result
mg/L	0.00004	0.1		0.00014
mg/L	0.00005	0.0001		< 0.00005
mg/L	0.00006			0.00322
mg/L	0.00005			0.0251
mg/L	0.00001	0.006		0.00334
mg/L	0.002	0.02		0.012
			'	
cfu/100mL	0	100		4
ma/l	2			< 2
				< 4
mg/L	4			< 4
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Units RL mg/L 0.00004 mg/L 0.00005 mg/L 0.00006 mg/L 0.00001 mg/L 0.002 cfu/100mL 0 mg/L 2 mg/L 4	Units RL L1 mg/L 0.00004 0.1 mg/L 0.00005 0.0001 mg/L 0.00005 0.0006 mg/L 0.00001 0.006 mg/L 0.0002 0.002 cfu/100mL 0 100 mg/L 2 100 mg/L 4 4	Sample Matrix Sample Date

Client: DS Consultants

Project: 22-189-400, Collingwood

Project Manager: Lili Ghasemi

Samplers: Lili Ghasemi

MATRIX: WATER			Sample Number	8
			Sample Name	BH14-7
_1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 330	03E		Sample Matrix	Ground Water
			Sample Date	22/07/2022
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	7.43
Chloride	mg/L	1		680
Mercury (total)	mg/L	0.00001	0.0002	< 0.00001
PCBs				
		0.0004		- 0 0004
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenois				
4AAP-Phenolics	mg/L	0.002	0.001	0.005
SVOCs				
Hexachlorobenzene	mg/L	0.00001	0.00000	< 0.0001↑
	_		65	
VOCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
•				
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005

CA40248-JUL22 R2

Client: DS Consultants

Project: 22-189-400, Collingwood

Project Manager: Lili Ghasemi

Samplers: Lili Ghasemi

MATRIX: WATER Sample Number 8

Sample Name BH14-7

			Sample Name	DI 14-7
1999 PIBS 3303E			Sample Matrix	Ground Water
			Sample Date	22/07/2022
Units	RL	L1		Result
mg/L	0.0005	0.1		< 0.0005
mg/L	0.0005	0.008		< 0.0005
mg/L	0.0005	0.0008		< 0.0005
mg/L	0.0005			< 0.0005
mg/L	0.0005	0.002		< 0.0005
ma/L	0.0005	0.04		< 0.0005
1	mg/L mg/L mg/L mg/L mg/L	Months RL Mg/L 0.0005 Mg/L 0.0005	Units RL L1 mg/L 0.0005 0.1 mg/L 0.0005 0.008 mg/L 0.0005 0.0008 mg/L 0.0005 0.0008 mg/L 0.0005 0.0002	

EXCEEDANCE SUMMARY

PWQO_L / WATER / - - Table 2 -

General - July 1999 PIBS 3303E

L1

Parameter

Method Units Result

BH14-7

Hexachlorobenzene	EPA 3510C/8270D	mg/L	< 0.0001	0.0000065
Cadmium	SM 3030/EPA 200.8	mg/L	0.000176	0.0001
Copper	SM 3030/EPA 200.8	mg/L	0.0037	0.001
Iron	SM 3030/EPA 200.8	mg/L	5.09	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.469	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.005	0.001

7 / 18 20220823

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5079-JUL22	mg/L	1	<1	0	20	104	80	120	82	75	125
Sulphate	DIO5079-JUL22	mg/L	2	<2	1	20	113	80	120	87	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	Blank RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ory Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0042-JUL22	mg/L	2	< 2	5	30	114	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	ī.
	Reference	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0228-JUL22	mg/L	0.01	<0.01	ND	10	94	90	110	88	75	125

20220823 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0430-JUL22	mg/L	0.06	<0.06	ND	10	102	90	110	96	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0043-JUL22	mg/L	0.00001	< 0.00001	ND	20	120	80	120	115	70	130

20220823 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						. ,	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0211-JUL22	mg/L	0.00005	<0.00005	ND	20	102	90	110	91	70	130
Aluminum (total)	EMS0211-JUL22	mg/L	0.001	<0.001	0	20	106	90	110	111	70	130
Arsenic (total)	EMS0211-JUL22	mg/L	0.0002	<0.0002	17	20	102	90	110	87	70	130
Bismuth (total)	EMS0211-JUL22	mg/L	0.00001	<0.00001	ND	20	96	90	110	87	70	130
Cadmium (total)	EMS0211-JUL22	mg/L	0.000003	<0.000003	3	20	100	90	110	107	70	130
Cobalt (total)	EMS0211-JUL22	mg/L	0.000004	<0.000004	1	20	101	90	110	106	70	130
Chromium (total)	EMS0211-JUL22	mg/L	0.00008	<0.00008	13	20	102	90	110	123	70	130
Copper (total)	EMS0211-JUL22	mg/L	0.0002	<0.0002	4	20	100	90	110	97	70	130
Iron (total)	EMS0211-JUL22	mg/L	0.007	<0.007	10	20	94	90	110	102	70	130
Manganese (total)	EMS0211-JUL22	mg/L	0.00001	<0.00001	1	20	104	90	110	108	70	130
Molybdenum (total)	EMS0211-JUL22	mg/L	0.00004	<0.00004	17	20	104	90	110	100	70	130
Nickel (total)	EMS0211-JUL22	mg/L	0.0001	<0.0001	2	20	103	90	110	96	70	130
Lead (total)	EMS0211-JUL22	mg/L	0.00009	<0.00001	4	20	101	90	110	116	70	130
Phosphorus (total)	EMS0211-JUL22	mg/L	0.003	<0.003	ND	20	94	90	110	NV	70	130
Antimony (total)	EMS0211-JUL22	mg/L	0.0009	<0.0009	16	20	107	90	110	100	70	130
Selenium (total)	EMS0211-JUL22	mg/L	0.00004	<0.00004	6	20	104	90	110	118	70	130
Tin (total)	EMS0211-JUL22	mg/L	0.00006	<0.00006	ND	20	98	90	110	NV	70	130
Titanium (total)	EMS0211-JUL22	mg/L	0.00005	<0.00005	ND	20	107	90	110	NV	70	130
Vanadium (total)	EMS0211-JUL22	mg/L	0.00001	<0.00001	ND	20	101	90	110	91	70	130
Zinc (total)	EMS0211-JUL22	mg/L	0.002	<0.002	0	20	96	90	110	118	70	130

20220823 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD			Recover	•	Spike Recovery	Recover	=
					(%)	Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9375-JUL22	cfu/100mL	-	ACCEPTED	ACCEPTE							

D

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank Recovery Limits (%)	Ma	atrix Spike / Ref		
	Reference			Blank	RPD	AC	Spike		•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0401-JUL22	mg/L	2	<2	NSS	20	102	75	125			

20220823 11 / 18

QC SUMMARY

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0401-JUL22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0401-JUL22	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike Recovery		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						RPD AC (%)		Low	High	(%)	Low	High
pH	EWL0431-JUL22	No unit	0.05	NA	0		102			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0222-JUL22	mg/L	0.002	<0.002	ND	10	104	80	120	111	75	125

20220823 12 / 18

QC SUMMARY

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0396-JUL22	mg/L	0.0001	<0.0001	NSS	30	89	60	140	NSS	60	140
Total												

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits 6)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Hexachlorobenzene	GCM0425-JUL22	mg/L	0.00001	< 0.0001	NSS	30	89	50	140	NSS	50	140

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike Recovery (%)		Recovery Limits (%)		Recover	ry Limits 6)
						(%)		Low	High	(%)	Low	High
Sulphide	SKA0227-JUL22	mg/L	0.02	<0.02	ND	20	85	80	120	NA	75	125

20220823 13 / 18

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0455-JUL22	mg/L	2	< 2	1	10	95	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0225-JUL22	as N mg/L	0.5	<0.5	ND	10	105	90	110	98	75	125

20220823 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	104	60	130	109	50	140
1,2-Dichlorobenzene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	108	60	130	106	50	140
1,4-Dichlorobenzene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	106	60	130	104	50	140
Benzene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	108	60	130	106	50	140
Chloroform	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	106	60	130	105	50	140
Ethylbenzene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	109	60	130	107	50	140
m-p-xylene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	109	60	130	106	50	140
Methylene Chloride	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	104	60	130	104	50	140
o-xylene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	109	60	130	107	50	140
Tetrachloroethylene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	104	60	130	103	50	140
(perchloroethylene)												
Toluene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	107	60	130	106	50	140
Trichloroethylene	GCM0391-JUL22	mg/L	0.0005	<0.0005	ND	30	107	60	130	104	50	140

20220823 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20220823

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20220823 17 / 18

/ Laboratory Information Section - Lab use only

Request for Laboratory Services and CHAIN OF CUSTODY
Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

London: 657 Consortium Court London	ON NEE 258 Phone: 510-672-4	500 Toll Free: 877-848-	8060 Fav: 519-672-0361

sceived Date: 7 / 22 / 32 (mm/dd//		VOICE INFO	signature): Present: Ye Intact: Ye					1	1 10-12					SVE.	W 11								
ompany: DS consultand	(same as Re	eport Informa	tion)		Quota	ation #:												P.O. #:					
ontact: Lili Ghasen'	Company:	5 A	CCOUN	4,1	Proje	ct #:		2	2-1	189	1-4	100						Site Location/II	D: C	01	ling	00	od, on
dress: 622! Hery 7.	Contact:			0									Τι	JRNAI	ROUN	ND TIN	THE REAL PROPERTY.						ry holidays & weekends)
Vay han, ON	Address:							TAT (5									Sa	mples received a	fter 6pm o				pegins next business day
Vay han, 02 voy han, 02	Inches 1					H TAT (3 Days DR TO SUBMIS					
	Phone:	1. /	~ A		Case	if Due	Deter	W KUS	n r L	HOIDI	LIII VV	THE S						Control of the Contro		HUMA	AN CON	SUMPTI	ON MUST BE SUBMITT
nail: Lilinghaseniceds consult	Email: A CC	ountix o	cells co	onsultar	Spec	ny Due	Date:			Charles As	MALES OF S	- NIAI	V0	10.0		LIFO		SGS DRINKING	WATER	CHAI	N OF C	USTODY	
KEG	LATIONS					M		9 -14	SV	00	PCB	PH	-	VO	The Person	UES Pest	10	Other (please	annelfes)		epi p	TCLP	
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture:	Other Regulat			Sanitary	727	IVI	O. I		34		РСВ		10			rest	1	/	specify)				
Table 2 Ind/Com Coarse	Land	MMER		Storm	1										-		do	00			Specify	Specify tests	
Table 3 Agri/Other Medium/Fine	laund b	Other:	Mun	nicipality:	d	(lie		B,B,Cd			Aroclor						1			5			
	MISA ODWS Not F	Reportable *Se	e note	Jac		CS SAR-so	fg. CrV	s,Ba,B		100	Arc						2	000			Metals	□м81	
RECORD OF SITE CONDITION (RSC)					(N/N)	Metals & Inorganics incl CVI, CN, Hg pH.(B(HWS), EC, SAR (Ci, Na-water)	Full Metals Suite	A.Sb.A								other	D	and	Use:	rded	□voc		COMMENTS
440			1.16		O pa	Jorg (B(HW	Su WS-soi	only Se.Ag.Ti.		CPs	Total	BTEX				specify	1/2	7	. 3	Exte	Dioxane	□РСВ	- 1
CAMPLE IDENTIFICATION	DATE	TIME	# OF	MATRIX	Filtered	%	stals us B(H	ICP Metals Cr.Co.Cu.Pb.Mo.Ni.se	only	ABNs,		+ B1	yluo	v	nly	des	0	Sanitor	se:	lara	ОСР	□B(a)P □ABN	
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	WAIRIA	I P	tals rVI, CN a-wate	I Me	Me.	PAHs only	SVOCs all incl PAHs, A	Bs	F1-F4	FX C	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or	N N N N N N N N N N N N N N N N N N N	3	Sewer Use: Specify pkg:	rel C	□ABN	☐ Ignit.	
					Field	Me Giol O.S.	Fu	Cr.co	PA	SV	PCBs	F.	F1-	S lle	ВТ	Pe: Organ	A		Spec	Gene			
MW-I	TUY 22/202	2 11:00	17	GW			-		3.5	n U-							XX.	X				100	
	,	a.																					
																					100		-
																							4
																						1.3.3	
											6				- 1								
					0		3:0											0					
				1	1	0		7															
					MG.	7		9															
								1															
2					100	100						179.33							+				
pservations/Comments/Special Instructions															_	LAKE							
- American														-		00		FIDER).		0		10
ampled By (NAME): L; 11 Ghasem'			Signature:																(mm				Pink Copy - Client

Appendix E:	Site Water B	Salance Analysis

TABLE E-1
CLIMATE NORMALS 1981-2010 (THORNBURY SLAMA CLIMATE STATION, ONTARIO)
Water Balance-11476 Highway 26, Collingwood

			Thornthy	waite (1948)		
Month	Mean Temperature (°C)	Heat Index	Unadjusted Potential Evapotranspiration (mm)	Daylight Correction Value	Adjusted Potential Evapotranspiration (mm)	Total Precipitation (mm)
January	-6.3	0.0	0.0	0.81	0.0	100.0
February	-5.4	0.0	0.0	0.82	0.0	68.4
March	-1.5	0.0	0.0	1.02	0.0	64.0
April	5.5	1.2	25.7	1.12	28.7	65.3
May	11.5	3.5	55.8	1.26	70.3	82.7
June	16.7	6.2	82.6	1.28	105.7	79.1
July	19.8	8.0	98.8	1.29	127.5	72.1
August	19.2	7.7	95.7	1.20	114.8	78.2
September	15.5	5.5	76.4	1.04	79.4	95.9
October	9.1	2.5	43.6	0.95	41.4	87.3
November	3.1	0.5	14.0	0.81	11.4	99.6
December	-2.7	0.0	0.0	0.77	0.0	99.4
TOTALS		35.1	492.5		579.2	992.0

Notes: Daylight Correction values obtained from Instruction and Tables For Computing Potential Evapotranspiration and The Water Balance (Thornthwaite & Mather, 1957)

TABLE G-E Post-development Water Balance

	Catchments and Hy	drologic Components						Month							Total
	Catchinients and righ	arologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.00	28.75	70.28	105.72	127.45	114.78	79.41	41.42	11.37	0.00	0.00	0.00	579.18
		P - Total Precipitation (mm)	64.00	65.30	82.70	79.10	72.10	78.20	95.90	87.30	99.60	99.40	100.00	68.40	992.00
		P-PET (mm)	64.00	36.55	12.42	-26.62	-55.35	-36.58	16.49	45.88	88.23	99.40	100.00	68.40	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.62	-81.97	-118.55	-102.07	-56.19	0.00	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	300.00	300.00	300.00	273.38	218.03	181.45	197.93	243.81	300.00	300.00	300.00	300.00	-
		Actual Potential Evapotranspiration (mm)	0.00	28.75	70.28	104.54	117.43	102.56	79.41	41.42	11.37	0.00	0.00	0.00	555.76
	-	P-AET (mm)	64.00	36.55	12.42	-25.44	-45.33	-24.36	16.49	45.88	88.23	99.40	100.00	68.40	-
	-	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-25.44	-70.77	-95.13	-78.64	-32.76	0.00	0.00	0.00	0.00	-
	-	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	25.44	45.33	24.36	-16.49	-45.88	-32.76	0.00	0.00	0.00	
	Pervious Area-	Precipitation Surplus (mm) MOECC Infiltration Factor	64.00	36.55	12.42	0.00	0.00	0.00	0.00	0.00	55.47	99.40	100.00	68.40	436.24
	Wooded Area	Run-Off Coefficient	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	-	Infiltration (mm)	51.20	29.24	9.94	0.20	0.20	0.20	0.20	0.20	44.37	79.52	80.00	54.72	348.99
	-	Run-Off (mm)	12.80	7.31	2.48	0.00	0.00	0.00	0.00	0.00	11.09	19.88	20.00	13.68	87.25
	-	Catchment Area (m²) = 14397.00	12.00	7.31	2.40	0.00		hment Monthly		0.00	11.09	15.00	20.00	13.00	87.23
		Infiltration (m ³)	737.13	421.00	143.06	0.00	0.00	0.00	0.00	0.00	638.84	1144.85	1151.76	787.80	5024.45
		Run-Off (m³)	184.28	105.25	35.77	0.00	0.00	0.00	0.00	0.00	159.71	286.21	287.94	196.95	1256.11
		Soil Moisture Storage (mm)	75.00	75.00	75.00	48.38	0.00	0.00	16.49	62.37	75.00	75.00	75.00	75.00	-
	-	Actual Potential Evapotranspiration (mm)	0.00	28.75	70.28	100.99	89.95	78.20	79.41	41.42	11.37	0.00	0.00	0.00	500.38
	-	P-AET (mm)	64.00	36.55	12.42	-21.89	-17.85	0.00	16.49	45.88	88.23	99.40	100.00	68.40	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-21.89	-39.75	-39.75	-23.26	0.00	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	21.89	17.85	0.00	-16.49	-23.26	0.00	0.00	0.00	0.00	-
1476 Highway 26,	Pervious Area-Open	Precipitation Surplus (mm)	64.00	36.55	12.42	0.00	0.00	0.00	0.00	22.62	88.23	99.40	100.00	68.40	491.62
Collingwood	space-vacant land	MOECC Infiltration Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
		Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Infiltration (mm)	44.80	25.59	8.69	0.00	0.00	0.00	0.00	15.83	61.76	69.58	70.00	47.88	344.13
		Run-Off (mm)	19.20	10.97	3.73	0.00	0.00	0.00	0.00	6.79	26.47	29.82	30.00	20.52	147.49
		Catchment Area (m²) = 9927.00						hment Monthly							
		Infiltration (m ³)	444.73	254.00	86.31	0.00	0.00	0.00	0.00	157.17	613.09	690.72	694.89	475.30	3416.22
		Run-Off (m³)	190.60	108.86	36.99	0.00	0.00	0.00	0.00	67.36	262.75	296.02	297.81	203.70	1464.10
		Total Precipitation (mm)	64.00	65.30	82.70	79.10	72.10	78.20	95.90	87.30	99.60	99.40	100.00	68.40	992.00
		Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
		Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	<u> </u>
		Evaporation (mm)	9.60	9.80	12.41	11.87	10.82	11.73	14.39	13.10	14.94	14.91	15.00	10.26	148.80
		Run-Off (mm) Catchment Area (m ²) = 3845.00	54.40	55.51	70.30	67.24	61.29 Subcate	66.47 chment Monthly	81.52	74.21	84.66	84.49	85.00	58.14	843.20
		Catchment Area (m ²) = 3845.00 Evaporation (m ³)	36.91	37.66	47.70	45.62	41.58	45.10	55.31	50.35	57.44	57.33	57.68	39.45	572.14
		Run-Off (m ³)	209.17	213.42	270.28	45.62 258.52	235.64	45.10 255.58	313.43	285.32	325.52	324.86	326.83	223.55	3242.10
		Run-Off (m)	203.17	213.42	270.28	238.52		al Catchment Vol		203.32	323.32	324.80	320.83	225.55	5242.1
		Total AET (m³)	0.00	699.24	1709.46	2507.60	2583.66	2252.79	1931.66	1007.49	276.61	0.00	0.00	0.00	12968.5
		Total Evaporation (m ³)	36.91	37.66	47.70	45.62	41.58	45.10	55.31	50.35	57.44	57.33	57.68	39.45	572.14
		Total Infiltration (m³)	1181.86	675.01	229.38	0.00	0.00	0.00	0.00	157.17	1251.93	1835.57	1846.65	1263.11	8440.6
		Total Runoff (m³)	584.05	427.53	343.04	258.52	235.64	255.58	313.43	352.68	747.98	907.10	912.58	624.20	5962.3

TABLE E-3
Post-development Water Balance

	Catchments and Hyd	drologic Components						Month							Total
	Catchinients and rive	arologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.00	28.75	70.28	105.72	127.45	114.78	79.41	41.42	11.37	0.00	0.00	0.00	579.18
		P - Total Precipitation (mm)	64.00	65.30	82.70	79.10	72.10	78.20	95.90	87.30	99.60	99.40	100.00	68.40	992.00
		P-PET (mm)	64.00	36.55	12.42	-26.62	-55.35	-36.58	16.49	45.88	88.23	99.40	100.00	68.40	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.62	-81.97	-118.55	-102.07	-56.19	0.00	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	300.00	300.00	300.00	273.38	218.03	181.45	197.93	243.81	300.00	300.00	300.00	300.00	-
	-	Actual Potential Evapotranspiration (mm)	0.00	28.75	70.28	104.54	117.43	102.56	79.41	41.42	11.37	0.00	0.00	0.00	555.76
	-	P-AET (mm)	64.00	36.55	12.42	-25.44	-45.33	-24.36	16.49	45.88	88.23	99.40	100.00	68.40	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-25.44	-70.77	-95.13	-78.64	-32.76	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	25.44	45.33	24.36	-16.49	-45.88	-32.76	0.00	0.00	0.00	-
	Pervious Area-	Precipitation Surplus (mm) MOECC Infiltration Factor	64.00	36.55	12.42	0.00	0.00	0.00	0.00	0.00	55.47	99.40	100.00	68.40	436.24
	Wooded Area	Run-Off Coefficient	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	-	Infiltration (mm)	51.20	29.24	9.94	0.20	0.20	0.20	0.20	0.20	44.37	79.52	80.00	54.72	348.99
	-	Run-Off (mm)	12.80	7.31	2.48	0.00	0.00	0.00	0.00	0.00	11.09	19.88	20.00	13.68	87.25
	-	Catchment Area (m²) = 14397.00	12.00	7.31	2.40	0.00		hment Monthly		0.00	11.09	15.00	20.00	13.00	67.23
		Infiltration (m ³)	737.13	421.00	143.06	0.00	0.00	0.00	0.00	0.00	638.84	1144.85	1151.76	787.80	5024.4
		Run-Off (m³)	184.28	105.25	35.77	0.00	0.00	0.00	0.00	0.00	159.71	286.21	287.94	196.95	1256.1
		Soil Moisture Storage (mm)	100.00	100.00	100.00	73.38	18.03	0.00	16.49	62.37	100.00	100.00	100.00	100.00	-
		Actual Potential Evapotranspiration (mm)	0.00	28.75	70.28	102.18	97.40	81.50	79.41	41.42	11.37	0.00	0.00	0.00	512.30
		P-AET (mm)	64.00	36.55	12.42	-23.08	-25.30	-3.30	16.49	45.88	88.23	99.40	100.00	68.40	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-23.08	-48.37	-51.67	-35.19	0.00	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	23.08	25.30	3.30	-16.49	-35.19	0.00	0.00	0.00	0.00	-
1476 Highway 26,	Pervious Area-Open	Precipitation Surplus (mm)	64.00	36.55	12.42	0.00	0.00	0.00	0.00	10.69	88.23	99.40	100.00	68.40	479.70
Collingwood	space-vacant land	MOECC Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	
		Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
		Infiltration (mm)	38.40	21.93	7.45	0.00	0.00	0.00	0.00	6.42	52.94	59.64	60.00	41.04	287.82
		Run-Off (mm)	25.60	14.62	4.97	0.00	0.00	0.00	0.00	4.28	35.29	39.76	40.00	27.36	191.88
		Catchment Area (m²) = 1377.00					Subcato	hment Monthly	Volumes						
		Infiltration (m ³)	52.88	30.20	10.26	0.00	0.00	0.00	0.00	8.84	72.89	82.12	82.62	56.51	396.33
		Run-Off (m ³)	35.25	20.13	6.84	0.00	0.00	0.00	0.00	5.89	48.60	54.75	55.08	37.67	264.22
		Total Precipitation (mm)	64.00	65.30	82.70	79.10	72.10	78.20	95.90	87.30	99.60	99.40	100.00	68.40	992.0
		Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
		Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
		Evaporation (mm)	9.60	9.80	12.41	11.87	10.82	11.73	14.39	13.10	14.94	14.91	15.00	10.26	148.8
		Run-Off (mm)	54.40	55.51	70.30	67.24	61.29	66.47	81.52	74.21	84.66	84.49	85.00	58.14	843.2
		Catchment Area (m ²) = 12395.00	110.00	121.41	152.70	147.07		hment Monthly		162.21	405.40	104.01	105.02	107.17	1044
		Evaporation (m³)	118.99	121.41 687.98	153.76	147.07 833.38	134.05 759.63	145.39 823.90	178.30 1010.38	162.31 919.77	185.18 1049.36	184.81 1047.25	185.93	127.17	1844.3
		Run-Off (m³)	674.29	687.98	871.31	833.38		823.90 I Catchment Vol		919.77	1049.36	1047.25	1053.58	720.65	10451.
		Total AET (m³)	0.00	453.45	1108.58	1645.72	1824.82	1588.72	1252.68	653.35	179.38	0.00	0.00	0.00	8706.
		Total Evaporation (m ³)	118.99	453.45 121.41	153.76	1645.72	134.05	1588.72	178.30	162.31	179.38	184.81	185.93	127.17	1844.
		Total Infiltration (m)	790.00	451.20	153.76	0.00	0.00	0.00	0.00	8.84	711.73	184.81	185.93	844.32	5420.
		Total Runoff (m³)	893.82	813.37	913.91	833.38	759.63	823.90	1010.38	925.66	1257.67	1388.22	1396.60	955.27	11971