

22-189-402 October 18, 2024

Integricon Property Restoration and Construction Group Inc. (IPCG) 219 Westcreek Drive Vaughan, ON L4L 9T7

### RE: Surface Water and Groundwater Level Monitoring – 11476 Highway 26, Collingwood, ON

In December 2014, SPL Consultants Ltd. advanced eleven (11) boreholes and installed four (4) monitoring wells at the Site. In July 2022, DS installed an additional two (2) monitoring wells at the Site. It is understood that additional hydrogeological assessments are required to address comments from the Town and the Conservation Authority in support of future Site Plan Approvals.

A coastal wetland feature was identified on the northern portion of the Site. A wetland Water Balance Risk Assessment is currently underway to assess existing and proposed condition of the wetland catchment area including changes to drainage boundaries and proposed land cover. To further support the water balance and assess recharge/discharge conditions, in May 2024, a site reconnaissance of the site was conducted to assess the wetland feature. Two (2) surface water stations were installed at the inlet and outlet locations of the wetland. The locations of the surface water stations are presented in **Figure 1.** Each surface water station was equipped with a staff gauge (SG1 & SG2) to monitor surface water levels, and a shallow and deep piezometer (PZ1S/D & PZ2S/D) to assess the vertical gradient at the wetland. Automated data loggers were installed at each staff gauge and deep piezometer locations set to record water levels on a continuous basis. In addition, automated data loggers were installed at two (2) select monitoring well locations (BH14-1 & BH14-7). Groundwater and surface water levels were monitored between May and September 2024 monthly to obtain manual water level readings and download data loggers. The monitoring period is proposed to be completed in May 2025.

Based on continuous and manual groundwater level data to date, groundwater levels were below the ground surface during the monitoring period ranging from 0.4 to 1.4 meters below ground surface (mbgs) to corresponding elevations 177.0 to 178.9 meters above sea level (masl). The groundwater level trends indicate that water levels were highest during the spring (May-June) and gradually declined for the remainder of the monitoring period until September 2024 and increases during the final monitoring event (October 1<sup>st</sup>, 2024). Groundwater levels showed a positive response to major precipitation events, observed in May, June and July 2024. Groundwater levels are presented in **Table 1** in **Appendix A**, and groundwater level hydrographs are presented in **Appendix B**. Borehole logs are presented in **Appendix C**.



Based on the review of the monitoring data to date for the Wetland the following groundwater and surface water conditions are noted. SG1 & SG2 water levels generally remained slightly above the base of the wetland, 180.1 and 179.7 masl, respectively, in the spring (May-June) and gradually declined to dry conditions for the remainder of the monitoring period. Groundwater levels in the piezometers near SG1 were consistently below the surface water levels throughout the monitoring period. Shallow and deep piezometer water levels were consistently the same throughout the monitoring period. Therefore, the vertical gradient is inconclusive and additional data is required to determine the vertical gradient. Groundwater levels in the piezometers near SG2 were generally below surface water levels except for the May and June 2024 monitoring events, suggesting of groundwater contribution to the wetland. Shallow groundwater levels in PZ2S were generally above PZ2D water levels suggestive of a downward gradient. Additional monitoring is required to confirm the vertical gradient at the location. A summary of the water levels in each of the surface water monitoring station is provided in **Table 2** in **Appendix A**. The hydrographs are provided in **Appendix B**.

In May 2024, two (2) surface water quality samples were obtained from the wetland near each of the surface water monitoring stations (SG1 & SG2) and analyzed for general chemistry parameters and metals and inorganics to establish pre-construction baseline conditions. Results were compared to Provincial Water Quality Objectives (PWQO). Results indicate that phosphorus and iron exceeded at both locations. Groundwater quality results reported in the Preliminary Hydrogeological Investigation completed by DS dated February 13, 2023, indicate that groundwater exceeded multiple parameters against PWQO. Therefore, groundwater will be required to be treated to meet or exceed surface water quality to discharge groundwater overland during dewatering activities. The laboratory certificate of analysis is presented in **Appendix D**.

Should you have any questions regarding these findings, please contact the undersigned.

Sincerely,

**DS Consultants Limited** 

Prepared By:

Reviewed By:

Dorothy Santos, M.Sc. Project Manager

Martin Gedeon, M.Sc., P.Geo. Vice President

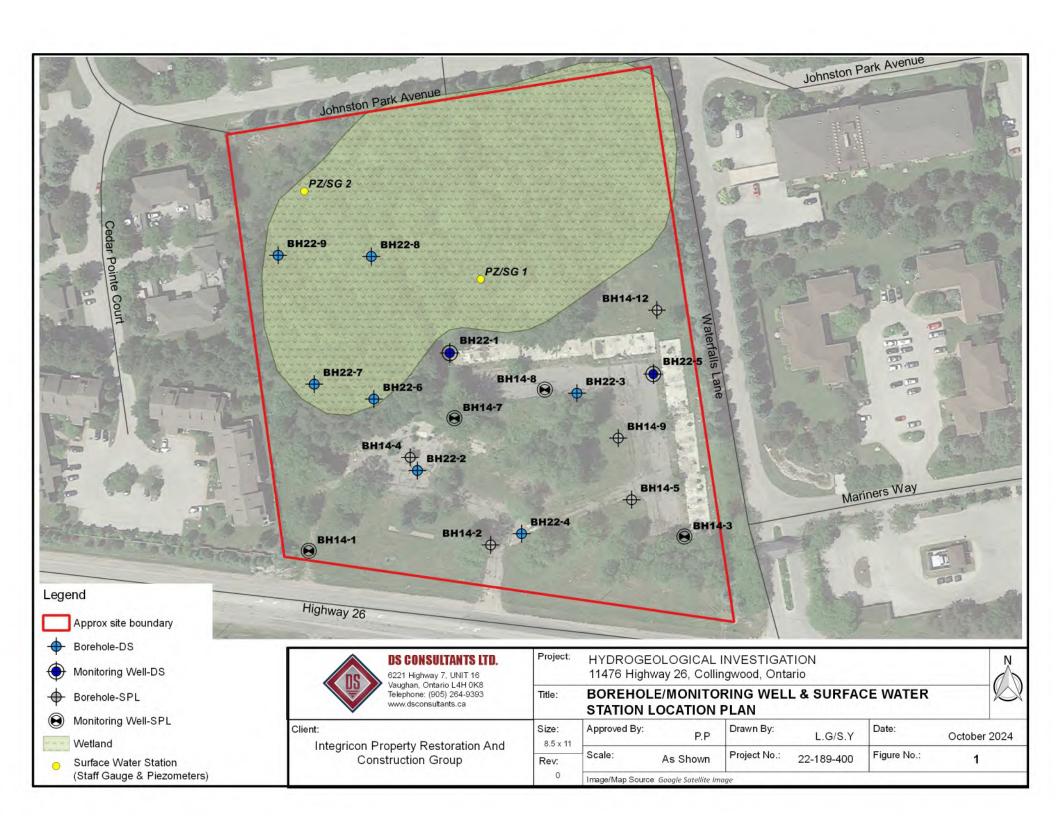
Monto Ceder



### **Enclosures:**

Figure 1- Borehole/Monitoring Well and Surface Water Station Locations

Appendix A- Groundwater and Surface Water Tables (Table 1 & Table 2)


Appendix B- Groundwater and Surface Water Level Hydrographs

Appendix C- Borehole Logs

Appendix D- Laboratory Certificate of Analysis



# Figures



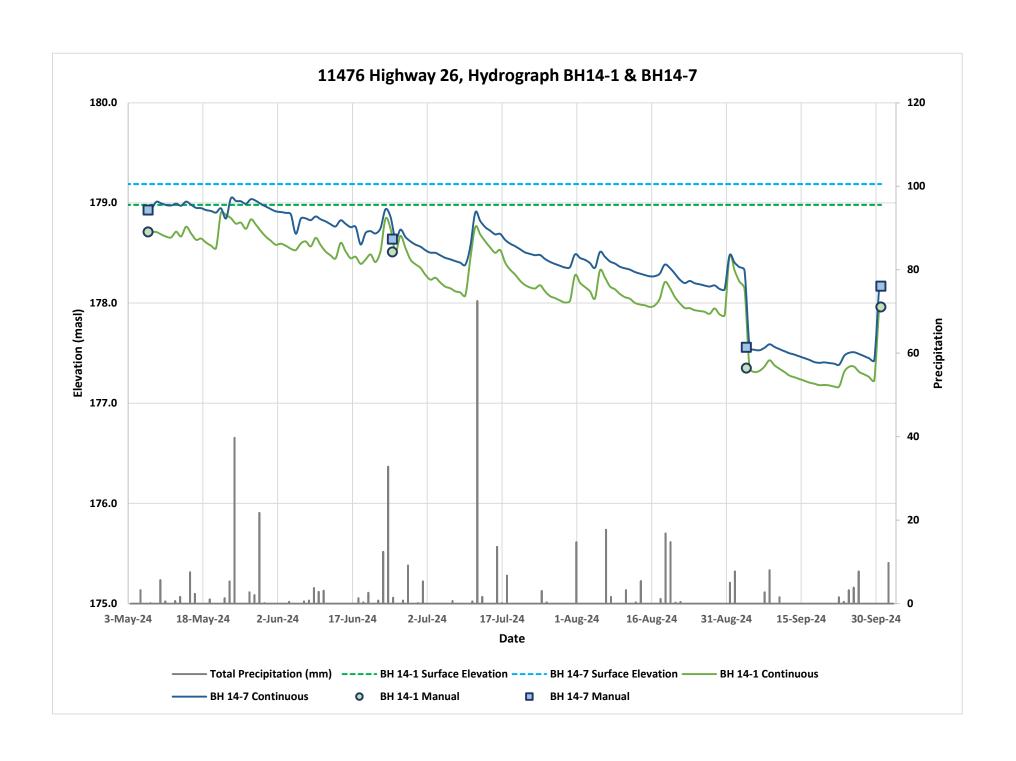


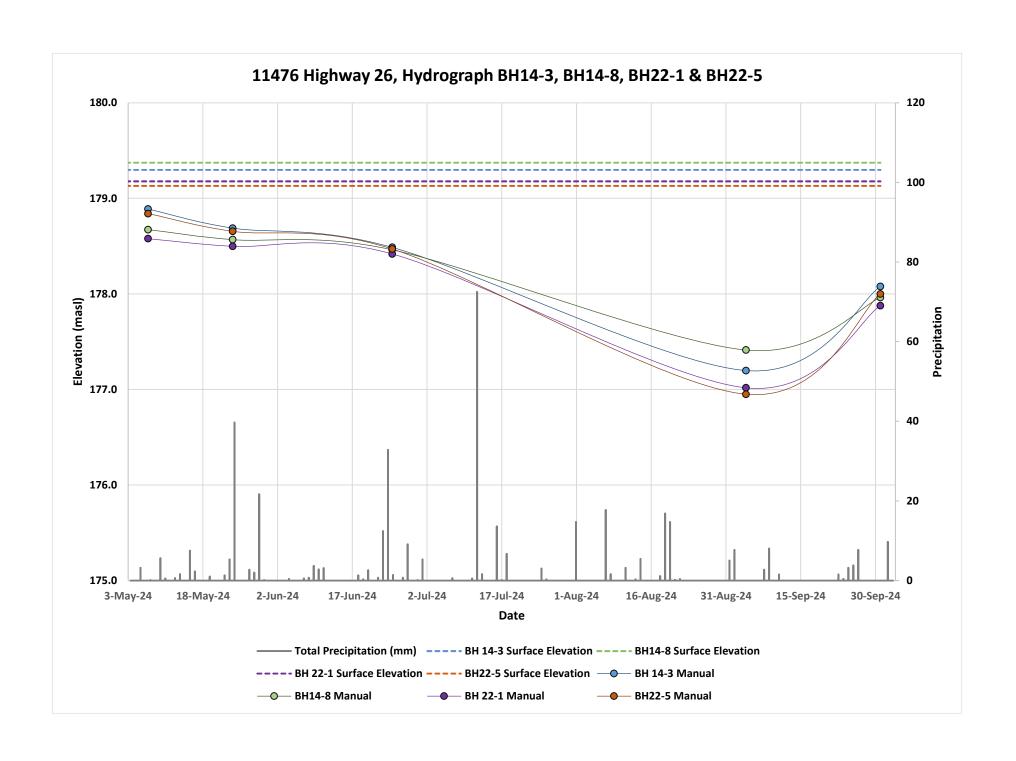
# **Appendix A**

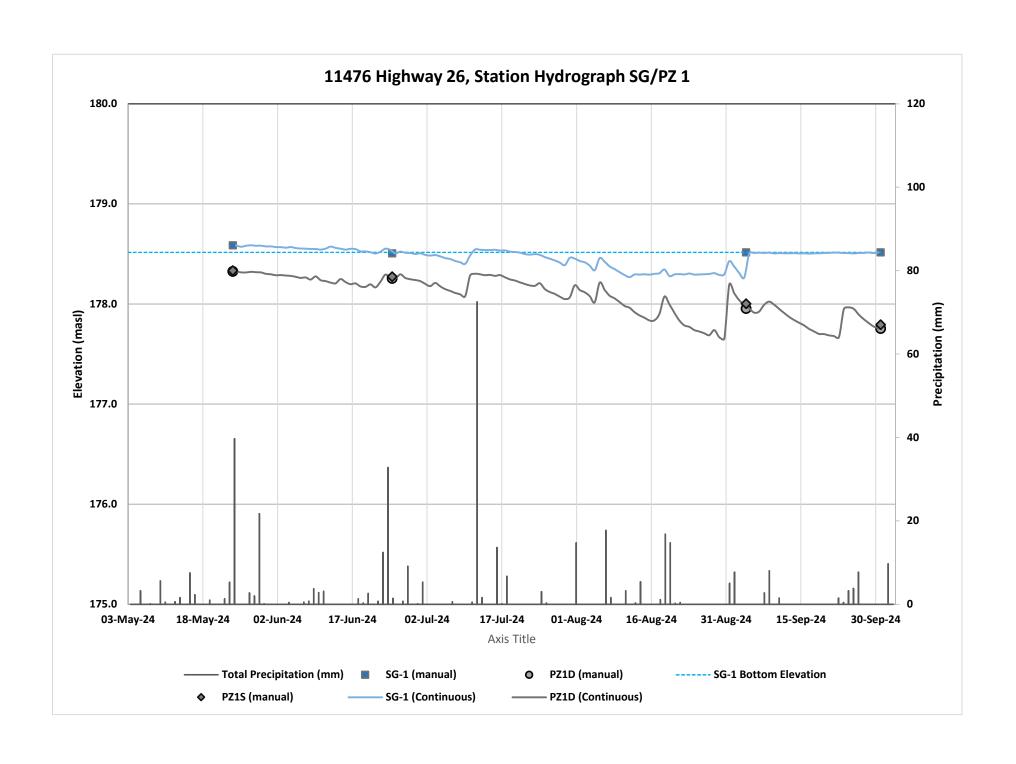
Table 1: Groundwater Level Monitoring Da

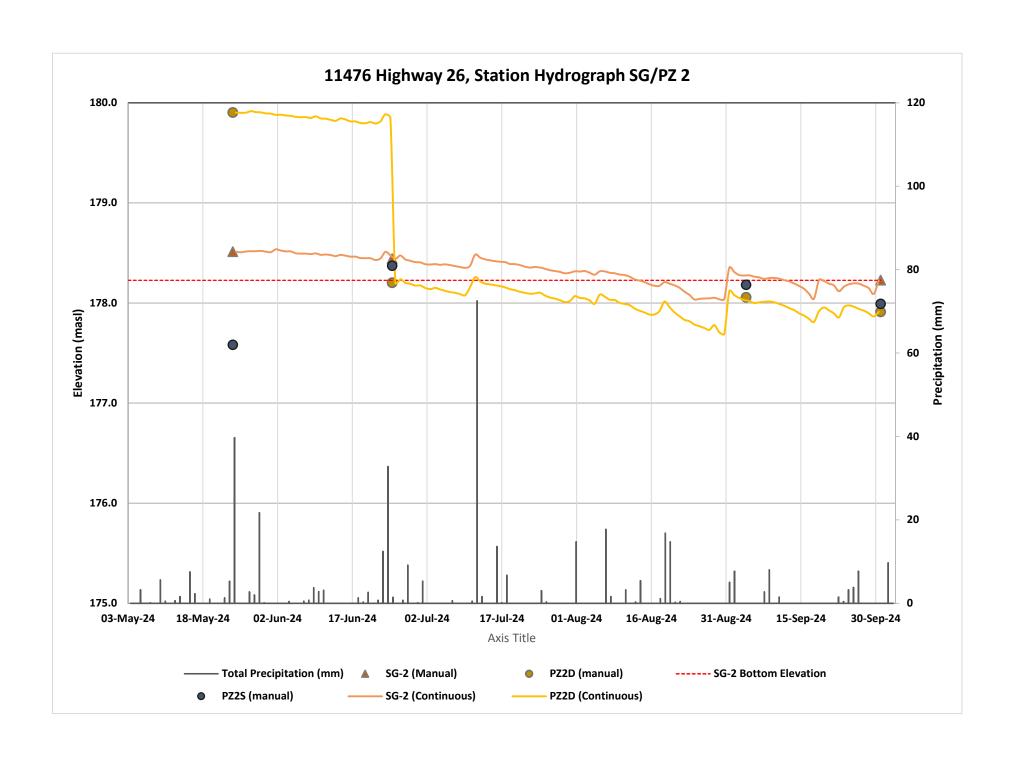
Location: 11476 Highway 26, Collingwood

|         | Da                   | ate  |                   |                   |             | May 7, 2024 |                      | J           | une 25, 202 | 4                    |             | September 4 | , 2024            | C              | October 1, 2   | 2024                 |
|---------|----------------------|------|-------------------|-------------------|-------------|-------------|----------------------|-------------|-------------|----------------------|-------------|-------------|-------------------|----------------|----------------|----------------------|
| Well ID | Surface<br>Elevation | S.Up | Well<br>Depth (m) | Well Depth<br>(m) | Water level | Water level | Water Level<br>Elev. | Water level | Water level | Water<br>Level Elev. | Water level | Water level | Water Level Elev. | Water<br>level | Water<br>level | Water Level<br>Elev. |
|         |                      |      | T.O.P             | (mbgs)            | T.O.P       | (mbgs)      | (masl)               | T.O.P       | (mbgs)      | (masl)               | T.O.P       | (mbgs)      | (masl)            | T.O.P          | (mbgs)         | (masl)               |
| BH 14-1 | 179.0                | 0.8  | 2.1               | 1.4               | 1.0         | 0.3         | 178.7                | 1.2         | 0.5         | 178.5                | 1.6         | 0.9         | 177.4             | 1.8            | 1.0            | 178.0                |
| BH 14-3 | 179.3                | 1.0  | 2.4               | 1.4               | 1.4         | 0.4         | 178.9                | 1.8         | 0.8         | 178.5                | 2.1         | 1.1         | 177.2             | 2.2            | 1.2            | 178.1                |
| BH 14-7 | 179.2                | 0.8  | 6.2               | 5.4               | 1.0         | 0.3         | 178.9                | 1.3         | 0.6         | 178.6                | 1.6         | 0.9         | 177.6             | 1.8            | 1.0            | 178.2                |
| BH14-8  | 179.4                | 0.7  | 2.6               | 1.8               | 1.4         | 0.7         | 178.7                | 1.6         | 0.9         | 178.5                | 2.0         | 1.2         | 177.4             | 2.1            | 1.4            | 178.0                |
| BH 22-1 | 179.2                | 1.1  | 2.5               | 1.4               | 1.7         | 0.6         | 178.6                | 1.8         | 0.8         | 178.4                | 2.2         | 1.1         | 177.0             | 2.4            | 1.3            | 177.9                |
| BH22-5  | 179.1                | 1.2  | 2.9               | 1.7               | 1.5         | 0.3         | 178.8                | 1.9         | 0.7         | 178.5                | 2.2         | 1.0         | 177.0             | 2.3            | 1.1            | 178.0                |
| BH 1    | 179.2                | 0.8  | 2.3               | 1.5               | 1.2         | 0.4         | 178.8                | 1.5         | 0.7         | 178.5                | 1.8         | 1.0         | 177.4             | 2.0            | 1.2            | 178.0                |
| BH 2    | 179.3                | 0.8  | 2.3               | 1.5               | 1.3         | 0.4         | 178.8                | 1.6         | 0.8         | 178.5                | 1.9         | 1.1         | 177.3             | 2.1            | 1.3            | 178.0                |
| BH 3    | 179.1                | 0.7  | 2.1               | 1.5               | 1.1         | 0.4         | 178.8                | 1.4         | 0.7         | 178.4                | 1.7         | 1.1         | 177.4             | 1.9            | 1.2            | 177.9                |
| BH 4    | 179.1                | 0.7  | 2.2               | 1.4               | 1.0         | 0.3         | 178.8                | 1.4         | 0.6         | 178.4                | 1.7         | 0.9         | 177.4             | 1.9            | 1.1            | 177.9                |
| BH 5    | 179.1                | 0.8  | 6.0               | 5.3               | 1.2         | 0.4         | 178.7                | 1.5         | 0.7         | 178.4                | 1.8         | 1.1         | 177.3             | 1.9            | 1.2            | 177.9                |


Table 2: Groundwater Level Monitoring [


Location: 11476 Highway 26, Collingwood


|          |                      | SG                              |                              |                      | 07-M                 | ay-24                 | 25-Ju                | ın-24                 | 04-S                 | ep-24                 | 01-0                 | ct-24                 |
|----------|----------------------|---------------------------------|------------------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|
| SG/PZ ID | TOB Elevation (masl) | Depth (top of Casing)<br>Inside | Stick-up TOC (m) (t-<br>bar) | Surface Elev. (masl) | Depth to Water (TOP) | Depth to Water (masl) | Depth to Water (TOP) | Depth to Water (masl) | Depth to Water (TOP) | Depth to Water (masl) | Depth to Water (TOP) | Depth to Water (masl) |
| SG-1     | 180.1                |                                 |                              | 178.5                | 1.5                  | 178.6                 | 1.6                  | 178.5                 | Dry                  | 178.5                 | Dry                  | 178.5                 |
| SG-2     | 179.7                |                                 |                              | 178.2                | 1.1                  | 178.5                 | 1.2                  | 178.4                 | inacce               | essible               | Dry                  | 178.2                 |
| PZ1D     |                      | 1.8                             | 1.1                          | 178.5                | 1.2                  | 178.3                 | 1.3                  | 178.3                 | 1.6                  | 178.0                 | 1.8                  | 177.8                 |
| PZ1S     |                      | 1.8                             | 0.8                          | 178.5                | 0.9                  | 178.3                 | 1.0                  | 178.3                 | 1.3                  | 178.0                 | 1.5                  | 177.8                 |
| PZ2D     |                      | 3.4                             | 1.4                          | 178.5                |                      | 179.9                 | 1.7                  | 178.2                 | inacce               | essible               | 2.0                  | 177.9                 |
| PZ2S     |                      | 1.9                             | 0.6                          | 178.6                | 1.6                  | 177.6                 | 0.9                  | 178.4                 | inace                | ssible                | 1.2                  | 178.0                 |




# **Appendix B**











# **Appendix C**



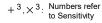
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 2

|                      | SOIL PROFILE                                                                                                                                                                                                                 |             | S      | SAMPL | ES                 | ۳            |                | DYNA<br>RESIS   | MIC CO<br>STANCI         | NE PE<br>PLOT          | NETR/              | ATION                                |               | PLASTI                                         | o NATI | URAL       | LIQUID                                     |                           | ΛT                         | RE  | MARI | KS  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|--------------------|--------------|----------------|-----------------|--------------------------|------------------------|--------------------|--------------------------------------|---------------|------------------------------------------------|--------|------------|--------------------------------------------|---------------------------|----------------------------|-----|------|-----|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                                                                                                                                                                  | STRATA PLOT | NUMBER | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER | ELEVATION      | SHE/            | AR ST<br>NCONF<br>UICK T | RENG<br>INED<br>RIAXIA | TH (ki<br>+<br>L × | Pa)<br>FIELD V<br>& Sensiti<br>LAB V | ANE ivity ANE | PLASTIC<br>LIMIT<br>W <sub>P</sub><br>I<br>WAT | ER CO  | N<br>DNTEN | LIQUID<br>LIMIT<br>W <sub>L</sub><br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) |     | (%)  | TIC |
| 0.0                  | TOPSOIL: 150mm                                                                                                                                                                                                               | 7/1/        |        |       |                    |              |                |                 |                          |                        |                    |                                      |               |                                                |        |            |                                            |                           |                            |     |      |     |
| 180.8                | FILL: silty sand, trace gravel, some roots/organics, wet, very loose                                                                                                                                                         |             | 1      | SS    | 2                  |              |                | -               |                          |                        |                    |                                      |               |                                                |        | c          |                                            |                           |                            |     |      |     |
| 180.2<br>0.8         | SAND: some silt, trace rootlets,                                                                                                                                                                                             |             |        |       |                    | <u>∑</u>     | W. L.<br>Aug 0 | 180.3<br>5, 202 | m<br>2                   |                        |                    |                                      |               |                                                |        |            |                                            |                           |                            |     |      |     |
| 0.6                  | trace clay, trace gravel, wet, very dense                                                                                                                                                                                    |             | 2      | SS    | 50/<br>100<br>mm   |              | 180            | -               |                          |                        |                    |                                      |               |                                                |        | 0          |                                            |                           |                            | 5 7 | 6 15 | 5   |
|                      |                                                                                                                                                                                                                              |             |        |       |                    |              |                | -               |                          |                        |                    |                                      |               |                                                |        |            |                                            |                           |                            |     |      |     |
| 170 4                |                                                                                                                                                                                                                              |             | 3      | SS    | 50/<br>100         |              |                |                 |                          |                        |                    |                                      |               |                                                |        | 0          |                                            |                           |                            |     |      |     |
| 1.6                  | END OF BOREHOLE: Notes: 1) Auger refusal at depth of 1.6m on inferred bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.86 Aug 5, 2022 0.64 |             |        |       | mm                 |              | ***            |                 |                          |                        |                    |                                      |               |                                                |        |            |                                            |                           |                            |     |      |     |





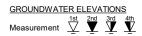




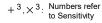
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 3

|      | CATION: See Drawing 1 N 4929674.09<br>SOIL PROFILE  |                 | S        | SAMPL | .ES            |                            |           | DYNA<br>RESIS | MIC CC<br>STANCE | NE PE | NETRA    | ATION                 |             |                  | NATI        | IRAI         |                                          |        | _     | REMARK    |
|------|-----------------------------------------------------|-----------------|----------|-------|----------------|----------------------------|-----------|---------------|------------------|-------|----------|-----------------------|-------------|------------------|-------------|--------------|------------------------------------------|--------|-------|-----------|
| (m)  |                                                     | Ė               |          |       |                | GROUND WATER<br>CONDITIONS |           | ı             |                  |       |          |                       | 00          | PLASTIC<br>LIMIT | MOIS<br>CON | TURE<br>TENT | LIQUID<br>LIMIT<br>W <sub>L</sub><br>——I | EN.    | MT W  | AND       |
| LEV  | DESCRIPTION                                         | STRATA PLOT     | <u>ر</u> |       | BLOWS<br>0.3 m | W O                        | NOI       |               | AR ST            |       | TH (kl   | Pa)                   | ANE         | W <sub>P</sub>   | ٧           | v<br>>       | W <sub>L</sub>                           | U) (KP | RAL U | GRAIN SIZ |
| EPTH | DESCRIPTION                                         | ₹ATA            | NUMBER   | ЭE    |                | NUO                        | ELEVATION |               | NCONF<br>UICK TI |       | +<br>L X | FIELD V.<br>& Sensiti | vity<br>ANE | WAT              | ER CC       | NTEN         | T (%)                                    | ğΘ.    | NATU! | (%)       |
| 79.0 |                                                     | STF             | ΩN       | TYPE  | ż              | S S                        |           | 2             |                  |       |          |                       | 00          | 1                | 0 2         | 0 3          | 30                                       |        |       | GR SA SI  |
| 79:0 | ASPHALT:50 mm                                       |                 |          |       |                |                            | 179       |               |                  |       |          |                       |             |                  |             |              |                                          | 1      |       |           |
| 0.1  | GRANULAR BASE: sand and gravel, 250mm               | ٥<br>٠ <i>٥</i> |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | 0.              |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | io. ;           |          |       |                |                            |           | ļ             |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
| 78.7 |                                                     | 0.              |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
| 0.3  | FILL: silty sand, some gravel,                      |                 | 1        | SS    | 10             |                            |           | -             |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      | brown, moist, compact                               | $\bowtie$       |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | $\bowtie$       |          |       |                |                            |           | ŀ             |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | $\bowtie$       |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | $\otimes$       |          |       |                |                            |           | r<br>         |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | $\bigotimes$    |          |       |                | ł                          |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | $\bowtie$       |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     | $\bowtie$       |          |       |                |                            |           | <u> </u>      |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
| 78.2 |                                                     | $\bowtie$       |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
| 0.8  | SILTY SAND: trace gravel, brown, wet, very dense    |                 | 2        | SS    | 50/            | 1                          |           | -             |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
| 78.1 |                                                     |                 | 2        | 33    | 100<br>mm      |                            |           |               |                  |       |          |                       |             |                  |             |              | 0                                        |        |       |           |
| 0.9  | END OF BOREHOLE: Notes:                             |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      | Augar refusal at depth of 0.9m on inferred bedrock. |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      | Water at depth of 0.8m during                       |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      | drilling.                                           |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
|      |                                                     |                 |          |       |                |                            |           |               |                  |       |          |                       |             |                  |             |              |                                          |        |       |           |
| - 1  |                                                     |                 |          | 1     | 1              |                            |           |               | 1                |       | 1        | 1                     | 1           |                  |             | i .          | 1                                        |        |       |           |









CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 4

|             | SOIL PROFILE                                                    |             | S      | AMPL | ES             |                            |           | DYNA<br>RESIS | MIC CO<br>STANCE | ONE PE<br>E PLOT | NETR/ | ATION                 |             | DI ACTI         | _ NATI      | URAL         | LIQUID<br>LIMIT<br>W <sub>L</sub><br>——I |        | ь                          | REMAR               | ٦K |
|-------------|-----------------------------------------------------------------|-------------|--------|------|----------------|----------------------------|-----------|---------------|------------------|------------------|-------|-----------------------|-------------|-----------------|-------------|--------------|------------------------------------------|--------|----------------------------|---------------------|----|
| (m)         |                                                                 | Ľ           |        |      |                | ] # //                     |           | 1             |                  | 0 6              |       |                       | 00          | PLASTI<br>LIMIT | MOIS<br>CON | TURE<br>TENT | LIQUID                                   | a) EN  | M L                        | AND                 | )  |
| LEV<br>EPTH | DESCRIPTION                                                     | STRATA PLOT | or     |      | BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION |               |                  | RENG             | TH (k | Pa)                   | ANE         | W <sub>P</sub>  | \<br>       | v<br>>       | W <sub>L</sub>                           | ET (F) | NATURAL UNIT WT<br>(kN/m³) | GRAIN S<br>DISTRIBU |    |
| EPTH        | DESCRIPTION                                                     | ATA         | NUMBER | Ш    | 0.0            | NO FIG                     | VAT       |               | NCONF            | INED<br>RIAXIAL  | +     | FIELD V.<br>& Sensiti | ANE<br>vity | WAT             | ER CC       | ONTEN        | IT (%)                                   | ŠĢ     | INTUF                      | (%)                 |    |
| 79.0        |                                                                 | STR         | Š      | TYPE | ż              | GRC                        | H         |               |                  | 0 6              |       |                       | 00          |                 |             |              | 30                                       |        | _                          | GR SA S             | SI |
| 78:9        | ASPHALT:50 mm                                                   |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     | _  |
| 0.1         | GRANULAR: sand and gravel, 200                                  | 00          |        |      |                |                            |           | ŀ             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             | mm                                                              | 11 -        |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | 00          |        |      |                |                            |           | ŀ             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
| 78.7        |                                                                 | 00          |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
| 0.3         | FIL: silty sand with topsoil, trace gravel, brown, moist, loose | $\bowtie$   | 1      | SS   | 6              |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             | 9,,,                                                            | $\bowtie$   |        |      |                |                            |           | L             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | $\otimes$   |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           | L             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | $\otimes$   | 1      |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | $\otimes$   |        |      |                |                            |           | -             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | $\bowtie$   |        |      |                | 1                          |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | X           |        |      |                |                            |           | -             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 | $\bowtie$   |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
| 78.2        |                                                                 | $\otimes$   |        |      |                |                            |           | ŀ             |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
| 0.8         | SAND: trace gravel, yellowish brown, wet, very dense            |             |        | 2    | 50/            | 1                          |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
| 78.1        | brown, wer, very derise                                         |             | 2      | SS   | 150<br>mm      |                            |           | ľ             |                  |                  |       |                       |             |                 |             |              | Ψ                                        |        |                            |                     |    |
| 0.9         | END OF BOREHOLE: Notes:                                         |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             | 1) Augar refusal at depth of 0.9m on                            |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             | inferred bedrock. 2) Water at depth of 0.8m during              |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             | drilling.                                                       |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          | 1      |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          | 1      |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          | 1      |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          | 1      |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          |        |                            |                     |    |
|             |                                                                 |             |        |      |                |                            |           |               |                  |                  |       |                       |             |                 |             |              |                                          | 1      |                            |                     |    |
| - 1         |                                                                 | 1           | 1      |      | İ              | Ī                          | I         | ı             | 1                | 1                |       | 1                     | 1           | Ì               | l           | l            | 1                                        | 1      | 1                          | l                   |    |



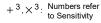
CLIENT: Integricon Property Restoration and Construction Group Inc.

PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 150 mm REF. NO.: 22-189-400

Date: Jun-02-2022 ENCL NO.: 5

|             | SOIL PROFILE                                                                    |             | S        | SAMPL | .ES            |                            |           | DYNA<br>RESIS | MIC CC<br>TANCE | NE PE<br>PLOT   | NETRA  | ATION     |              | DI ACTI          | , NATI      | JRAL         | ווטוייי         |                           | ь                          | REMAR               | ≀KS |
|-------------|---------------------------------------------------------------------------------|-------------|----------|-------|----------------|----------------------------|-----------|---------------|-----------------|-----------------|--------|-----------|--------------|------------------|-------------|--------------|-----------------|---------------------------|----------------------------|---------------------|-----|
| (m)         |                                                                                 | T           |          |       |                | GROUND WATER<br>CONDITIONS |           |               |                 | 0 6             |        |           | 00           | PLASTIC<br>LIMIT | MOIS<br>CON | TURE<br>TENT | LIQUID<br>LIMIT | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | AND                 | )   |
| LEV<br>EPTH | DESCRIPTION                                                                     | l P.        | <u>~</u> |       | BLOWS<br>0.3 m | D W,                       | NOI       | SHEA          | R ST            | RENG'           | TH (kF | Pa)       | ANIE         | W <sub>P</sub>   | V           | v<br>>       | W <sub>L</sub>  | XE<br>R                   | SAL U                      | GRAIN S<br>DISTRIBU |     |
| EPTH        | DESCRIPTION                                                                     | STRATA PLOT | NUMBER   | ш     |                | NUC                        | ELEVATION | 0 U           | NCONF           | INED<br>RIAXIAI | +<br>× | & Sensiti | ivity<br>ANF | WAT              | ER CC       | NTEN         | T (%)           | ğΟ,                       | )<br>F¥                    | (%)                 |     |
| 78.9        |                                                                                 | STF         | Š        | TYPE  | ż              | GR                         | ELE       |               |                 | 0 6             |        |           | 00           | 1                |             |              | 30              |                           |                            | GR SA S             | 31  |
| 78:8        | ASPHALT:50 mm                                                                   |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
| 0.1         | <b>GRANULAR:</b> sand and gravel, 250 mm                                        | 00000       |          |       |                |                            |           | -             |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
| 78.6        |                                                                                 | 111         | 1.       |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
| 0.3         | SILTY SAND: trace clay, trace gravel, yellowish brown, wet, dense to very dense |             | 1        | SS    | 30             |                            |           | -             |                 |                 |        |           |              | 0                |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       | 50/            |                            |           | -             |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
| 78.0        |                                                                                 |             | 2        | SS    | 100<br>mm      |                            | 178       |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
| 0.9         | END OF BOREHOLE: Notes: 1) Augar refusal at depth 0.9m on inferred bedrock.     |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |
|             |                                                                                 |             |          |       |                |                            |           |               |                 |                 |        |           |              |                  |             |              |                 |                           |                            |                     |     |









CLIENT: Integricon Property Restoration and Construction Group Inc.

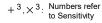
PROJECT LOCATION: 11476 Highway 26, Collingwood, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150 mm REF. NO.: 22-189-400


ENCL NO.: 6

Date: Jun-02-2022

|                      | OCATION: See Drawing 1 N 4929709.0<br>SOIL PROFILE                                                                                                                                                             |                                         |        | AMPL |                | _            |          |     | DYNA<br>RESIS                    | MIC CO        | NE PE<br>PLOT       | NETR           | ATION                  |                   | DI ACT                            | _ NATI           | URAL   | 1101                              |                           | ۲                       | REI          | MAR          | KS  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|------|----------------|--------------|----------|-----|----------------------------------|---------------|---------------------|----------------|------------------------|-------------------|-----------------------------------|------------------|--------|-----------------------------------|---------------------------|-------------------------|--------------|--------------|-----|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                                                                                                                                                    | STRATA PLOT                             | NUMBER | Ш    | BLOWS<br>0.3 m | GROUND WATER | SNOTIONS | _   | SHEA<br>O UI                     | 0 4<br>NR STI | 0 6<br>RENG<br>INED | 60 8<br>TH (kl | Pa) FIELD V. & Sensiti | OO<br>ANE<br>vity | PLASTI<br>LIMIT<br>W <sub>P</sub> | MOIS<br>CON<br>V | w<br>> | LIQUID<br>LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (KN/m³) | GRA<br>DISTE | AND<br>AIN S | IZE |
| 179.1                |                                                                                                                                                                                                                | STR                                     | NON    | TYPE | ŗ              | GRC          | 5        | ELE |                                  |               |                     |                | LAB V.                 | ANE<br>00         | 1 1                               |                  |        | 30                                |                           | z                       | GR S         | A S          | 1 ( |
| 179:0                | ASPHALT:50 mm                                                                                                                                                                                                  |                                         |        |      |                |              |          |     |                                  |               |                     |                |                        |                   |                                   |                  |        |                                   |                           |                         |              |              |     |
| 0.1                  | mm                                                                                                                                                                                                             | 000000000000000000000000000000000000000 | 1      | SS   | 10             |              |          | 179 | -                                |               |                     |                |                        |                   |                                   |                  |        |                                   |                           |                         |              |              |     |
|                      |                                                                                                                                                                                                                | 00                                      |        |      |                |              |          |     |                                  |               |                     |                |                        |                   |                                   |                  |        |                                   |                           |                         |              |              |     |
| 178.5<br>0.6         | <b>GRAVELLY SAND:</b> some silt, trace clay, yellowish brown, wet, very dense                                                                                                                                  |                                         |        |      |                |              | ∵ W      |     | -<br>  78.4  <br>  5, 2022<br> - |               |                     |                |                        |                   |                                   |                  |        |                                   |                           |                         |              |              |     |
| <u>1</u>             |                                                                                                                                                                                                                |                                         |        |      |                |              |          |     | -                                |               |                     |                |                        |                   |                                   |                  |        |                                   |                           |                         |              |              |     |
| 177.7                |                                                                                                                                                                                                                |                                         | 2      | SS   | 60             |              |          | 178 | -                                |               |                     |                |                        |                   |                                   | 0                | •      |                                   | -                         |                         | 25 5         | 4 10         | 3 5 |
| 1.4                  | END OF BOREHOLE:                                                                                                                                                                                               | <u></u>                                 |        |      |                | <u> </u>     | +        |     |                                  |               |                     |                |                        |                   |                                   |                  |        |                                   | H                         |                         |              |              | _   |
|                      | Notes:  1) Augar refusal at depth of 1.4m on inferred bedrock.  2) 50mm dia. monitoring well installed upon completion.  3) Water Level Readings: Date: Water Level(mbgl): July 22, 2022 0.74 Aug 5, 2022 0.69 |                                         |        |      |                |              |          |     |                                  |               |                     |                |                        |                   |                                   |                  |        |                                   |                           |                         |              |              |     |

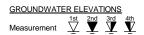








PROJECT: Geotechnical Investigation CLIENT: C.C. Tatham & Associates Ltd.


PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

|                            | M: Geodetic<br>DCATION: N 0 E 1                                                                                                                                                                                                                                                            |             |        |       |                    |                            |           | Date:                            | Dec/                           | 12/201                  | 4                                  |                                        |                    |                |        | DF                      | RG. NO                  | ).: 2                     |                         |                |            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------|----------------------------------|--------------------------------|-------------------------|------------------------------------|----------------------------------------|--------------------|----------------|--------|-------------------------|-------------------------|---------------------------|-------------------------|----------------|------------|
|                            | SOIL PROFILE                                                                                                                                                                                                                                                                               |             | 5      | SAMPL | .ES                |                            |           | DYNA<br>RESIS                    | MIC CC<br>TANCE                | NE PEI<br>E PLOT        | NETRAT                             | ION                                    |                    | PLASTI         | c NATI | JRAL                    | LIQUID                  |                           | ۲                       | REM            | ARK        |
| (m)<br>ELEV<br>EPTH        | DESCRIPTION                                                                                                                                                                                                                                                                                | STRATA PLOT | NUMBER | ТҮРЕ  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | SHEA<br>O UI                     | L<br>AR ST<br>NCONF<br>JICK TI | RENG<br>INED<br>RIAXIAL | 50 8<br>TH (kF<br>+<br>. ×<br>50 8 | Pa)<br>FIELD VA<br>& Sensiti<br>LAB VA | ANE<br>vity<br>ANE | W <sub>P</sub> | CON'   | TENT<br>w<br>D<br>DNTEN | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | GRAI<br>DISTRI | BUTI<br>%) |
| 78.8<br>0.1<br>78.6<br>0.2 | ASPHALT: 50mm GRANULAR BASE/SUBBASE: 150mm, sand and gravel FILL: silty sand, some clay, trace gravel, light brown to brown, moist o very moist, loose                                                                                                                                     | •           | 1      | SS    | 15                 | <u></u>                    | W. L.     | -<br>-<br>-<br>178.3             | m                              |                         |                                    |                                        |                    |                |        | 0                       |                         |                           |                         |                |            |
| 78.0<br>0.8                | SAND: some silt, trace clay, trace gravel, oxidized, light brown, wet, loose                                                                                                                                                                                                               |             | 2      | SS    | 6                  |                            | W. L.     | 9, 2015<br>178.2<br>2, 2014<br>3 | 'n                             |                         |                                    |                                        |                    |                |        | 0                       |                         |                           |                         | 4 80           | 11         |
| 1.5                        | END OF BOREHOLE ON ASSUMED BEDROCK Notes:  1. Auger refusal at 1.46m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.63 178.17 Jan. 19, 2015 0.46 178.34 |             |        |       |                    |                            |           |                                  |                                |                         |                                    |                                        |                    |                |        |                         |                         |                           |                         |                |            |





CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

|                        | JM: Geodetic<br>OCATION: N 0 E 2                                                                                                                  |             |        |       |                    |                            |           | Date:                             | Dec/           | 12/201                         | 4      |      |     |                                            |       | DF             | RG. NO                                     | D.: 3                     |                            |                        |                            |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------|-----------------------------------|----------------|--------------------------------|--------|------|-----|--------------------------------------------|-------|----------------|--------------------------------------------|---------------------------|----------------------------|------------------------|----------------------------|
| DITE                   | SOIL PROFILE                                                                                                                                      |             | S      | SAMPL | .ES                |                            |           | DYNAI<br>RESIS                    | MIC CC         | NE PEI                         | NETRA  | TION |     |                                            | NATI  | IDAI           |                                            |                           |                            | REM                    | N DIV C                    |
| (m) ELEV DEPTH 178.9   | DESCRIPTION                                                                                                                                       | STRATA PLOT | NUMBER | ТҮРЕ  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 2<br>SHE <i>A</i><br>O UI<br>• QI | AR ST<br>NCONF | 0 6<br>RENG<br>INED<br>RIAXIAL | TH (kl | 0 1  | AŃE | PLASTIC<br>LIMIT<br>W <sub>P</sub><br>WATI | ER CO | v<br>><br>NTEN | LIQUID<br>LIMIT<br>W <sub>L</sub><br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | AN<br>GRAIN<br>DISTRII | ND<br>N SIZ<br>BUTI(<br>6) |
| 17 <b>8</b> : <b>8</b> | ASPHALT: 25mm<br>GRANULAR BASE/SUBBASE:                                                                                                           |             | 1      | SS    | 15                 |                            |           | -                                 |                |                                |        |      |     |                                            | 0     |                |                                            |                           |                            |                        |                            |
| 178.1<br>0.8<br>177.8  | trace clay, light brown, very moist to wet, compact                                                                                               |             | 2      | SS    | 14                 |                            | 178       | -                                 |                |                                |        |      |     |                                            |       | 0              |                                            |                           |                            |                        |                            |
| 1.1                    | END OF BOREHOLE ON ASSUMED BEDROCK Notes:  1. Auger refusal at 1.07m on assumed bedrock 2. Borehole was wet at bottom upon completion of drilling |             |        |       |                    |                            |           |                                   |                |                                |        |      |     |                                            |       |                |                                            |                           |                            |                        |                            |



CLIENT: C.C. Tatham & Associates Ltd. PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 4

|                      | SOIL PROFILE                                                                                                                                                                                                                                                            |             | SAMF           | LES                |                            |                              | DYNA<br>RESIS    | MIC CC<br>TANCE          | NE PEI<br>PLOT                  | NETRA              | TION                                   |                    | PLASTI | C NAT  | URAL            | LIQUID                     |                           | ΤV                      |              | MARK |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------------|----------------------------|------------------------------|------------------|--------------------------|---------------------------------|--------------------|----------------------------------------|--------------------|--------|--------|-----------------|----------------------------|---------------------------|-------------------------|--------------|------|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                                                                                                                                                                                                             | STRATA PLOT | NUMBER<br>TYPE | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION                    | SHEA<br>O UI     | L ST<br>NCONF<br>JICK TI | LENG<br>RENG<br>INED<br>RIAXIAL | TH (kf<br>+<br>. × | Pa)<br>FIELD VA<br>& Sensiti<br>LAB VA | ANE<br>vity<br>ANE |        | TER CO | w<br>O<br>ONTEN | LIMIT W <sub>L</sub> T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | GRA<br>DISTE | (%)  |
| 179.1<br>179:0       | TOPSOIL: 100mm                                                                                                                                                                                                                                                          | ν / γ.      | Z F            | -                  | 0 0                        | Ш                            | -                | 0 4                      | 0 6                             | 8 06               | 30 10                                  | 0                  |        | 0 2    | 20              | 30                         |                           |                         | GR S         | A SI |
| 0.1                  | FILL: sand, trace silt, trace gravel, trace organics, light brown, moist, very loose to loose                                                                                                                                                                           |             | 1 SS           | 4                  |                            | 179                          | -<br>-<br>-<br>- |                          |                                 |                    |                                        |                    |        | 0      |                 |                            |                           |                         |              |      |
| 178.4<br>0.8         | SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet, loose                                                                                                                                                                                                 |             | 2 SS           | 9                  | <b>Y</b>                   | W. L. <sup>7</sup><br>Jan 19 | , 2015<br>       | m                        |                                 |                    |                                        |                    |        |        | 0               |                            |                           |                         | 1 9          | 0 4  |
| 177.6<br>1.5         | END OF BOREHOLE ON                                                                                                                                                                                                                                                      |             |                |                    |                            |                              | -                |                          |                                 |                    |                                        |                    |        |        |                 |                            |                           |                         |              |      |
|                      | ASSUMED BEDROCK Notes:  1. Auger refusal at 1.52m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.99 178.14 Jan. 19, 2015 0.87 178.26 |             |                |                    |                            |                              |                  |                          |                                 |                    |                                        |                    |        |        |                 |                            |                           |                         |              |      |





CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/12/2014 DRG. NO.: 5

|             | M: Geodetic<br>CATION:                                                 |             |          |          |                |                                       |           | Date: | Dec/1           | 2/201  | 4      |                              |            |                 |        | DF           | RG. NO                                     | J.: 5         |              |                |
|-------------|------------------------------------------------------------------------|-------------|----------|----------|----------------|---------------------------------------|-----------|-------|-----------------|--------|--------|------------------------------|------------|-----------------|--------|--------------|--------------------------------------------|---------------|--------------|----------------|
| BH LO       | SOIL PROFILE                                                           |             |          | SAMPL    | FS             | 1                                     |           | DYNAI | MIC CO<br>TANCE | NE PEN | NETRA  | TION                         |            |                 |        |              |                                            |               |              |                |
| $\neg$      | 23.21.101.12                                                           | 1.          | $\vdash$ |          |                | GROUND WATER<br>CONDITIONS            |           |       |                 |        |        | 0 10                         | 00         | PLASTI<br>LIMIT | C NATU | JRAL<br>TURE | LIQUID<br>LIMIT<br>W <sub>L</sub><br>T (%) | zi.           | T WT         | REMARKS<br>AND |
| (m)         |                                                                        | STRATA PLOT | 1        |          | \ <u>\</u> \\\ | WAT                                   | z         |       |                 |        |        | l                            |            | W <sub>P</sub>  | CON    | N<br>N       | WL                                         | ET PE<br>KPa) | LUNI<br>(m)  | GRAIN SIZ      |
| LEV<br>EPTH | DESCRIPTION                                                            | Α           | 쏦        |          | BLOWS<br>0.3 m | 9 5                                   | ELEVATION |       | AR STI          |        | 1H (KF | つる)<br>FIELD V/<br>& Sensiti | ANE        | <del></del>     |        |              |                                            | ŠŠ.           | URAI<br>(RN/ | DISTRIBUT      |
| -' '''      |                                                                        | RAT         | NUMBER   | TYPE     |                | N O                                   | E A       |       | JICK TE         |        | . ×    | LAB VA                       | vity<br>NE | WA              | TER CC | NTENT        | 「(%)                                       | ď.            | ΑΨ           | (%)            |
| 79.2        |                                                                        | S           | ž        | ≥        | ż              | 8 8                                   | ᆸ         | 2     | 0 4             | 0 6    | 0 8    | 0 10                         | 00         | 1               | 0 2    | 0 3          | 0                                          |               |              | GR SA SI       |
| 79:8        | ASPHALT: 25mm                                                          |             |          |          |                |                                       |           | ŀ     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             | FILL: silty sand, trace clay, trace gravel, dark brown, trace topsoil, | $\times$    |          |          |                |                                       |           | ŀ     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             | very moist, very loose                                                 | $\times$    |          |          |                |                                       | 179       |       |                 |        |        |                              |            |                 |        |              | _                                          | 1             |              |                |
|             |                                                                        | $\otimes$   | 1        | SS       | 3              |                                       |           | -     |                 |        |        |                              |            |                 |        |              | 0                                          |               |              |                |
| 78.7        |                                                                        | $\otimes$   |          |          |                |                                       |           | ŀ     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
| 0.5         | some clay, wet                                                         | $\times$    | 1        |          |                |                                       |           | ŀ     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             | •                                                                      | $\otimes$   | ┰        |          |                | 1                                     |           | -     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
| 78.5        |                                                                        |             |          |          |                |                                       |           | L     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
| 78:8        | compact                                                                | $\times$    |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
| 0.9         | SAND: trace silt, trace clay, trace                                    | * *.        | 1        |          | 40             |                                       |           | L     |                 |        |        |                              |            |                 |        | _            |                                            |               |              |                |
|             | gravel, oxidized, brown, wet, compact                                  | ·           | 2        | SS       | 13             |                                       |           |       |                 |        |        |                              |            |                 |        | 0            |                                            |               |              |                |
|             | compact                                                                | . • `       |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        | ' '         | ╁        |          |                | 1                                     |           | ŀ     |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        | · .         |          |          |                |                                       | 178       |       |                 |        |        | 1                            |            |                 |        |              |                                            | 1             |              |                |
| 77.9<br>1.4 | END OF BOREHOLE ON                                                     | + •         | ┝        | $\vdash$ | _              | -                                     |           |       |                 |        |        |                              |            |                 |        |              |                                            | $\vdash$      | $\vdash$     |                |
| 4           | ASSUMED BEDROCK                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             | Notes:                                                                 |             |          |          |                |                                       |           |       |                 | K      |        |                              |            |                 |        |              |                                            |               |              |                |
|             | Auger refusal at 1.37m on assumed bedrock                              |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             | <ol><li>Borehole was wet at bottom</li></ol>                           |             |          |          |                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             | upon completion of drilling                                            |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          | M              |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        | 1           |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             | 1        |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            | 1             |              |                |
|             |                                                                        |             | 1        |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            | 1             |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             | 1        |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            | 1             |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             | 1        |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            | 1             |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
|             |                                                                        |             |          |          |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |
| 1           |                                                                        | 1           |          | 1        |                |                                       |           |       |                 |        |        |                              |            |                 |        |              |                                            |               |              |                |



GRAPH NOTES +  $^3$ ,  $\times$   $^3$ : Numbers refer to Sensitivity

 $\circ$  8=3% Strain at Failure



CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 6

|                | SOIL PROFILE                                                      |             | S      | AMPL | ES             |                            |           | DYNAI<br>RESIS | MIC CO<br>TANCE | NE PEN<br>PLOT | NETRA | TION                |              |                                                  | NAT    | ΠRΔΙ          |                 |                           |                         | REMARK    |
|----------------|-------------------------------------------------------------------|-------------|--------|------|----------------|----------------------------|-----------|----------------|-----------------|----------------|-------|---------------------|--------------|--------------------------------------------------|--------|---------------|-----------------|---------------------------|-------------------------|-----------|
| ()             |                                                                   |             |        |      |                | TER                        |           |                | 0 4             |                |       |                     | 00           | PLASTI<br>LIMIT                                  | C MOIS | TURE          | LIQUIE<br>LIMIT | ä.                        | TW TII                  | AND       |
| (m)<br>ELEV    |                                                                   | STRATA PLOT |        |      | BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | Z         | SHE/           | AR ST           | 1              |       |                     |              | W <sub>P</sub>                                   |        | w<br>0        | $W_{L}$         | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (KN/m³) | GRAIN SIZ |
| EPTH           | DESCRIPTION                                                       | TAI         | 3ER    |      | 0.3            | S E                        | ATIC      | 0 UI           | AR STI          | INED           | +     | FIELD V<br>& Sensit | ANE<br>ivity | l '                                              |        | _             |                 | Š.                        | TUR,                    | (%)       |
|                |                                                                   | TRA         | NUMBER | TYPE | ž              | SROI<br>SONI               | ELEVATION | ● QI           | JICK II         | RIAXIAL        | . ×   | LAB V               | ANÉ<br>00    |                                                  |        | ONTEN<br>20 : | T (%)<br>30     |                           | Ž                       |           |
| 179.1<br>179:8 | TOPSOIL: 100mm                                                    | 7/ 1/V.     | _      |      | F              | 0 0                        |           |                | <u> </u>        |                |       | -                   | 1            | <del></del>                                      |        | <u> </u>      | 1               | <u> </u>                  |                         | GR SA SI  |
| 79:0           | FILL: sand and gravel, trace silt,                                | $\times$    |        |      |                |                            | 179       |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                | trace clay, trace topsoil, reddish                                | $\bowtie$   |        |      |                |                            | '''       |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
| 78.8<br>0.3    | _ brown, dense some clay, dark brown, moist to                    | $\bowtie$   | 1      | SS   | 31             |                            |           | -              |                 |                |       |                     |              |                                                  | þ      |               |                 |                           |                         |           |
|                | very moist                                                        | $\bowtie$   |        |      |                |                            |           | -              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   | $\bowtie$   |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   | $\bowtie$   |        |      |                | -                          |           | L              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
| 78.4<br>0.8    |                                                                   | $\boxtimes$ |        |      |                |                            |           | ŀ              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
| 8.0            | silty sand, some gravel, some clay, wet, compact                  | $\bowtie$   |        |      |                |                            |           | -              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                | wet, compact                                                      | $\bowtie$   |        |      |                |                            |           | -              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
| 78.1           |                                                                   |             | 2      | SS   | 16             |                            |           | -              |                 |                |       |                     |              |                                                  | (      |               |                 |                           |                         |           |
| 1.1            | SAND: trace silt, trace clay, trace gravel, oxidized, brown, wet, |             |        |      |                |                            | 178       |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                | compact                                                           | [·          |        |      |                |                            |           | -              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           | F d            |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   | . · ]       |        |      |                |                            |           | -              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           | }              |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
| 77.5<br>1.7    | END OF BOREHOLE ON                                                | $\vdash$    |        |      |                |                            |           |                |                 |                |       |                     |              | <del>                                     </del> |        |               |                 | $\vdash$                  |                         |           |
|                | ASSUMED BEDROCK                                                   |             |        |      |                | \ \ \                      |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                | Notes: 1. Auger refusal at 1.65m on                               |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                | assumed bedrock                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                | Borehole was wet at bottom upon completion of drilling            |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        | 7    |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      | $\prec$        |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      | ľ              |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 |                           |                         |           |
|                |                                                                   |             |        |      |                |                            |           |                |                 |                |       |                     |              |                                                  |        |               |                 | 1                         |                         |           |
| - 1            |                                                                   | 1 I         |        |      | I              | I                          | 1         | ı              | l               | l              | 1     | 1                   | 1            | 1                                                | 1      | 1             | 1               | 1                         | i l                     |           |





PROJECT: Geotechnical Investigation
CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 7

|             | M: Geodetic                                                              |                |        |       |                |                  |           | Date:   | Dec/    | 11/201       | 4      |                     |              |                 |                       | DI            | RG. N                                                                     | O.: 7                 |                         |                |
|-------------|--------------------------------------------------------------------------|----------------|--------|-------|----------------|------------------|-----------|---------|---------|--------------|--------|---------------------|--------------|-----------------|-----------------------|---------------|---------------------------------------------------------------------------|-----------------------|-------------------------|----------------|
| BH LC       | OCATION: SOIL PROFILE                                                    |                | 9      | SAMPL | ES             |                  | 1         | DYNA    | MIC CC  | NE PEN       | NETRA  | TION                |              |                 |                       |               |                                                                           |                       |                         |                |
|             | SOIL I NOT ILL                                                           |                |        |       | .LO            | 8                |           | 1       |         |              |        |                     |              | PLASTI          | IC NAT<br>MOIS<br>CON | URAL<br>STURE | LIQUIE<br>LIMIT<br>W <sub>L</sub><br>———————————————————————————————————— | )<br>                 | NATURAL UNIT WT (kN/m³) | REMARKS<br>AND |
| (m)         |                                                                          | STRATA PLOT    |        |       | ωL             | GROUND WATER     | 2         | 2       | 20 4    | 0 6          | 0 8    | 30 1                | 00           | W <sub>P</sub>  | CON                   | TENT<br>w     | W                                                                         | T PEI<br>KPa)         | LIND.                   | GRAIN SIZI     |
| ELEV        | DESCRIPTION                                                              | A P            | æ      |       | BLOWS<br>0.3 m | 7 5              | ELEVATION | SHE     | AR ST   | RENG<br>INED | TH (kl | Pa)<br>FIELD V      | ANE          | ∸               |                       | o             | <u></u>                                                                   | S<br>S<br>S<br>S<br>S | JRAL<br>(KN/i           | DISTRIBUTION   |
| EPTH        |                                                                          | ZAT            | NUMBER | Ж     |                | 5 5              |           | • Q     | UICK TI | RIAXIAL      | . ×    | & Sensiti<br>LAB VA | ivity<br>ANE | WA <sup>-</sup> | TER CO                | ONTEN         | T (%)                                                                     | 1 O                   | NA<br>T                 | (%)            |
| 178.8       |                                                                          | STF            | N      | TYPE  | ż              | A C              | 3   🗒     |         |         |              |        |                     | 00           | 1               | 0 2                   | 20 :          | 30                                                                        |                       |                         | GR SA SI       |
| 178:9       | TOPSOIL: 100mm                                                           | 71 14          |        |       |                |                  |           | 1       |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 0.1         | FILL:silty sand, some gravel to                                          | $\times$       |        |       |                |                  |           | ŀ       |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             | gravelly, trace to some clay, trace topsoil, light brown, moist, compact | $\times$       |        |       |                |                  |           | ŀ       |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             | topson, light brown, moist, compact                                      | $\bowtie$      | 1      | SS    | 13             |                  |           | F       |         |              |        |                     |              |                 | 0                     |               |                                                                           |                       |                         |                |
| 78.4        |                                                                          | $\times$       |        |       |                |                  |           | ŀ       |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 0.5         | SAND: some silt, trace clay, trace gravel, oxidized, brown, moist to     | '.             |        |       |                | <u> </u>         | W. L.     | 178.3   | m       |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             | very moist, compact                                                      |                |        |       |                |                  | Jan 19    | 9, 2015 | 5       |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 78.1        |                                                                          | · ·            |        |       |                |                  |           | -       |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 0.8         | some clay, wet                                                           | †: i           |        |       |                |                  | 178       | 3       |         |              |        |                     |              |                 |                       |               |                                                                           | 4                     |                         |                |
|             |                                                                          | :              |        |       |                |                  |           | 1       |         |              |        | 1                   |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | • •            |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                | 2      | SS    | 12             |                  |           |         |         |              |        |                     |              |                 |                       |               | o                                                                         |                       |                         |                |
|             |                                                                          | [              |        |       |                |                  |           |         |         |              | ì      |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| ,, <u> </u> |                                                                          | :              |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 77.5<br>1.4 | AUGER REFUSAL / ROCK                                                     | <del>V</del>   |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           | $\vdash$              | $\vdash$                |                |
| 1           | CORING STARTED Refer Log of                                              |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             | Rock Core BH14-07 RUN 1                                                  |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 77.4        | KON I                                                                    |                |        |       |                |                  |           |         | `       |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 77.1<br>1.8 | - RUN 2                                                                  | +              |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           | K       |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  | 1         | ъ.      |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | 1 🗏              |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | NE               | 3         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | N E              | :<br>r    |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | ΙĦ               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | ΙĦ               | -         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       | ľ              |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | $\otimes$      |        |       |                | LΒ               | :         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  | 12<br>13  |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  | 읡         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 75.5<br>3.3 | RUN 3                                                                    | +              |        |       |                | lΒ               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | $\otimes$      |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | ľΒ               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | $\otimes$      |        |       |                | ΙĦ               | :         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | $\otimes$      |        |       |                | 目目               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | 丨目               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | :   <del> </del> |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | <b>X</b> //    |        |       |                | 目                |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                |                  |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | 日日               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          |                |        |       |                | 日目               | ी         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 74.0<br>4.8 | - DUN 4                                                                  | ¥/A            |        |       |                |                  | 1         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
| 4.8         | RUN 4                                                                    |                |        |       |                | 日日               |           |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |
|             |                                                                          | $\mathbb{Z}/2$ |        |       |                |                  | 0         |         |         |              |        |                     |              |                 |                       |               |                                                                           |                       |                         |                |

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$ 

Continued Next Page

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$ 

 $\circ$  8=3% Strain at Failure



PROJECT: Geotechnical Investigation
CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 7

| BH LOCATION:                                                                                                                                                                                                                                                                              |        |       |                           |                            |           | Dato.                | Dec/1   | 1,201                         | •                       |      |                  |                           |        | Di         | RG. NO                | J 1                       |                         |                                |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------------------------|----------------------------|-----------|----------------------|---------|-------------------------------|-------------------------|------|------------------|---------------------------|--------|------------|-----------------------|---------------------------|-------------------------|--------------------------------|-------------------------|
| SOIL PROFILE                                                                                                                                                                                                                                                                              |        | SAMPL | ES.                       |                            |           | DYNA!<br>RESIS       | MIC COI | NE PEN<br>PLOT                | NETRA                   | TION |                  |                           | . NATI | IRAI       |                       |                           | L                       | REMA                           | RKS                     |
| (m) ELEV DEPTH DESCRIPTION                                                                                                                                                                                                                                                                | NUMBER | ТУРЕ  | "N" <u>BLOWS</u><br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | SHEA<br>O UN<br>• QL | 0 4     | 0 6<br>RENG<br>NED<br>RIAXIAL | 0 8<br>TH (kf<br>+<br>× | 30 1 | ANE ivity ANE 00 | W <sub>P</sub><br>⊢<br>WA | TER CC | w<br>DNTEN | LIQUID LIMIT WL T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | ANI<br>GRAIN<br>DISTRIB<br>(%) | D<br>SIZE<br>UTIOI<br>) |
| RUN 4(Continued)  END OF BOREHOLE Notes:  1. Auger refusal at 1.37m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.57 178.25 Jan. 19, 2015 0.48 178.34 |        |       |                           |                            |           |                      |         |                               |                         |      |                  |                           |        |            |                       |                           |                         |                                |                         |





CLIENT: C.C. Tatham & Associates Ltd. LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm

Date: Dec/11/2014

DRG. NO.: 7

REF. NO.: 10001104

| BH LO                                                   | OCATION:                                                                                           |                            |        |             |                            |                            |                |         |                               |                              |                  | _                                  |                                     |                                         |                               |                            |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|--------|-------------|----------------------------|----------------------------|----------------|---------|-------------------------------|------------------------------|------------------|------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------|----------------------------|
|                                                         |                                                                                                    | <u>«</u>                   | SAN    | DRE<br>MPLE |                            |                            | (%             |         | Ä                             |                              |                  | m/sec)                             |                                     | -<br>MPa)*                              | (MPa)                         |                            |
| (m) ELEV DEPTH                                          | ROCK DESCRIPTION Rock Surface                                                                      | GROUND WATER<br>CONDITIONS | NUMBER | SIZE        | TOTAL CORE<br>RECOVERY (%) | SOLID CORE<br>RECOVERY (%) | HARD LAYER (%) | RQD (%) | FRACTURE INDEX<br>(per 0.3 m) | DISCONTINUITIES              | Weathering Index | HYDRAULIC<br>CONDUCTIVITY (cm/sec) | POINT LOAD TEST<br>UCS AXIAL (MPa)* | POINT LOAD TEST<br>UCS DIAMETRAL (MPa)* | UNIAXIAL<br>COMPRESSION (MPa) | DENSITY (g/cm³)<br>E (GPa) |
| 17 <b>7</b> . <del>\$</del>                             | LIMESTONE: slightly weathered to fresh, fine- to coarse-grained, fossiliferous, argillaceous, grey |                            | 1      | NQ          | 87                         | 0                          |                | 0       | >25                           |                              |                  |                                    |                                     |                                         |                               |                            |
| 177.1<br>1.8                                            |                                                                                                    |                            |        |             |                            |                            |                |         | > <u>25</u><br>15             |                              |                  |                                    |                                     |                                         |                               |                            |
|                                                         |                                                                                                    |                            | 2      | NQ          | 100                        | 93                         |                | 83      | 6 3                           |                              |                  |                                    |                                     |                                         |                               |                            |
| 175.5<br>3.3                                            |                                                                                                    |                            |        |             |                            |                            | 7              |         | 4                             | Soft Layer at 3.36m for 30mm |                  |                                    |                                     |                                         |                               |                            |
|                                                         |                                                                                                    |                            |        |             |                            |                            |                |         | 1                             |                              |                  |                                    |                                     |                                         |                               |                            |
|                                                         |                                                                                                    |                            | 3      | NQ          | 100                        | 92                         |                | 77      | 5                             |                              |                  |                                    |                                     |                                         |                               |                            |
|                                                         |                                                                                                    |                            |        |             |                            |                            |                |         | 0                             |                              |                  |                                    |                                     |                                         |                               |                            |
| 174.0<br>4.8                                            |                                                                                                    |                            |        |             |                            |                            |                |         | 3                             |                              |                  |                                    |                                     |                                         |                               |                            |
| .GDT 2/12                                               |                                                                                                    |                            |        |             |                            |                            |                |         | 0                             |                              |                  |                                    |                                     |                                         |                               |                            |
| S.GPJ SPI                                               |                                                                                                    |                            |        |             |                            |                            |                |         | 1                             |                              |                  |                                    |                                     |                                         |                               |                            |
| SPL ROCK CORE-2014 10001104 BH LOGS.GPJ SPL.GDT 2/12/15 |                                                                                                    |                            | 4      | NQ          | 100                        | 98                         |                | 98      | 0                             |                              |                  |                                    |                                     |                                         |                               |                            |
| -2014 1000                                              |                                                                                                    |                            |        |             |                            |                            |                |         | 1                             |                              |                  |                                    |                                     |                                         |                               |                            |
| 9<br>0<br>0<br>172.5                                    |                                                                                                    |                            |        |             |                            |                            |                |         | 0                             |                              |                  |                                    |                                     |                                         |                               |                            |
| 6.3                                                     | END OF BOREHOLE                                                                                    | <u> </u>                   |        |             |                            |                            |                |         |                               |                              |                  |                                    |                                     |                                         |                               |                            |



CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 8

BH LOCATION:

|                                                 | SOIL PROFILE                                                                                                                                                                                                                                                                               | (           | SAMPL | ES                 |                            |                 | DYN/<br>RESI      | AMIC CO<br>STANCE          | NE PEN<br>E PLOT                        | NETRA            | TION                        |                    | ΡΙ ΔΩΤΙ | c NAT  | URAL            | LIQUID                  |                           | ۲                          | REM   | MARKS                            |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|--------------------|----------------------------|-----------------|-------------------|----------------------------|-----------------------------------------|------------------|-----------------------------|--------------------|---------|--------|-----------------|-------------------------|---------------------------|----------------------------|-------|----------------------------------|
| (m)<br><u>ELEV</u><br>DEPTH<br>179.2            |                                                                                                                                                                                                                                                                                            | STRATA PLOT | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION       | SHE<br>O L        | AR ST<br>INCONF<br>QUICK T | 40 6<br>RENG<br>INED<br>RIAXIAL<br>40 6 | TH (kl<br>+<br>× | Pa) FIELD V & Sensiti LAB V | ANE<br>vity<br>ANE |         | TER CO | w<br>o<br>ONTEN | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) |       | IND<br>IN SIZE<br>IBUTION<br>(%) |
| 0.0 - 179.0 0.1                                 | TOPSOIL: 125mm  FILL: fine sand, trace to some gravel, trace silt, trace clay, trace topsoil, trace organics, light brown, moist to very moist, very loose                                                                                                                                 | 1           | SS    | 3                  |                            | 179             | -                 |                            |                                         |                  |                             |                    |         | o      |                 |                         | -                         |                            |       |                                  |
| 178.4<br>- 0.8<br>- 1                           | SAND: trace silt, trace clay, trace gravel, trace mollusks, oxidized, brown, very moist to wet, compact                                                                                                                                                                                    | 2           | SS    | 13                 | <b>Y</b>                   | W. L.<br>Jan 19 | ), 201<br> <br> - | m<br>5                     |                                         |                  |                             |                    |         |        | 0               |                         | _                         |                            |       |                                  |
| _177.7<br>1.5<br>-<br>-<br>-<br>-<br>2<br>177.1 | some gravel to gravelly, light brown                                                                                                                                                                                                                                                       | 3           | SS    | 19                 |                            |                 |                   |                            |                                         |                  |                             |                    |         | 0      |                 |                         |                           |                            | 19 64 | l 11 ·                           |
| 2.1                                             | END OF BOREHOLE ON ASSUMED BEDROCK Notes:  1. Auger refusal at 2.10m on assumed bedrock 2. Installed 50 mm diameter monitoring well upon completion 3. Water Level Measurements in Monitoring Well: Date W.L. Depth (m) W.L. Elev. (m) Dec. 12, 2014 0.90 178.27 Jan. 19, 2015 0.85 178.35 |             |       |                    |                            |                 |                   |                            |                                         |                  |                             |                    |         |        |                 |                         |                           |                            |       |                                  |
|                                                 |                                                                                                                                                                                                                                                                                            |             |       |                    |                            |                 |                   |                            |                                         |                  |                             |                    |         |        |                 |                         |                           |                            |       |                                  |



CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 9

|                                      | JM: Geodetic<br>DCATION:                                                                                                                                   |             |        |       |                    |                            |           | Date:                             | Dec/ 1                             | 1/201                         | •                       |      |     |   |        | וט          | RG. NO                                     | J 9                       |         |                                     |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------|-----------------------------------|------------------------------------|-------------------------------|-------------------------|------|-----|---|--------|-------------|--------------------------------------------|---------------------------|---------|-------------------------------------|
| רוט ב                                | SOIL PROFILE                                                                                                                                               |             | 5      | SAMPL | ES                 |                            |           | DYNAI<br>RESIS                    | MIC CO<br>TANCE                    | NE PEN<br>PLOT                | NETRA                   | TION |     |   | o NATI | JRAI        |                                            |                           | <u></u> | REMARK                              |
| (m) ELEV DEPTH 179.9                 | DESCRIPTION                                                                                                                                                | STRATA PLOT | NUMBER | ТҮРЕ  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 2<br>SHE <i>A</i><br>O UI<br>• QI | 0 4<br>AR STI<br>NCONFI<br>JICK TE | 0 6<br>RENG<br>NED<br>RIAXIAL | 0 8<br>TH (kF<br>+<br>× |      | ANE |   | TER CO | v<br>DOMTEN | LIQUID<br>LIMIT<br>W <sub>L</sub><br>T (%) | POCKET PEN.<br>(Cu) (kPa) | _       | AND GRAIN SI DISTRIBUT (%) GR SA SI |
| 17 <b>9.0</b><br>0.1<br>179.7<br>0.2 | ASPHALT: 50mm  GRANULAR BASE/SUBBASE: 150mm, sand and gravel  FILL: silty sand, some gravel, trace to some clay, light brown, moist to very moist, compact | ° °         | 1      | SS    | 21                 |                            |           | -                                 |                                    |                               |                         |      |     | C |        |             |                                            |                           |         |                                     |
| 179.2<br>0.8                         | SAND: trace silt, trace clay, trace gravel, trace mollusks, light brown, wet, compact                                                                      |             | 2      | SS    | 14                 |                            | 179       | -                                 |                                    |                               |                         |      |     |   |        | 0           |                                            |                           |         |                                     |
| 178.6<br>1.4                         | END OF BOREHOLE ON ASSUMED BEDROCK Notes:  1. Auger refusal at 1.37m on assumed bedrock 2. Water level was 1.05m upon completion of drilling               |             |        |       |                    |                            |           |                                   |                                    |                               |                         |      |     |   |        |             |                                            |                           |         |                                     |







CLIENT: C.C. Tatham & Associates Ltd.

PROJECT LOCATION: 11476 Highway 26, Collingwood, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 10001104

Date: Dec/11/2014 DRG. NO.: 10

|                                      | SOIL PROFILE                                                                                                                                                    |             | S      | SAMPL | ES.                       | <u>_</u>                   |           | DYNA<br>RESIS    | MIC CO                     | NE PEI<br>PLOT                  | NETRA              | TION                        |                    | PLASTI                                 | C NATI | JRAL       | LIQUID                  |                           | ۲.                      | REMAR                                        | KS   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|---------------------------|----------------------------|-----------|------------------|----------------------------|---------------------------------|--------------------|-----------------------------|--------------------|----------------------------------------|--------|------------|-------------------------|---------------------------|-------------------------|----------------------------------------------|------|
| (m)<br><u>ELEV</u><br>DEPTH<br>179.7 | DESCRIPTION                                                                                                                                                     | STRATA PLOT | NUMBER | ТҮРЕ  | "N" <u>BLOWS</u><br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | SHEA<br>O UI     | AR STI<br>NCONF<br>UICK TE | LENG<br>RENG<br>INED<br>RIAXIAL | TH (ki<br>+<br>- × | Pa) FIELD V & Sensit LAB V/ | ANE<br>vity<br>ANE | PLASTII<br>LIMIT<br>W <sub>P</sub><br> | TER CC | w<br>DNTEN | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | AND<br>GRAIN S<br>DISTRIBU<br>(%)<br>GR SA S | SIZE |
| 179:8                                | TOPSOIL: 100mm                                                                                                                                                  | 7/1/2       | ┢      | '     | -                         |                            | _         |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         | OIX OIX C                                    | _    |
| 0.1                                  | FILL: sand and gravel, some silt, trace clay, pieces of pvc piping, light grey, moist, loose                                                                    |             | 1      | SS    | 7                         |                            | 170       | -                |                            |                                 |                    |                             |                    | 0                                      |        |            |                         |                           |                         |                                              |      |
| 178.9                                |                                                                                                                                                                 | $\otimes$   |        |       |                           |                            | 179       |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
| - 0.8<br>- <u>1</u><br>              | SAND: some silt, trace clay, trace gravel, oxidized, light brown, very moist to wet, compact                                                                    |             | 2      | SS    | 12                        |                            |           | -<br>-<br>-<br>- |                            |                                 |                    |                             |                    |                                        |        | 0          |                         |                           |                         |                                              |      |
|                                      |                                                                                                                                                                 | · .         |        |       |                           |                            |           |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
|                                      |                                                                                                                                                                 | · · ·       |        |       |                           |                            | 178       |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
| 2                                    |                                                                                                                                                                 |             | 3      | SS    | 14                        |                            |           |                  |                            |                                 |                    |                             |                    |                                        |        | О          |                         |                           |                         |                                              |      |
| 177.4                                |                                                                                                                                                                 |             |        | <     |                           |                            |           |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
| 2.3                                  | <b>GRAVELLY SAND:</b> some silt, trace clay, greyish brown, wet, compact                                                                                        | 0000        |        | 20    | 00                        |                            |           | <u> </u><br> -   |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
|                                      |                                                                                                                                                                 |             | 4      | SS    | 23                        |                            | 177       |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         | -                         |                         |                                              |      |
| <sup>3</sup> 176.6                   |                                                                                                                                                                 | , ()<br>,   |        |       |                           | -                          |           | -                |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
| 3.1                                  | END OF BOREHOLE ON ASSUMED BEDROCK Notes:  1. Auger refusal and spoon bouncing at 3.05m on assumed bedrock 2. Water level was 2.42m upon completion of drilling |             |        |       |                           |                            |           |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |
|                                      |                                                                                                                                                                 |             |        |       |                           |                            |           |                  |                            |                                 |                    |                             |                    |                                        |        |            |                         |                           |                         |                                              |      |





# **Appendix D**







## **FINAL REPORT**

CA40211-MAY24 R1

22-189-402, 11476 Highway 26, Collingwood ON

Prepared for

**DS Consultants** 



### First Page

| CLIENT DETAILS | S                                            | LABORATORY DETAI   | LS                                        |
|----------------|----------------------------------------------|--------------------|-------------------------------------------|
| Client         | DS Consultants                               | Project Specialist | Jill Campbell, B.Sc.,GISAS                |
|                |                                              | Laboratory         | SGS Canada Inc.                           |
| Address        | 6221 Highway 7 Unit 16                       | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Vaughan, Ontario                             |                    |                                           |
|                | L4H 0K8. Canada                              |                    |                                           |
| Contact        | Dorothy Santos                               | Telephone          | 2165                                      |
| Telephone      | 905-329-2735                                 | Facsimile          | 705-652-6365                              |
| Facsimile      | 905-264-2685                                 | Email              | jill.campbell@sgs.com                     |
| Email          | dsantos@dsconsultants.ca                     | SGS Reference      | CA40211-MAY24                             |
| Project        | 22-189-402, 11476 Highway 26, Collingwood ON | Received           | 05/24/2024                                |
| Order Number   |                                              | Approved           | 05/31/2024                                |
| Samples        | Solution (2)                                 | Report Number      | CA40211-MAY24 R1                          |
|                |                                              | Date Reported      | 06/03/2024                                |

#### COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:yes

Custody Seal Present:yes

Chain of Custody Number:036148

Phos TR spk low due to sample matrix

#### SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell





### **TABLE OF CONTENTS**

| First Page         | 1-2  |
|--------------------|------|
| Index              | 3    |
| Results            | 4-6  |
| Exceedance Summary | 7    |
| QC Summary         | 8-16 |
| Legend             | 17   |
| Annexes            | 18   |

## FINAL REPORT



Client: DS Consultants

**Project:** 22-189-402, 11476 Highway 26, Collingwood ON

Project Manager: Dorothy Santos

Samplers: Chaitonya

| MATRIX: WATER                                       |               |         | Sample Number | 7          | 8          |
|-----------------------------------------------------|---------------|---------|---------------|------------|------------|
|                                                     |               |         | Sample Name   | SG-1       | SG-2       |
| = PWQO_L / WATER / Table 2 - General - July 1999 Pl | PIBS 3303E    |         | Sample Matrix | Solution   | Solution   |
|                                                     |               |         | Sample Date   | 24/05/2024 | 24/05/2024 |
| Parameter                                           | Units         | RL      | L1            | Result     | Result     |
| Seneral Chemistry                                   |               |         |               |            |            |
| Alkalinity                                          | mg/L as CaCO3 | 2       |               | 226        | 183        |
| Bicarbonate                                         | mg/L as CaCO3 | 2       |               | 226        | 183        |
| Carbonate                                           | mg/L as CaCO3 | 2       |               | < 2        | < 2        |
| ОН                                                  | mg/L as CaCO3 | 2       |               | < 2        | < 2        |
| Colour                                              | TCU           | 3       |               | 46         | 38         |
| Conductivity                                        | uS/cm         | 2       |               | 466        | 925        |
| Turbidity                                           | NTU           | 0.10    |               | 40         | 8.5        |
| Ammonia+Ammonium (N)                                | as N mg/L     | 0.1     |               | < 0.1      | < 0.1      |
| Total Reactive Phosphorous (o-phosphate             | mg/L          | 0.03    |               | < 0.03     | < 0.03     |
| as P)                                               |               |         |               |            |            |
| Total Organic Carbon                                | mg/L          | 1       |               | 19         | 12         |
| etals and Inorganics                                |               |         |               |            |            |
| Fluoride                                            | mg/L          | 0.06    |               | 0.14       | 0.09       |
| Bromide                                             | mg/L          | 0.3     |               | < 0.3      | < 0.3      |
| Nitrite (as N)                                      | as N mg/L     | 0.03    |               | < 0.03     | < 0.03     |
| Nitrate (as N)                                      | as N mg/L     | 0.06    |               | < 0.06     | < 0.06     |
| Sulphate                                            | mg/L          | 2       |               | < 2        | < 2        |
| Hardness                                            | mg/L as CaCO3 | 0.05    |               | 218        | 213        |
| Aluminum (total)                                    | mg/L          | 0.001   |               | 0.029      | 0.038      |
| Arsenic (total)                                     | mg/L          | 0.0002  | 0.005         | 0.0013     | 0.0012     |
| Boron (total)                                       | mg/L          | 0.002   | 0.2           | 0.021      | 0.012      |
| Barium (total)                                      |               | 0.00008 |               | 0.0177     | 0.0205     |
| - Court                                             | g/L           | 2.00000 |               | 0.0177     | 0.0200     |



Client: DS Consultants

**Project:** 22-189-402, 11476 Highway 26, Collingwood ON

Project Manager: Dorothy Santos

Samplers: Chaitonya

| MATRIX: WATER                                               |        |          | Sample Number | 7               | 8          |
|-------------------------------------------------------------|--------|----------|---------------|-----------------|------------|
|                                                             |        |          | Sample Name   | SG-1            | SG-2       |
| = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E |        |          | Sample Matrix | Solution        | Solution   |
|                                                             |        |          | Sample Date   | 24/05/2024      | 24/05/2024 |
| Parameter                                                   | Units  | RL       | L1            | Result          | Result     |
| letals and Inorganics (continued)                           |        |          |               |                 |            |
| Beryllium (total)                                           | mg/L   | 0.000007 | 1.1           | < 0.000007      | < 0.000007 |
| Cobalt (total)                                              | mg/L   | 0.000004 | 0.0009        | 0.000552        | 0.000446   |
| Calcium (total)                                             | mg/L   | 0.01     |               | 69.9            | 69.4       |
| Cadmium (total)                                             | mg/L   | 0.000003 | 0.0005        | 0.000005        | < 0.000003 |
| Copper (total)                                              | mg/L   | 0.001    | 0.005         | < 0.001         | < 0.001    |
| Chromium (total)                                            | mg/L   | 0.00008  | 0.1           | 0.00020         | 0.00020    |
| Iron (total)                                                | mg/L   | 0.007    | 0.3           | 2.69            | 2.13       |
| Potassium (total)                                           | mg/L   | 0.009    |               | 5.66            | 3.26       |
| Magnesium (total)                                           | mg/L   | 0.001    |               | 10.6            | 9.64       |
| Manganese (total)                                           | mg/L   | 0.00001  |               | 0.149           | 0.346      |
| Molybdenum (total)                                          | mg/L   | 0.0004   | 0.04          | < 0.0004        | < 0.0004   |
| Nickel (total)                                              | mg/L   | 0.0001   | 0.025         | 0.0015          | 0.0008     |
| Sodium (total)                                              | mg/L   | 0.01     |               | 14.7            | 117        |
| Phosphorus (total)                                          | mg/L   | 0.003    | 0.01          | 0.094           | 0.095      |
| Lead (total)                                                | mg/L   | 0.00009  | 0.025         | 0.00016         | 0.00010    |
| Silicon (total)                                             | mg/L   | 0.02     |               | 0.93            | 2.04       |
| Silver (total)                                              | mg/L   | 0.00005  | 0.0001        | < 0.00005       | < 0.00005  |
| Strontium (total)                                           |        | 0.00008  |               | 0.215           | 0.204      |
| Thallium (total)                                            |        | 0.000005 | 0.0003        | 0.000005        | < 0.000005 |
| Tin (total)                                                 | mg/L   | 0.00006  |               | 0.00006         | 0.00008    |
| Titanium (total)                                            | mg/L   | 0.0001   |               | 0.0018          | 0.0022     |
| Antimony (total)                                            | mg/L   | 0.0009   | 0.02          | < 0.0009        | < 0.0022   |
| Antimoriy (total)                                           | IIIg/L | 0.0009   | 0.02          | <b>~</b> 0.0009 | < 0.0009   |



Client: DS Consultants

**Project:** 22-189-402, 11476 Highway 26, Collingwood ON

Project Manager: Dorothy Santos

Samplers: Chaitonya

|              |                                                                            | Sar                                                                                                                                                                                                                                                                                                                                                                                                    | mple Number                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                          |
|--------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|              |                                                                            | S                                                                                                                                                                                                                                                                                                                                                                                                      | ample Name                                                      | SG-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SG-2                                                       |
| PIBS 3303E   |                                                                            | s                                                                                                                                                                                                                                                                                                                                                                                                      | ample Matrix                                                    | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solution                                                   |
|              |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Date                                                     | 24/05/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24/05/2024                                                 |
| Units        | RL                                                                         | L1                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result                                                     |
|              |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |
| mg/L         | 0.00004                                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | 0.00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010                                                    |
| mg/L         | 0.000002                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | 0.000029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000028                                                   |
| mg/L         | 0.00001                                                                    | 0.006                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | 0.00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00008                                                    |
| mg/L         | 0.002                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | < 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.002                                                    |
| meq/L        | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 5.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.58                                                       |
| meq/L        | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 5.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.58                                                       |
| % difference | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.02                                                      |
| -            | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                          |
| mg/L         | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 519                                                        |
| uS/cm        | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 958                                                        |
| @ 4° C       | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.19                                                       |
| pHs @ 4°C    | -9999                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 7.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.87                                                       |
|              |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |
| No unit      | 0.05                                                                       | 8.6                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | 7.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.06                                                       |
| mg/L         | 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210                                                        |
| mg/L         | 0.00001                                                                    | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.00001                                                  |
|              | mg/L mg/L mg/L mg/L meq/L meq/L % difference - mg/L uS/cm @ 4° C pHs @ 4°C | Units         RL           mg/L         0.00004           mg/L         0.000002           mg/L         0.00001           mg/L         0.002           meq/L         -9999           meq/L         -9999           % difference         -9999           mg/L         -9999           mg/L         -9999           uS/cm         -9999           pHs @ 4° C         -9999           No unit         0.05 | No unit   0.05   8.6   Mg/L   1   1   1   1   1   1   1   1   1 | Units         RL         L1           mg/L         0.00004         0.1           mg/L         0.000002         0.005           mg/L         0.00001         0.006           mg/L         -0.002         0.02           meq/L         -9999         -9999           % difference         -9999         -9999           mg/L         -9999         -9999           uS/cm         -9999         -9999           pHs @ 4°C         -9999         -9999           No unit         0.05         8.6           mg/L         1         -9999 | Sample Name   SG-1   Sample Matrix   Solution   24/05/2024 |



### **EXCEEDANCE SUMMARY**

|            |                   |       |        | PWQO_L / WATER  / Table 2 -  General - July 1999 |
|------------|-------------------|-------|--------|--------------------------------------------------|
|            |                   |       |        | PIBS 3303E                                       |
| Parameter  | Method            | Units | Result | L1                                               |
| 1          |                   |       |        |                                                  |
| Iron       | SM 3030/EPA 200.8 | mg/L  | 2.69   | 0.3                                              |
| Phosphorus | SM 3030/EPA 200.8 | mg/L  | 0.094  | 0.01                                             |

SG-2

| Iron       | SM 3030/EPA 200.8 | mg/L | 2.13  | 0.3  |
|------------|-------------------|------|-------|------|
| Phosphorus | SM 3030/EPA 200.8 | mg/L | 0.095 | 0.01 |

20240603 7 / 18



### QC SUMMARY

**Alkalinity** 

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

| Parameter  | QC batch      | Units   | RL | Method | Duplicate |     | LCS/Spike Blar  |     |                 | Matrix Spike / Ref. |                     | lef. |
|------------|---------------|---------|----|--------|-----------|-----|-----------------|-----|-----------------|---------------------|---------------------|------|
|            | Reference     |         |    | Blank  | RPD       | AC  | Spike           |     | ry Limits<br>%) | Spike<br>Recovery   | Recovery Limits (%) |      |
|            |               |         |    |        |           | (%) | Recovery<br>(%) | Low | High            | (%)                 | Low                 | High |
| Alkalinity | EWL0665-MAY24 | mg/L as | 2  | < 2    | 2         | 20  | 102             | 80  | 120             | NA                  |                     |      |
|            |               | CaCO3   |    |        |           |     |                 |     |                 |                     |                     |      |

# Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

| Parameter            | QC batch      | Units     | RL  | Method | Dup | licate | LCS             | S/Spike Blank       |      | Matrix Spike / Ref. |                     |      |
|----------------------|---------------|-----------|-----|--------|-----|--------|-----------------|---------------------|------|---------------------|---------------------|------|
|                      | Reference     |           |     | Blank  | RPD | AC     | Spike           | Recovery Limits (%) |      | Spike<br>Recovery   | Recovery Limits (%) |      |
|                      |               |           |     |        |     | (%)    | Recovery<br>(%) | Low                 | High | (%)                 | Low                 | High |
| Ammonia+Ammonium (N) | SKA0257-MAY24 | as N mg/L | 0.1 | <0.1   | 0   | 10     | 94              | 90                  | 110  | 103                 | 75                  | 125  |

20240603 8 / 18



### QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

| Parameter | QC batch      | Units | RL | Method | Dup | Duplicate I |                 | LCS/Spike Blank        |      |                   | Matrix Spike / Ref. |                 |  |
|-----------|---------------|-------|----|--------|-----|-------------|-----------------|------------------------|------|-------------------|---------------------|-----------------|--|
|           | Reference     |       |    | Blank  | RPD | AC (%)      | Spike           | Recovery Limits<br>(%) |      | Spike<br>Recovery | Recove              | ry Limits<br>%) |  |
|           |               |       |    |        |     | (%)         | Recovery<br>(%) | Low                    | High | (%)               | Low                 | High            |  |
| Chloride  | DIO8084-MAY24 | mg/L  | 1  | <1     | ND  | 20          | 99              | 80                     | 120  | 98                | 75                  | 125             |  |
| Sulphate  | DIO8084-MAY24 | mg/L  | 2  | <2     | ND  | 20          | 109             | 80                     | 120  | 109               | 75                  | 125             |  |

# Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

| Parameter      | QC batch      | Units | RL   | Method | Dup | licate    | LC                | S/Spike Blank |      | Matrix Spike / Ref. |     |            |
|----------------|---------------|-------|------|--------|-----|-----------|-------------------|---------------|------|---------------------|-----|------------|
|                | Reference     |       |      | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recove        | -    | Spike<br>Recovery   |     | ery Limits |
|                |               |       |      |        |     | (70)      | (%)               | Low           | High | (%)                 | Low | High       |
| Bromide        | DIO0646-MAY24 | mg/L  | 0.3  | <0.3   | ND  | 20        | 101               | 90            | 110  | 107                 | 75  | 125        |
| Nitrite (as N) | DIO0646-MAY24 | mg/L  | 0.03 | <0.03  | ND  | 20        | 97                | 90            | 110  | 97                  | 75  | 125        |
| Nitrate (as N) | DIO0646-MAY24 | mg/L  | 0.06 | <0.06  | ND  | 20        | 97                | 90            | 110  | 100                 | 75  | 125        |
| Bromide        | DIO0682-MAY24 | mg/L  | 0.3  | <0.3   | ND  | 20        | 97                | 90            | 110  | 94                  | 75  | 125        |
| Nitrite (as N) | DIO0682-MAY24 | mg/L  | 0.03 | <0.03  | ND  | 20        | 98                | 90            | 110  | 107                 | 75  | 125        |
| Nitrate (as N) | DIO0682-MAY24 | mg/L  | 0.06 | <0.06  | ND  | 20        | 98                | 90            | 110  | 91                  | 75  | 125        |

20240603 9 / 18



### QC SUMMARY

### Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

| Parameter            | QC batch      | Units | RL | Method | Duj | plicate | LC              | (%) |      | Matrix Spike / Ref. |         |                 |
|----------------------|---------------|-------|----|--------|-----|---------|-----------------|-----|------|---------------------|---------|-----------------|
|                      | Reference     |       |    | Blank  | RPD | AC      | Spike           |     |      | Spike<br>Recovery   | Recover | ry Limits<br>6) |
|                      |               |       |    |        |     | (%)     | Recovery<br>(%) | Low | High | (%)                 | Low     | High            |
| Total Organic Carbon | SKA0265-MAY24 | mg/L  | 1  | <1     | 3   | 20      | 102             | 90  | 110  | 100                 | 75      | 125             |

### Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

| Parameter   | QC batch      | Units            | RL | Method | Duplicate |     | LCS/Sp          |                     | S/Spike Blank |                   | Matrix Spike / Ref. |                |
|-------------|---------------|------------------|----|--------|-----------|-----|-----------------|---------------------|---------------|-------------------|---------------------|----------------|
|             | Reference     |                  |    | Blank  | RPD       | AC  | Spike           | Recovery Limits (%) |               | Spike<br>Recovery | Recover             | y Limits<br>6) |
|             |               |                  |    |        |           | (%) | Recovery<br>(%) | Low                 | High          | (%)               | Low                 | High           |
| Carbonate   | EWL0665-MAY24 | mg/L as          | 2  | < 2    | ND        | 10  | NA              | 90                  | 110           | NA                |                     |                |
| Bicarbonate | EWL0665-MAY24 | mg/L as<br>CaCO3 | 2  | < 2    | 2         | 10  | NA              | 90                  | 110           | NA                |                     |                |
| ОН          | EWL0665-MAY24 | mg/L as<br>CaCO3 | 2  | < 2    | ND        | 10  | NA              | 90                  | 110           | NA                |                     |                |

20240603



### QC SUMMARY

#### Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

| Parameter | QC batch      | Units | RL | Method | Duj | olicate | LCS/Spike Blank |                        | S/Spike Blank |                   | Matrix Spike / Ref. |      |  |
|-----------|---------------|-------|----|--------|-----|---------|-----------------|------------------------|---------------|-------------------|---------------------|------|--|
|           | Reference     |       |    | Blank  | RPD | AC      | Spike           | Recovery Limits<br>(%) |               | Spike<br>Recovery | Recover             | -    |  |
|           |               |       |    |        |     | (%)     | Recovery<br>(%) | Low                    | High          | (%)               | Low                 | High |  |
| Colour    | EWL0711-MAY24 | TCU   | 3  | < 3    | 0   | 10      | 105             | 80                     | 120           | NA                |                     |      |  |

### Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

| Parameter    | QC batch      | Units | RL | Method | Duj | plicate | LC              | S/Spike Blank  Recovery Limits  (%) |      | LCS/Spike Blank   |         | Matrix Spike / Ref. |  |  |
|--------------|---------------|-------|----|--------|-----|---------|-----------------|-------------------------------------|------|-------------------|---------|---------------------|--|--|
|              | Reference     |       |    | Blank  | RPD | AC      | Spike           |                                     |      | Spike<br>Recovery | Recover | -                   |  |  |
|              |               |       |    |        |     | (%)     | Recovery<br>(%) | Low                                 | High | (%)               | Low     | High                |  |  |
| Conductivity | EWL0665-MAY24 | uS/cm | 2  | < 2    | 0   | 20      | 99              | 90                                  | 110  | NA                |         |                     |  |  |

# Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

| Parameter | QC batch      | Units | RL   | Method | Dup | olicate | LC              | S/Spike Blank |                  | M                 | atrix Spike / Ref |                 |
|-----------|---------------|-------|------|--------|-----|---------|-----------------|---------------|------------------|-------------------|-------------------|-----------------|
|           | Reference     |       |      | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recover           | ry Limits<br>%) |
|           |               |       |      |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low               | High            |
| Fluoride  | EWL0667-MAY24 | mg/L  | 0.06 | <0.06  | 0   | 10      | 97              | 90            | 110              | 78                | 75                | 125             |

20240603 11 / 18



### QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

| Parameter       | QC batch      | Units | RL      | Method    | Dup | olicate | LC              | S/Spike Blank |                 | М                 | atrix Spike / Re | f.               |
|-----------------|---------------|-------|---------|-----------|-----|---------|-----------------|---------------|-----------------|-------------------|------------------|------------------|
|                 | Reference     |       |         | Blank     | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                  | ory Limits<br>%) |
|                 |               |       |         |           |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low              | High             |
| Mercury (total) | EHG0057-MAY24 | mg/L  | 0.00001 | < 0.00001 | 9   | 20      | 107             | 80            | 120             | 93                | 70               | 130              |

20240603 12 / 18



### QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

| Parameter          | QC batch      | Units | RL       | Method    | Dup | licate    | LC                | S/Spike Blank |                 | Ma                | atrix Spike / Ref | <i>l</i> .      |
|--------------------|---------------|-------|----------|-----------|-----|-----------|-------------------|---------------|-----------------|-------------------|-------------------|-----------------|
|                    | Reference     |       |          | Blank     | RPD | AC<br>(%) | Spike<br>Recovery | Recove        | ry Limits<br>%) | Spike<br>Recovery |                   | ry Limits<br>%) |
|                    |               |       |          |           |     | (         | (%)               | Low           | High            | (%)               | Low               | High            |
| Silver (total)     | EMS0279-MAY24 | mg/L  | 0.00005  | <0.00005  | ND  | 20        | 100               | 90            | 110             | 80                | 70                | 130             |
| Aluminum (total)   | EMS0279-MAY24 | mg/L  | 0.001    | <0.001    | 5   | 20        | 98                | 90            | 110             | 109               | 70                | 130             |
| Arsenic (total)    | EMS0279-MAY24 | mg/L  | 0.0002   | <0.0002   | ND  | 20        | 100               | 90            | 110             | 102               | 70                | 130             |
| Barium (total)     | EMS0279-MAY24 | mg/L  | 0.00008  | <0.00008  | 1   | 20        | 96                | 90            | 110             | 102               | 70                | 130             |
| Beryllium (total)  | EMS0279-MAY24 | mg/L  | 0.000007 | <0.000007 | ND  | 20        | 96                | 90            | 110             | 95                | 70                | 130             |
| Boron (total)      | EMS0279-MAY24 | mg/L  | 0.002    | <0.002    | ND  | 20        | 98                | 90            | 110             | 95                | 70                | 130             |
| Calcium (total)    | EMS0279-MAY24 | mg/L  | 0.01     | <0.01     | 2   | 20        | 98                | 90            | 110             | 101               | 70                | 130             |
| Cadmium (total)    | EMS0279-MAY24 | mg/L  | 0.000003 | <0.000003 | 0   | 20        | 98                | 90            | 110             | 96                | 70                | 130             |
| Cobalt (total)     | EMS0279-MAY24 | mg/L  | 0.000004 | <0.000004 | 8   | 20        | 101               | 90            | 110             | 100               | 70                | 130             |
| Chromium (total)   | EMS0279-MAY24 | mg/L  | 0.00008  | <0.00008  | ND  | 20        | 101               | 90            | 110             | 101               | 70                | 130             |
| Copper (total)     | EMS0279-MAY24 | mg/L  | 0.001    | <0.001    | ND  | 20        | 101               | 90            | 110             | 105               | 70                | 130             |
| Iron (total)       | EMS0279-MAY24 | mg/L  | 0.007    | <0.007    | 0   | 20        | 100               | 90            | 110             | 100               | 70                | 130             |
| Potassium (total)  | EMS0279-MAY24 | mg/L  | 0.009    | <0.009    | 2   | 20        | 99                | 90            | 110             | 107               | 70                | 130             |
| Magnesium (total)  | EMS0279-MAY24 | mg/L  | 0.001    | <0.001    | 3   | 20        | 100               | 90            | 110             | 100               | 70                | 130             |
| Manganese (total)  | EMS0279-MAY24 | mg/L  | 0.00001  | <0.00001  | 0   | 20        | 101               | 90            | 110             | 103               | 70                | 130             |
| Molybdenum (total) | EMS0279-MAY24 | mg/L  | 0.0004   | <0.0004   | ND  | 20        | 101               | 90            | 110             | 99                | 70                | 130             |
| Sodium (total)     | EMS0279-MAY24 | mg/L  | 0.01     | <0.01     | 0   | 20        | 109               | 90            | 110             | 107               | 70                | 130             |
| Nickel (total)     | EMS0279-MAY24 | mg/L  | 0.0001   | <0.0001   | 1   | 20        | 106               | 90            | 110             | 104               | 70                | 130             |
| Lead (total)       | EMS0279-MAY24 | mg/L  | 0.00009  | <0.00009  | ND  | 20        | 99                | 90            | 110             | 99                | 70                | 130             |
| Phosphorus (total) | EMS0279-MAY24 | mg/L  | 0.003    | <0.003    | 0   | 20        | 98                | 90            | 110             | NV                | 70                | 130             |

20240603 13 / 18



### QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

| Parameter         | QC batch      | Units | RL       | Method    | Dup | licate    | LC                | S/Spike Blank |      | М                 | atrix Spike / Ref |                 |
|-------------------|---------------|-------|----------|-----------|-----|-----------|-------------------|---------------|------|-------------------|-------------------|-----------------|
|                   | Reference     |       |          | Blank     | RPD | AC<br>(%) | Spike<br>Recovery | Recover       | •    | Spike<br>Recovery |                   | ry Limits<br>%) |
|                   |               |       |          |           |     | (70)      | (%)               | Low           | High | (%)               | Low               | High            |
| Antimony (total)  | EMS0279-MAY24 | mg/L  | 0.0009   | <0.0009   | ND  | 20        | 106               | 90            | 110  | 97                | 70                | 130             |
| Selenium (total)  | EMS0279-MAY24 | mg/L  | 0.00004  | <0.00004  | 2   | 20        | 98                | 90            | 110  | 98                | 70                | 130             |
| Silicon (total)   | EMS0279-MAY24 | mg/L  | 0.02     | <0.02     | 4   | 20        | 93                | 90            | 110  | NV                | 70                | 130             |
| Tin (total)       | EMS0279-MAY24 | mg/L  | 0.00006  | <0.00006  | 11  | 20        | 97                | 90            | 110  | NV                | 70                | 130             |
| Strontium (total) | EMS0279-MAY24 | mg/L  | 0.00008  | <0.00008  | 1   | 20        | 99                | 90            | 110  | 100               | 70                | 130             |
| Titanium (total)  | EMS0279-MAY24 | mg/L  | 0.0001   | <0.0001   | 2   | 20        | 96                | 90            | 110  | NV                | 70                | 130             |
| Thallium (total)  | EMS0279-MAY24 | mg/L  | 0.000005 | <0.000005 | ND  | 20        | 99                | 90            | 110  | 82                | 70                | 130             |
| Uranium (total)   | EMS0279-MAY24 | mg/L  | 0.000002 | <0.000002 | 1   | 20        | 104               | 90            | 110  | 102               | 70                | 130             |
| Vanadium (total)  | EMS0279-MAY24 | mg/L  | 0.00001  | <0.00001  | 4   | 20        | 101               | 90            | 110  | 101               | 70                | 130             |
| Zinc (total)      | EMS0279-MAY24 | mg/L  | 0.002    | <0.002    | 1   | 20        | 99                | 90            | 110  | 130               | 70                | 130             |

### pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

| Parameter | QC batch      | Units   | RL   | Method | Dup | olicate | LC              | S/Spike Blank |      | М                 | atrix Spike / Ref |      |
|-----------|---------------|---------|------|--------|-----|---------|-----------------|---------------|------|-------------------|-------------------|------|
|           | Reference     |         |      | Blank  | RPD | AC      | Spike           | Recove        | •    | Spike<br>Recovery | Recover           | -    |
|           |               |         |      |        |     | (%)     | Recovery<br>(%) | Low           | High | (%)               | Low               | High |
| рН        | EWL0665-MAY24 | No unit | 0.05 | NA     | 1   |         | 101             |               |      | NA                |                   |      |

20240603 14 / 18





### QC SUMMARY

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-004

| Parameter                                     | QC batch      | Units | RL   | Method | Dup | olicate | LC              | S/Spike Blank |                 | м                 | atrix Spike / Re | f.              |
|-----------------------------------------------|---------------|-------|------|--------|-----|---------|-----------------|---------------|-----------------|-------------------|------------------|-----------------|
|                                               | Reference     |       |      | Blank  | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                  | ry Limits<br>%) |
|                                               |               |       |      |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low              | High            |
| Total Reactive Phosphorous (o-phosphate as P) | SKA0262-MAY24 | mg/L  | 0.03 | <0.03  | ND  | 10      | 101             | 90            | 110             | 67                | 75               | 125             |

# **Turbidity**

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

| Parameter | QC batch      | Units | RL   | Method | Dup | olicate | LC              | S/Spike Blank |                 | M                 | atrix Spike / Ref | L.              |
|-----------|---------------|-------|------|--------|-----|---------|-----------------|---------------|-----------------|-------------------|-------------------|-----------------|
|           | Reference     |       |      | Blank  | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                   | ry Limits<br>%) |
|           |               |       |      |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low               | High            |
| Turbidity | EWL0754-MAY24 | NTU   | 0.10 | < 0.10 | 0   | 10      | 99              | 90            | 110             | NA                |                   |                 |

20240603 15 / 18



CA40211-MAY24 R1

#### **QC SUMMARY**

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

**Duplicate Qualifier**: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20240603





#### **LEGEND**

### **FOOTNOTES**

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20240603 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

No:036148

Industries & Environment - Lakefield: 185 Concession St., Lakefield; ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment -London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

| Date: 2 / 2Cm / 25 (mm/dd/yy) Yellow & White Copy - SGS considered authorization for completion of work. Signatures may appear on the form or be related on file in the completion of work. Signatures may appear on the form or be related on file in the completion of work. Signatures may appear on the form or be related to the form of the completion of th | Signature: W   Pallow & White Coperation of Samples of Samples of Samples to SGS is considered authorization for completion of work. Signature may appear on this form on the remaindent of the control o | ampletion of work                           | horization for co         | è dered aut                                  | Date:     | as to SGS             | of sample  | ubmission  | iles. (2) S                       | on of sam   | transporta                               | Whandling and                                              | sample collection       | Signature:<br>provided direction on | Sign:                                          | that you hav                  | is acknowledgement                     | 3): U. C. LOND.  Note: Submission of samples in SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. (2) Submission of samples in SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. (2) Submission of samples in SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. | Relinquished by (NAME):                    | 71 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|----------------------------------------------|-----------|-----------------------|------------|------------|-----------------------------------|-------------|------------------------------------------|------------------------------------------------------------|-------------------------|-------------------------------------|------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pink Copy - Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mm/dd/yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                          | 100                       | 1 ~                                          | Date:     | 1                     |            | -          |                                   |             |                                          |                                                            | to                      | Signature:                          | Sign                                           |                               |                                        | Chartenya                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sampled By (NAME):                         | T /=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 2007                      | )                                            |           |                       |            |            |                                   |             |                                          |                                                            |                         |                                     |                                                |                               | 100                                    | ecial Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observations/Comments/Special Instructions | 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 5                         |                                              |           |                       |            |            |                                   |             |                                          |                                                            |                         |                                     | 7                                              |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                         |                           |                                              | 1000      |                       |            |            |                                   |             |                                          |                                                            |                         |                                     |                                                | 131                           |                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                         | Toronto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 7                         |                                              | 1000      |                       |            | le l'i     |                                   |             |                                          |                                                            |                         |                                     | 0.7                                            |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             | 0.18                                     |                                                            |                         |                                     |                                                |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             |                                          |                                                            |                         |                                     | 5                                              |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             |                                          |                                                            |                         |                                     |                                                |                               |                                        | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              | 1000      |                       |            |            |                                   |             |                                          |                                                            |                         |                                     | - 3                                            |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             |                                          |                                                            | No.                     |                                     |                                                |                               |                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             | 15                                       |                                                            |                         |                                     |                                                |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Non Siltence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           | -                                            |           |                       |            |            |                                   |             | Mai                                      |                                                            | baccom v                | 1 56                                | -                                              | 3                             | 5124124                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 56.                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             |                                          |                                                            |                         | 8                                   |                                                |                               |                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Non hitse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | )                         |                                              |           |                       |            | -39        |                                   |             | 500                                      | 1                                                          | Storage                 | 4                                   | ح                                              | 00                            | 5/2476                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 182                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diocano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sewer Use:                                  | characte                  | Pesticides Organochlorine or special General | BTEX only | VOCs<br>all incl BTEX | F1-F4 only | PCBs Total | SVOCs<br>all incl PAHs, ABNs, CPs | PAHs only   | ICP Metals on<br>Cr,Co,Cu,Pb,Mo,Ni,Se,Ag | Metals & Inor<br>ind CrVI, CN,Hg pH,(B(H<br>(Cl, Na-water) | MATRIX Field Filtered ( | #OF MA                              |                                                | TIME                          | DATE                                   | SAMPLE IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE IDE                                 | The same of the sa |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                           |                                              | 400       |                       |            |            |                                   | , report of | y s                                      | WS),E                                                      | Y/N                     |                                     |                                                | NO                            | YES [                                  | SITE CONDITION (RSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RECORD OF SITE                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             | al                        | Port                                         |           |                       |            | F          |                                   |             | ,As,Ba                                   | ics<br>C,SAR-                                              | )                       |                                     | e "See note                                    | ODWS Not Reportable *See note | ODWS No                                | )m3   >350m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil Volume                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 10                        | es                                           | 300       |                       |            | Arock      |                                   |             |                                          | -soll)                                                     |                         |                                     | /hs                                            | 5                             | MISA                                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specify Specify tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | n Pl                      | 7                                            | 118       |                       | To the     | or [_]     |                                   |             | i,Cd,                                    |                                                            | ty:                     | Storm  Municipality:                | em (AI)                                        | PWQO MMER  CCME Other:        | PWQ0                                   | Ind/Com Coarse Agri/Other Medium/Fine                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 3                                    | W. Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (y) SPLP TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (please specify)                            | Other                     | Pest                                         |           | VOC                   | PHC        | PCB        | 4                                 | SVOC        | -                                        | M Qo                                                       | Law:                    | Sewer By-Law:                       |                                                | lations:                      | Other Regulations:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 153/04                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | ED                        | ANALYSIS REQUESTED                           | EQL       | SIS R                 | ALYS       | AN         | 1                                 |             |                                          |                                                            |                         |                                     |                                                |                               | DEATIONS                               | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | Total Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 'NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABLE) WATER SAMPLES FOR HUMAN CONSUMPTION WITH SGS DRINKING WATER CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLES FO                                  | JLE) WATER                | (POTAL                                       | NKING     | TE: DR                | ON.        |            |                                   | 15          | ite:                                     | Specify Due Date:                                          | Spe                     |                                     |                                                |                               | Email:                                 | decensed to                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Email: OScontes @                          | l m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION | RIOR TO                   | ATIVE                                        | SENT      | REPRE                 | SGS        |            | SIBILIT                           | SH FEA      | IRM RL                                   | PLEASE CONFIRM RUSH FEASIBILITY                            | PLE                     |                                     |                                                |                               | Phone:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | - mari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 Days 4 Days                               | rs 3 Da                   | 2 Days                                       | 1 Day     | 110                   |            | Apply):    | s May                             | Charge      | ditional                                 | RUSH TAT (Additional Charges May Apply):                   | RUS                     |                                     |                                                |                               |                                        | 29-2735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phone: 605 -3                              | 77 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| atuto holidays & weekends).  TAT begins next business day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAT's are quoted in business days (exclude statuto) holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uoted in busin<br>ceived after 6p           | TAT's are q<br>Samples re |                                              |           |                       |            |            | -                                 | 5-7days     | lar TAT                                  | Regular TAT (5-7days)                                      |                         |                                     | 7                                              |                               | Address:                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vanohom                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UIRED                                       | -                         | TURNAROUND TIME                              | ROUND     | URNA                  | 7          |            |                                   |             | 1                                        |                                                            |                         | 3                                   | 1.00                                           | tocard 19                     | Contact: P                             | DI-1-10 1 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| husen 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11476 High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P,O. #: Site Location/ID:                   | P.O. #:<br>Site Loc       |                                              |           | 3                     | 02         | 1          | -68                               | - 13        | 2                                        | Quotation #:<br>Project #:                                 | Quo                     |                                     | ormation)                                      | Report Inf                    | (same as Report Information)  Company: | Sentos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact: Paro Dry                          | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           |                       |            |            |                                   |             |                                          |                                                            |                         | TION                                | NFORMA                                         | INVOICE INFORMATION           | 1                                      | REPORT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REPORT IN                                  | - Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LABLIMS # COUDZ 11- MACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAB LIMS #: (QL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           | i                     | 2          | 2          | eceipt (°                         | Upon R      | mperatur                                 | Te                                                         | No DE                   | 3500                                | Custody Seal Intact:                           | Custody                       |                                        | (hr:min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Received Time:                             | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           | 0.                                           | 7         | Туре:                 |            | No         | t Yes                             | nt Preser   | Cooling Agent Present: Yes. No           | 2                                                          |                         | ture):                              | Received By (signature): Custody Seal Present: | Receive                       | 5                                      | Cockmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Received By:                               | 77 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |                                              |           | 37                    | ,          | se only    | Lab u                             | ction -     | tion Se                                  | pratory Information Section - Lab use                      | Labbrator               | 5                                   |                                                |                               |                                        | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                          | $\neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |