

4361 Harvester Rd., Unit 12, Burlington, ON L7L 5M4
P 905.331.3735 F 905.642.5999

G2Sconsulting.com

Phase Two Environmental Site Assessment

839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad Collingwood, Ontario G2S21366B

Charis Developments Ltd.

186 Hurontario Street, Suite 204
Collingwood, Ontario
L9Y 4T4

Attention: Steve Assaff, President

Executive Summary

G2S Consulting Inc. (G2S) was retained by Charis Developments Ltd. (the Client) to complete a Phase Two Environmental Site Assessment (ESA) Update for the property located at 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad in Collingwood, Ontario, hereinafter referred to as the 'Site'. Authorization to proceed was provided by Mr. Steve Assaff of Charis Developments Ltd. A Phase Two ESA was completed in 2021 and updated in 2024 (this report).

The rectangular shaped Site is located on the northeast corner of the intersection of Hurontario Street and Poplar Sideroad. Pretty River tributary is located approximately 10 m north, Pretty River is located approximately 830 m east, and Georgian Bay is located approximately 2.7 km north of the Site. The Site is located in an area consisting of residential, commercial and vacant land use. The Site location is illustrated on Drawing 1 in Appendix A.

The Site is currently vacant, undeveloped land. A gravel fill pad is in the centre portion of the Site and was constructed of imported fill in December 2007/January 2008. The Site is approximately 3.9 hectares (9.6 acres) in size, and entrance to the Site is via Poplar Sideroad.

The purpose of the Phase Two ESA was to investigate the environmental conditions of the soil and groundwater in relation to the Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA Update completed by G2S, and to confirm a previous data set. Refer to Drawing 2 in Appendix A for the APECs.

The investigation was completed concurrently with a Geotechnical Investigation and Hydrogeological Assessment, reported under separate cover. The drilling for the Geotechnical/Hydrogeological investigations and Phase Two ESA consisted of the advancement of twenty-five boreholes, nine of which were completed as groundwater monitoring wells. Nine of the boreholes and all the monitoring wells were used for environmental purposes and are discussed throughout this report; data for the remaining sixteen boreholes are included in the geotechnical and hydrogeological reports. Refer to Drawing 3 for the Phase Two ESA Borehole and Monitoring Well Location Plan.

The findings of this assignment are summarized as follows:

- 1. In general, the subsurface conditions comprised fill materials (to depths of up to 1.6 m bgs) over native silt/clayey silt and silty sand till. A layer of gravel was contacted at 6.1 to 6.9 m bgs underlain by limestone bedrock. Refer to the borehole logs in Appendix B.
- 2. Groundwater was found in the monitoring wells on July 19, 2024 at elevation 194.8 to 193.4 m (geodetic), at ground surface to 1.3 m bgs.
- 3. The Site is subject to two Ministry of Environment, Conservation, and Parks (MECP) Site Condition Standard (SCS) due to the proximity of the north portion of the Site to a tributary of Pretty River. The north portion of the Site is subject to the Table 8 RPI/ICC SCS, and the remainder of the Site is subject to the Table 2 ICC SCS.
- 4. Soil samples were submitted for chemical testing of petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metal and inorganics parameters. The tested soil met the applicable MECP Table 2 ICC and/or Table 8 RPI/ICC SCS.

5. Groundwater samples from the monitoring wells were submitted for chemical testing of PHCs including BTEX, VOCs, and metal parameters. The tested groundwater met the MECP Table 2 SCS.

Based on the findings of this Phase Two ESA update, the soil and groundwater in the areas tested meets the applicable MECP Table 2 ICC and/or Table 8 RPI/ICC SCS. In this regard, no further investigation is recommended at this time.

Should a Record of Site Condition (RSC) be required for the Site, further investigation may be required to satisfy the requirements of O.Reg. 153/04. RSCs are generally required with a change in land use to a more sensitive use, and in some instances, with an application for a building permit.

In accordance with O. Reg. 903/90, as amended, the monitoring wells should be decommissioned if the wells are not in use or being maintained for future use. G2S would be pleased to assist in this regard.

Table of Contents

Execu	tive Summary	ii
1.	Introduction	1
1.1	Site Description	1
1.2	Applicable Site Condition Standards	2
2.	Background Information	4
2.1	Physical Setting	4
2.2	Past Investigations	4
3.	Scope of the Investigation	7
3.1	Overview of Site Investigation	7
3.2	Scope of Work	7
4.	Investigation Method	
4.1	General	
4.2	Drilling	8
4.3	Soil Sampling	
4.4	Field Screening Measurements	8
4.5	Groundwater Monitoring Well Installation	9
4.6	Groundwater Sampling	9
4.7	Analytical Testing	10
4.8	Residue Management Procedures	10
4.9	Elevation Surveying	10
4.10	Quality Assurance/Quality Control Measures	10
5.	REVIEW AND EVALUATION	12
5.1	Geology	12
5.2	Groundwater Elevation and Flow Direction	12
5.3	Soil Field Screening	14
5.4	Soil Quality	14
5.5	Groundwater Quality	15
5.6	Quality Assurance/Quality Control Results	16
6.	Conclusions and Recommendations	17
7.	Qualifications of the Assessors	
8.	References and Supporting Documentation	
9.	Limitations	21

10.	Closing Remarks	22
. • .		

Appendices

Appendix A: Drawings

Appendix B: Borehole Logs

Appendix C: Analytical Results Tables

Appendix D: Certificates of Analysis

1. Introduction

G2S Consulting Inc. (G2S) was retained by Charis Developments Ltd. (the Client) to complete a Phase Two Environmental Site Assessment (ESA) Update for the property located at 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad in Collingwood, Ontario, hereinafter referred to as the 'Site'. Authorization to proceed was provided by Mr. Steve Assaff of Charis Developments Ltd. A Phase Two ESA was completed in 2021 and updated in 2024 (this report).

G2S understands the proposed development includes commercial use (restaurants, retail, grocery store, offices) and a parkette in the south portion of the Site (Phase 1 and Phase 2), and a mixed use commercial/residential tower in the northwest corner of the Site (Phase 3). The current Site use is considered to be residential, and the proposed Site development includes residential and commercial. Since there will not be a change in land use to a more sensitive use, a Record of Site Condition (RSC) will not be required in accordance with O. Reg. 153/04, as amended. Therefore, the environmental site assessment (ESA) work was completed to meet the requirements of the CSA Standards.

The purpose of the Phase Two ESA Update was to investigate the environmental condition of the soil and groundwater on-Site in relation to the identified Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA Update completed by G2S. The work was completed in accordance with the general requirements of Ontario Regulation 153/04 and CSA Standard Z769-00, 'Phase Two Environmental Site Assessment', which outlines the protocol for Phase Two ESAs.

1.1 Site Description

The Site Location is illustrated on Drawing 1 in Appendix A.

Table 1: General Site Details

Municipal Address	839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario				
General Site Location	Northeast corner of the intersection of Hurontario Street and Poplar Sideroad. Pretty River tributary is located approximately 10 m north, Pretty River is located approximately 830 m east, and Nottawasaga Bay is located approximately 2.7 km north.				
Approximate Site Area	3.9 hectares (9.6 acres)				
Property Identification Number (PIN)	839 Hurontario Street: 58262-0078 (LT) 853 Hurontario Street: 58262-0076 (LT) 869 Hurontario Street: 58262-0787 (LT) 7564 Poplar Sideroad: 58262-0576 (LT)				
Legal Description	839 Hurontario Street: PT S1/2 LT 40 CON 8 NOTTAWASAGA AS IN RO515907 (SECONDLY); COLLINGWOOD 853 Hurontario Street: PT S1/2 LT 40 CON 8 NOTTAWASAGA AS IN RO706547; COLLINGWOOD 869 Hurontario Street: PT S1/2 LT 40 CON 8 NOTTAWASAGA BEING PTS 1 & 2 51R32487 EXCEPT PTS 1 & 2 51R37017; TOWN OF COLLINGWOOD				

	7564 Poplar Sideroad: PT S1/2 LT 40 CON 8 NOTTAWASAGA PT 1 51R3533 EXCEPT PT 1 51R4531 & EXCEPT PT 4 51R37017; COLLINGWOOD
Current Site Owner	839 Hurontario Street: Assaff Investments Ltd. 853 Hurontario Street: Charis Developments Ltd. and Assaff
	Investments Ltd.
	869 Hurontario Street and 7564 Poplar Sideroad: Charis Developments Ltd.
	7564 Poplar Sideroad: Charis Developments Ltd.
Current Site Occupant	839 and 869 Hurontario Street and 7564 Poplar Sideroad: Vacant, undeveloped land.
	839 and 869 Hurontario Street have never been developed, and 7564 Poplar Sideroad was historically developed with a residential home from approximately 1900-2007, when the building was demolished.
	853 Hurontario Street: A single story residential dwelling.

1.2 Applicable Site Condition Standards

The assessment criteria applicable to a given site in Ontario are provided in the Ministry of the Environment Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011.

Standards are provided in Tables 1 to 9 in the document. These standards are based on site sensitivity, groundwater use, property use, soil type, and restoration depth. For this investigation, G2S has selected two Site Condition Standards (SCS):

- Table 2 SCS for Industrial/Commercial/Community (ICC) in a Potable Groundwater Condition with medium-fine textured soil in the south part of the Site (Phase 1 and Phase 2), and
- Table 8 SCS for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use within 30 m of a water body, with medium-fine textured soil in the north part of the Site (Phase 3).

The selection of this category is based on the following factors:

- There is no intention to carry out stratified restoration at the Site.
- Based on field observations and grain size analysis completed as part of the Geotechnical Investigation reported under separate cover, the soil texture on the Site is medium-fine texture.
- The intended use of the Site is commercial in Phase 1 and Phase 2, and mixed commercial/residential in Phase 3.
- A portion of the Site is located within 30 metres of a water body. Refer to Drawing 3 in Appendix A for an inferred 30 m setback line from the Pretty River tributary.
 - ➤ 839 and 853 Hurontario Street are located within 30 m of Pretty River tributary and encompasses borehole BH104.
 - ➤ 869 Hurontario Street and 7564 Poplar Sideroad are located at a distance greater than 30 m from Pretty River tributary, and encompass boreholes BH102, BH/MW105, BH108, BH109, BH/MW110, BH112, BH117, and BH/MW122.
- The Site is not considered a sensitive site based on:
 - ➤ The pH values are within the recommended range of 5 to 9 for surface soil (<1.5 m) and within 5 to 11 for subsurface soil (>1.5 m).
 - ➤ The Site is not located within or is adjacent to an Area of Natural Significance.
- Based on the findings from the Phase Two ESA, the following can be confirmed with respect to Sections 41 and 43.1 of O.Reg. 153/04:
 - ➤ The Site is not a shallow soil property, as defined in Section 43.1 of O.Reg. 153/04.
 - ➤ The Site is not an environmentally sensitive site as defined in Section 41 of O.Reg. 153/04.
- The potable groundwater condition applies to the Site based on:
 - ➤ The Site and properties within 250 m of the Site are supplied with potable water which is sourced from Georgian Bay. The water is supplied via a network comprising a treatment plant, an elevated storage tank, a series of reservoirs and booster stations.
 - Several private wells are located within 250 m of the Site based on MECP water well records.

2. Background Information

2.1 Physical Setting

The Site is located at approximately 195 to 197 m above sea level. Surface elevations appear to decrease generally north to northeastern, towards Nottawasaga Bay located approximately 2.7 km north, and surface drainage and shallow groundwater most likely discharges into Pretty River and its tributaries.

G2S reviewed the Palaeozoic Geology of Southern Ontario, Map 2254, Ontario Division of Mines and the Soil Associations of Southern Ontario Soil Map. The geological maps reviewed indicate the Site and surrounding area are characterized by sandy loam underlain by grey shale with limestone interbeds of the Upper Ordovician, Georgian Bay (Carlsbad and Russell) Formation.

2.2 Past Investigations

Report Details	Summary
Title: Fill Investigation, 869 Hurontario Street, Collingwood, Ontario Date of Report: October 29, 2014 Author of the Report: Terraprobe Inc.	 During the Site visit as part of a Phase One ESA completed for the Site, it was noted that a significant amount of fill material was brought to the Site in December 2007/January 2008, for grading. A fill investigation was recommended to determine the chemical quality of the soil on Site. On September 23, 2014, ten boreholes were advanced through the existing fill pad on Site, to depths of 3.5 m below ground surface (bgs). Soil samples collected from the boreholes were submitted for analysis of petroleum hydrocarbons including benzene, toluene, ethylbenzene, and xylenes (PHCs and BTEX), and metals and inorganics. Soils were identified as sandy silt to silty sand and gravelly sand fill underlain by native clayey silt with trace sand. Minor debris materials and occasional cobbles were encountered in the upper fill soils. No staining or odours were encountered in any of the samples.
Completed for: Georgian International Land Corp.	 All samples were compared to the Table 2 MECP full depth generic Site Condition Standards (SCS) for industrial/commercial/community (ICC) land use. No exceedances were identified. Further environmental investigation was not recommended.
Title: Phase One Environmental Site Assessment (ESA), 869 Hurontario Street and 7564 Poplar Sideroad, Collingwood, Ontario Date of Report: November 7, 2014	 At the time of the report, the Site was undeveloped, vacant land. The report indicated that 869 Hurontario Street had never been developed. According to a Site Assessment by Jacques Whitford (2007), the east portion of the Site (7564 Poplar Side Road) was previously occupied by a two-storey residential dwelling that had been removed at the time of the Phase One ESA in 2014. The dwelling was developed in the early 1900s. Imported fill was located at the central portion of the property for grading purposes. The fill was brought to the site in previous years (appeared in a 2008 aerial photograph). Properties within the Study Area were developed with residential and
Author of the Report: Terraprobe Inc. Completed for:	 Froperties within the Study Area were developed with residential and commercial properties, including: 850 Hurontario Street (~30 m west) - Marty's Transmission and Walkers Small Motors Ltd. (PCA #57: Garage and Maintenance/repairs of vehicles) 864 Hurontario Street (~30 m west) - Tilley of Canada Ltd. and

Report Details	Summary
•	
Georgian International Land Corp.	John Brown Custom Sporting (PCA #54 – Textile Manufacturing, Processing, and Use)
	 833 Hurontario Street (~45 m north) – Diane's Garden Centre
	- Two spills were indicated and included gas main damage at 47 Hughes Street and a 200 L diesel oil spill at County Road 124 and Poplar Sideroad. No environmental impacts were anticipated.
	- Groundwater flow was anticipated to be in a northeastern direction, towards Nottawasaga Bay, and surface drainage and shallow groundwater was expected to discharge into Pretty River and its tributaries.
	- Due to the fill materials encountered during the Site visit, Terraprobe conducted a fill investigation (summarized above) to address the unknown quality of the fill material. Ten boreholes were advanced in the fill and submitted for chemical testing. All samples met the Table 2 MECP standards for Industrial/Commercial/Community land use.
	 The following PCAs were identified on Site and within the Study Area: 869 Hurontario Street and 7564 Poplar Sideroad (Site): PCA #30 Importation of Fill Material of Unknown Quality
	 850 Hurontario Street (~30 m west): PCA #57: Garage and Maintenance/repairs of vehicles
	 864 Hurontario Street (~30 m west): PCA #54: Textile Manufacturing and Processing
	- As a result of the fill investigation and direction and distance of the PCAs within the Study Area to the Site, a Phase Two ESA was not recommended.
Title:	
Geotechnical Investigation Proposed Home Hardware Store, Collingwood, Ontario	 The Geotechnical Investigation was completed in December 2003 and was required as part of the redevelopment process, which included a proposed Home Hardware Store. On December 3, 2003, 11 boreholes were advanced on Site to a maximum of 5 m bgs.
Date of Report:	- Soil samples indicated a topsoil layer covered the entire Site with an
December 15, 2003	approximate 300 to 400 mm thickness. A clayey silt deposit was identified under the topsoil to approximately 3 bgs. Silt was encountered beneath the clayey silt at thicknesses ranging from 0.5 m to 1.5 m. Silt till with some
Author of the Report:	sand, some to trace clay, and some gravel was encountered beneath the
Shaheen & Peaker Limited	silt layer in the deeper boreholes. - Groundwater levels were taken immediately post drilling activities. All boreholes were dry upon completion except for BH1, BH4, and BH5.
Completed for: Home Hardware Stores Limited	Water levels were indicated at 1.3 m bgs in BH1, and BH4 and BH5 were filled with water to the ground surface due to ponded water.
Title: Phase One Environmental Site Assessment Update 839 and 869 Hurontario Street & 7564 Poplar Sideroad	 The purpose of the Phase One ESA Update was to determine the likelihood that one or more contaminants have affected the Phase One ESA Update property from present or past Site activities or from surrounding properties, since the completion of the Phase One ESA in 2014 and should be read in conjunction with the previous Phase One ESA report. The Phase One ESA Update identified one on-Site and three off-Site PCAs which were assessed based on observations of the operations, their

Report Details	Summary
Collingwood, Ontario Date of Report: November 19, 2021	location relative to the Site with respect to the inferred groundwater flow direction, their tenure, and expected chemical storage amounts etc. - Based on review and evaluation of the information gathered, the following APECs were identified:
Author of the Report: G2S Consulting Inc.	- APEC 1: Central portion of Site – Current and historical presence of a fill pad of unknown chemical quality fill materials, and the potential for fill materials to be present across the remainder of the Site. Chemical data from 2014 requires confirmation due to the time elapsed.
	- APEC 2: Southwest portion of Site – Current use of the property located approximately 30 m west (7618 Poplar Sideroad) as a gasoline service station.
	- Based on the findings of the Phase One ESA Update, a Phase Two ESA was recommended to investigate the potential for contamination related to the above-noted APECs.
	It is noted that the 2021 Phase One ESA was updated by G2S in 2024, which included 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood. No new APECs were identified. Refer to the updated report dated July 31, 2024 for particulars.
Title:	
Phase Two Environmental Site Assessment, 839 and 869 Hurontario Street & 7564 Poplar Sideroad Collingwood, Ontario	- The purpose of the Phase Two ESA was to investigate the environmental conditions of the soil and groundwater in relation to the Areas of Potential Environmental Concern (APECs) identified during the Phase One ESA Update completed by G2S, to confirm a previous data set, and to satisfy a lease agreement with Parkland Fuels, prior to development.
Date of Report: November 19, 2021	- The results of the soil and groundwater sampling indicated that the soil and groundwater in the areas tested met the applicable MECP Table 2 ICC and/or Table 8 SCS. In this regard, no further investigation was recommended.
Author of the Report: G2S Consulting Inc.	
320 00110ditting 1110.	

This current assignment was conducted to update the 2021 Phase Two ESA and included 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood.

3. Scope of the Investigation

3.1 Overview of Site Investigation

The purpose of the Phase Two ESA was to investigate the environmental conditions of the soil and groundwater in relation to the Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA Update completed by G2S, and to confirm the previous data set, prior to development.

The investigation was completed concurrently with a Geotechnical Investigation and Hydrogeological Assessment, reported under separate cover. The drilling for the Geotechnical/Hydrogeological investigations and Phase Two ESA consisted of the advancement of twenty-five boreholes, nine of which were completed as groundwater monitoring wells. Nine of the boreholes and all the monitoring wells were used for environmental purposes and are discussed throughout this report; data for the remaining sixteen boreholes are included in the geotechnical and hydrogeological reports. Refer to Drawing 3 for the Borehole and Monitoring Well Location Plan.

3.2 Scope of Work

The scope of work for this assignment included the following:

- The locating of underground utilities by both public and private utility locators.
- The drilling of nine boreholes on-Site for environmental purposes, three of which were completed as groundwater monitoring wells.
- The collection of representative soil samples from the boreholes for chemical testing for the contaminants of concern, namely petroleum hydrocarbon (PHC) fractions F1 to F4, including benzene, toluene, ethylbenzene, and xylenes (BTEXs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metals and inorganics.
- Groundwater level monitoring in all wells and the collection of groundwater samples in selected monitoring wells for analysis of PHCs including BTEX, VOCs, and metals.
- Data compilation and evaluation of the information gathered, and
- Preparation of this report, discussing the information compiled and the corresponding conclusions and recommendations.

4. Investigation Method

4.1 General

The locations of underground utilities were identified and marked by public locating companies as well as a private utility locating contractor.

4.2 Drilling

The drilling for this assignment was conducted on September 30, 2021, October 1, 2021, October 21, and October 22, 2021. Additional monitoring wells were installed on January 7, 2022 and two additional boreholes were completed on June 4 and 5, 2024. Of the boreholes completed, a total of nine boreholes (BH) were advanced for environmental purposes, and labelled as BH102, BH104, BH105, BH108, BH109, BH110, BH112, BH117, and BH122.

The field work was completed by Davis Drilling Ltd. (Davis) and London Soil Test Ltd. (LST). The environmental boreholes were advanced with a track-mounted CME 45 (Davis) drill rig or a Dietrich D50 (LST) drill rig, to depths between 2.1 and 8.2 m bgs. Soil samples were obtained at regular depth intervals. Groundwater monitoring wells (MW) were installed in three of the boreholes (BH105, BH110, and BH122) and identified as BH/MW105, BH/MW110, and BH/MW122, respectively. Monitoring wells were also installed in MW101A, MW103A, MW106A, MW115A, MW201 and MW202 for groundwater level monitoring.

The approximate borehole/monitoring well locations are shown on the Borehole and Monitoring Well Location Plan, Drawing 3, in Appendix A.

4.3 Soil Sampling

During the field work, soil samples in the boreholes were collected using split spoon samplers. G2S staff continually monitored the field activities to log the recovered soil cores/samples, to record the depth of soil sample collection and total depths of the boreholes. Field observations recorded on the borehole logs are included in Appendix B.

The soil samples were field logged and placed in laboratory provided airtight glass containers and/or vials containing methanol preservative and stored in an insulated cooler with ice for transportation to our laboratory for additional examination. As well, a portion of each sample was placed in a sealed plastic bag for vapour screening. Particular attention was applied to visual and olfactory evidence of potential contamination such as odours and staining during the field work.

The soil sampling and sample handling procedures were carried out according to the supporting documents of O. Reg. 153/04, as amended and established standards.

4.4 Field Screening Measurements

Organic vapour readings were recorded using a RKI Eagle 2 gas detector, equipped with a Photo Ionization Detector (PID) sensor, calibrated to isobutylene and a catalytic combustible gas sensor, calibrated to hexane. The PID sensor detects low level VOCs in parts per million (ppm) and the catalytic combustible gas sensor detects PHCs in ppm or lower explosive limit (LEL). The accuracy of the gas monitor varies with the type of gas being measured.

The correlation between combustible vapour concentrations and PHCs in soil is highly dependent on the soil type, moisture content and characteristics of the contaminant of concern. The results of the screening are used as a tool in establishing relative soil vapour concentrations and for selection of soil samples for chemical analysis among samples and borehole locations.

The organic vapour readings were measured by inserting the instrument's probe into the headspace of the plastic bag and manipulating the soil sample by hand. There are no regulatory criteria for soil vapours; however, organic vapour readings provide a general indication of the relative concentration of organic vapours encountered in the soil samples during drilling.

4.5 Groundwater Monitoring Well Installation

Groundwater monitoring wells were installed in boreholes BH105, BH110, and BH122, identified as BH/MW105, BH/MW110, and BH/MW122, respectively. Monitoring wells were also installed in MW101A, MW103A, MW106A, MW115A, MW201 and MW202 for groundwater level monitoring. The monitoring wells were installed in accordance with the Ontario Water Resources Act – R.R.O. 1990, Regulation 903 – amended to O. Reg. 128/03, and were installed by a licensed well contractor (Davis).

The monitoring wells were installed to depths between 3.6 and 7.7 m bgs. The monitoring wells were constructed using 50-millimetre (mm) diameter, number 10 slot Schedule 40 PVC screen and PVC riser pipe, completed with 1.5 or 3.0 m long screens, and sealed at the base with PVC end caps and an appropriate length of riser pipe extending to just below the stick-up casing. All pipe connections were threaded flush joints with no lubricants or adhesives used in the construction of the monitoring wells. Details of the completion of the monitoring wells are provided on the borehole logs in Appendix B. The annular space around the well screens in the wells were backfilled with silica sand to an approximate height of 0.6 m above the top of the screen. The sand pack was extended above the screens to allow for compaction of the sand pack and expansion of the overlying well seals. A granular bentonite ('Hole Plug') seal was placed in the borehole annulus from the top of the sand pack to just below the stick-up casing. The monitoring wells were completed with stick-up protective steel casings cemented in place.

The Site owner is considered to be the owner of the monitoring wells installed by Davis ("well owner" Section 1.0, Regulation 903). When the monitoring wells are no longer required, it is the owner's responsibility to arrange for abandonment in accordance with Ontario Water Resources Act–R.R.O. 1990, Regulation 903 – Amended to O. Reg. 128/03.

4.6 Groundwater Sampling

On October 13, 2021, G2S attended the Site to record the groundwater levels, develop and purge the groundwater in the monitoring wells, and to collect groundwater samples for chemical testing. G2S returned to the Site on November 3, 2021, to collect a second round of groundwater levels and again in June and July 2024.

An electronic water level metre was used to record the depth of groundwater in the monitoring wells. Dedicated bailers were installed in each of the monitoring wells for purging and dedicated low-density polyethylene (LDPE) tubing was installed in each of the monitoring wells for sample collection with a low flow peristaltic pump. Well development included the removal of a minimum of three well volumes or until the wells were dry in accordance with fixed volume and well evacuation purging procedures as outlined in ASTM D6452 99 (2012). The electronic water level

metre was rinsed with a mild detergent, distilled water, and methanol between monitoring wells to prevent cross-contamination.

The groundwater samples were field logged and placed in clean, laboratory provided bottles, stored in an insulated cooler on ice and returned to our laboratory where the samples were temporarily preserved in a fridge to maintain a cool environment, or were delivered directly to the laboratory. Particular attention was applied to visual and olfactory evidence of potential contamination such as odours and sheens during the field work.

The groundwater sampling and sample handling procedures were carried out according to the supporting documents of O. Reg. 153/04, as amended and established standards.

4.7 Analytical Testing

Selected soil and groundwater samples were submitted for chemical analysis under chain of custody protocols to ALS Environmental (ALS) or Paracel Laboratories, both Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratories. The chemical analyses conducted by ALS were in accordance with the O. Reg. 153/04 Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act dated March 9, 2004, amended as of July 1, 2011.

The soil samples were analyzed for the contaminants of concern (COC), namely petroleum hydrocarbon (PHC) fractions F1 to F4, including benzene, toluene, ethylbenzene, and xylenes (BTEXs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and/or metals and inorganics.

The groundwater samples were analyzed for PHCs including BTEX, VOCs, and metals.

4.8 Residue Management Procedures

Soil cuttings generated during drilling and purged groundwater from the monitoring wells were stored on-Site in sealed steel drums, pending the results of chemical testing. The drums can be removed off-Site by a licenced waste disposal subcontractor once no longer required.

4.9 Elevation Surveying

The borehole/monitoring well locations were selected and established in the field by G2S, and ground surface elevations were determined by G2S. A topographic survey completed by J.D. Barnes Limited on September 9, 2021, was provided to G2S for reference. The ground surface elevations were inferred by G2S from the topographic survey.

4.10 Quality Assurance/Quality Control Measures

Disposable nitrile gloves (one per sample) were used during sample collection. Sample cores for analysis of volatiles were collected using a 5-gram Terra Core sampler. The soil cores were immediately placed into a Methanol Vial (pre-filled and weighed with 10 mL Purge & Trap Grade Methanol).

New laboratory-supplied glass jars with Teflon-lined lids were filled with a portion of each soil sample. The jars and vials were then sealed and placed in a cooler with ice packs for storage and transportation. ALS supplied all the soil jars and Paracel supplied all the groundwater bottles, with preservatives when required.

5. REVIEW AND EVALUATION

5.1 Geology

Reference is made to the appended Drawing 3 in Appendix A and Borehole Logs in Appendix B for details of the field work including sampling locations, visual soil classification, inferred stratigraphy, groundwater observations, and monitoring well installation details.

The boundaries indicated on the borehole logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

Topsoil

Approximately 75 to 250 mm of topsoil was found in boreholes BH104, BH105, BH108, BH117, and BH122.

Fill

Fill materials consisting of sand and gravel and/or clayey silt were encountered in boreholes BH102, BH104, BH108, BH109, BH110, and BH112, extending to depths of up to 1.6 m bgs.

Silt/Clayey Silt

Native silt or clayey silt was encountered beneath the topsoil or fill materials in each of the boreholes to depths of up to 6.1 m bgs. The silt/clayey silt became grey and very moist to wet with depth.

Silty Sand Till

Native sandy silt till was encountered in all boreholes to the termination depth of 8.2 m bgs, except BH117. The sandy stilt till was grey and wet.

A layer of gravel was contacted at 6.1 to 6.9 m bgs underlain by limestone bedrock in BH/MW201 and NH/MW202.

5.2 Groundwater Elevation and Flow Direction

Groundwater levels were measured in the wells on October 13, 2021, and November 3, 2021 and again on June 5, 20, 26 and July 19, 2024. The geodetic elevations of the ground surface of the boreholes and monitoring wells were interpolated from a topographic survey completed for the Site, and groundwater level measurements were taken by measuring to the surface of the groundwater from the ground surface and from the top of the well casing with the necessary corrections made to establish depths below grade if required.

The following table summarizes the monitoring well installation details and groundwater observations.

Table 2: Groundwater Monitoring Well Summary

	Ground	Well Depth	Screened Interval	Groundwater Elevation and Depth (m bgs)							
Sample Location	Surface Elevation	from Ground Surface (m)	Elevation (m) and Depth (m bgs)	Oct. 13, 2021	Nov. 3, 2021	June 5, 2024	June 20, 2024	June 26, 2024	July 19, 2024		
MW101A	194.50	4.84	191.4 - 189.9 (3.1 - 4.6)			193.4 (1.1)		193.3 (1.2)	193.4 (1.1)		
MW103A	194.39	3.61	191.3 - 189.8 (3.1 – 4.6)	I		193.6 (0.8)		193.5 (0.9)	193.7 (0.7)		
BH/MW105	194.63	4.65	191.0 - 190.0 (1.7 – 4.7)	194.7 (-0.1)	194.9 (-0.3)	194.6 (0)	194.2 (0.4)	194.5 (0.1)	194.6 (0)		
MW106A	194.54	4.56	191.5 - 190.0 (3.1 - 4.6)	-		194.5 (0)		194.4 (0.1)	194.4 (0.1)		
BH/MW110	195.87	5.32	190.6 – 193.6 (2.3 – 5.3)	193.9 (2.0)	195.0 (0.9)	194.6 (1.3)	194.4 (1.5)	194.6 (1.3)	194.6 (1.3)		
MW115A	195.28	4.6	192.2 - 190.7 (3.1 - 4.6)					194.3 (1.0)			
BH/MW122	195.09	4.83	190.3 – 193.3 (1.8 – 4.8)	194.7 (0.4)	195.0 (0.1)	194.7 (0.4)	194.1 (1.0)	194.5 (0.6)	194.6 (0.5)		
MW201	195.3	7.7	189.1 - 187.6 (4.7 - 7.7)				194.2 (1.1)	194.7 (0.6)	194.8 (0.5)		
MW202	195.0	4.8	193.2 - 190.2 (1.8 - 4.8)				194.3 (0.7)	194.6 (0.4)	194.6 (0.4)		

Bolded value indicates water level is above the ground surface and may be due to an unstable groundwater level and/or upward hydrogeologic gradient.

Based on the measured groundwater elevation data, groundwater flow at the Site appears to be generally to the north, consistent with the expected groundwater flow direction following surface topography towards Nottawasaga Bay. A local groundwater low is found in the northwest portion of the Site, consistent with a ponded area. Groundwater contours are shown on Drawing 4 in Appendix A.

5.3 Soil Field Screening

Soil samples recovered during the drilling program were screened for visual and olfactory signs of contamination, as well as for organic vapours using an RKI Eagle 2 gas detector, equipped with a catalytic combustible gas (LEL) sensor, calibrated to hexane, and a Photo Ionization Detector (PID) sensor, calibrated to isobutylene. No vapour readings were detected in the soil samples collected. The soil field screening measurements are presented on the subsurface logs in Appendix B.

5.4 Soil Quality

In accordance with the scope of work, chemical analyses were performed by ALS on selected soil samples recovered from the boreholes. The table below indicates the soil samples selected for laboratory analysis.

Table 3: Summary of Soil Samples Submitted for Laboratory Analysis

Sample I D	Sample Denth	Date		Chemica	Rationale			
Sample I.D	Sample Depth	Date	PHCs	VOCs	PAHs	M/I	Rationale	
BH102 SS2	0.8 – 1.4	10/21/21	✓		✓	✓		
BH104 SS1	0 – 0.6	10/22/21	✓			✓		
BH105 SS1	0 – 0.6	10/01/21	✓		✓	✓	-Investigate -APECs to confirm soil qualityBaseline results	
BH108 SS1	0 – 0.6	10/21/21	✓			✓		
BH109 SS3	1.5 – 2.1	10/21/21	✓	✓		✓		
BH110 SS4	2.3 – 2.9	10/01/21	✓	✓		✓	in area of future Parkland Fuels	
BH112 SS4	2.3 – 2.9	09/30/21	✓	✓	✓	✓	location.	
BH117 SS2	0.8 – 1.4	10/22/21	✓		✓	✓		
BH122 SS5	3.0 – 3.6	09/30/21	✓	✓		✓		

Notes: PHCs - Petroleum Hydrocarbons Fractions F1-F4
PAHs – Polycyclic Aromatic Hydrocarbons

VOCs – Volatile Organic Compounds M/I – Metals and Inorganics

Tables summarizing the analytical results for this assignment are included in Appendix C, and the laboratory Certificates of Analysis for the soil samples submitted for testing are included in Appendix D.

5.4.1 Petroleum Hydrocarbons Fractions F1-F4 (PHC F1-F4) including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

The measured concentrations of PHCs and BTEX in the submitted samples were not detected or were below the MECP Table 2 ICC SCS (Table 8 SCS for BH104). The results of the analysis are included in Table 1 of Appendix C.

5.4.2 Volatile Organic Compounds (VOCs)

The measured concentrations of VOCs in the submitted samples were not detected or were below the MECP Table 2 ICC SCS. The results of the analysis are included in Table 2 of Appendix C.

5.4.3 Polycyclic Aromatic Hydrocarbons (PAHs)

The measured concentrations of PAHs in the submitted samples were not detected and were below the MECP Table 2 ICC SCS. The results of the analysis are included in Table 3 of Appendix C.

5.4.4 Metals and Inorganics

The measured concentrations of metals and inorganics in the submitted samples were not detected or were below the MECP Table 2 ICC SCS (Table 8 SCS for BH104). The results of the analysis are included in Table 4 of Appendix C.

5.5 **Groundwater Quality**

In accordance with the scope of work, chemical analyses were performed on groundwater samples obtained from the monitoring wells. The table below indicates the groundwater samples submitted for laboratory analysis.

Table 4: Groundwater Samples Submitted for Laboratory Analysis

Sample Location/Well I.D.	Date	Analysis
BH/MW105		
BH/MW110	October 13, 2021	PHCs, VOCs, Metals
BH/MW122		

Notes: PHCs - Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

PAHs - Polycyclic Aromatic Hydrocarbons BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes

5.5.1 PHCs and BTEX

The measured concentrations of PHCs and BTEX in the submitted samples were not detected and were below the MECP Table 2 SCS. The results of the analysis are included in Table 5 of Appendix C.

5.5.2 VOCs

The measured concentrations of VOCs in the submitted samples were not detected and were below the MECP Table 2 SCS. The results of the analysis are included in Table 6 of Appendix C.

5.5.3 Metals

The measured concentrations of metals in the submitted samples were not detected or were below the MECP Table 2 SCS. The results of the analysis are included in Table 7 of Appendix C.

5.6 Quality Assurance/Quality Control Results

ALS Environmental (ALS) and Paracel Laboratories Ltd. (Paracel) are accredited by the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for the analysis of all parameters for all samples in the scope of work for which SCS have been established under O.Reg. 153/04.

The "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" ("the Analytical Protocol"), MECP, March 2004, establishes the criteria used in assessing the performance of analytical laboratories when the data are used in support of the filing of Records of Site Condition.

Soil and groundwater samples were analysed by using standard reference methods and the testing methods were referenced in the ALS and Paracel Certificates of Analysis, as required by the MECP's protocol. Laboratory quality assurance/quality control (QA/QC) data is included with the Certificates of Analysis, which are appended. Method blank, spiked method blank, laboratory spiked and duplicate soil samples were analysed by the laboratory with each batch of samples.

The results of chemical analysis of method blank sample indicated that the detected levels were within the acceptable range. The chemical test data for spiked method blank and laboratory spike samples indicated that the recovery ranges were within the statistically determined control limits.

6. Conclusions and Recommendations

The purpose of the Phase Two ESA was to investigate the environmental conditions of the soil and groundwater in relation to the Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA Update completed by G2S, and to confirm a previous data set.

G2S understands the proposed development includes commercial use (restaurants, retail, grocery store, offices) and a parkette in the south portion of the Site, and a mixed use commercial/residential tower in the northwest corner of the Site. The current Site use is considered to be residential, and the proposed Site development includes residential and commercial. Since there will not be a change in land use to a more sensitive use, a Record of Site Condition (RSC) will not be required in accordance with O. Reg. 153/04, as amended. Therefore, the environmental site assessment (ESA) work was completed to meet the requirements of the CSA Standards.

The investigation was completed concurrently with a Geotechnical Investigation and Hydrogeological Assessment, reported under separate cover. The drilling for the Geotechnical/ Hydrogeological investigations and Phase Two ESA consisted of the advancement of twenty-five boreholes, nine of which were completed as groundwater monitoring wells. Nine of the boreholes and all the monitoring wells were used for environmental purposes and are discussed throughout this report; data for the remaining sixteen boreholes are included in the geotechnical and hydrogeological reports. Refer to Drawing 3 for the Phase Two ESA Borehole and Monitoring Well Location Plan.

The findings of this assignment are summarized as follows:

- 6. In general, the subsurface conditions comprised fill materials (to depths of up to 1.6 m bgs) over native silt/clayey silt and silty sand till. A layer of gravel was contacted at 6.1 to 6.9 m bgs underlain by limestone bedrock. Refer to the borehole logs in Appendix B.
- 7. Groundwater was found in the monitoring wells on July 19, 2024 at elevation 194.8 to 193.4 m (geodetic), at ground surface to 1.3 m bgs.
- 8. The Site is subject to two Ministry of Environment, Conservation, and Parks (MECP) Site Condition Standard (SCS) due to the proximity of the north portion of the Site to a tributary of Pretty River. The north portion of the Site is subject to the Table 8 RPI/ICC SCS, and the remainder of the Site is subject to the Table 2 ICC SCS.
- 9. Soil samples were submitted for chemical testing of petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metal and inorganics parameters. The tested soil met the applicable MECP Table 2 ICC and/or Table 8 RPI/ICC SCS.
- 10. Groundwater samples from the monitoring wells were submitted for chemical testing of PHCs including BTEX, VOCs, and metal parameters. The tested groundwater met the MECP Table 2 SCS.

Based on the findings of this Phase Two ESA update, the soil and groundwater in the areas tested meets the applicable MECP Table 2 ICC and/or Table 8 RPI/ICC SCS. In this regard, no further investigation is recommended at this time.

Should a Record of Site Condition (RSC) be required for the Site, further investigation may be required to satisfy the requirements of O.Reg. 153/04. RSCs are generally required with a change in land use to a more sensitive use, and in some instances, with an application for a building permit.

In accordance with O. Reg. 903/90, as amended, the monitoring wells should be decommissioned if the wells are not in use or being maintained for future use. G2S would be pleased to assist in this regard.

7. Qualifications of the Assessors

This Phase Two ESA was prepared by Ms. Dana Haslett, B.A. Ms. Haslett has been trained to conduct Phase One and Two ESAs in accordance with the CSA and O. Reg. 153/04, as amended. She is a Senior Project Manager with over 10 years of professional experience specializing in environmental investigations and project management. Her main areas of expertise include Phase One and Phase Two ESAs, project management, site cleanup/remediation, UST and AST removals, and site remediation. She has completed numerous projects on behalf of private and public-sector clients for industrial, commercial, and residential sites.

This Phase Two ESA was prepared under the supervision of, and the report was reviewed by Melissa King, a Professional Geoscientist registered with the Professional Geoscientists of Ontario. Ms. King is a Senior Geoscientist and Head of Environmental Services and is a Qualified Person (QP). She has over 25 years of interdisciplinary professional experience specializing in environmental and hydrogeologic investigations and project management. Her main areas of expertise include Phase One and Phase Two ESAs, site cleanup / remediation planning and supervision, site remediation, Risk Assessment, Records of Site Condition and hydrogeologic investigations. She has completed hundreds of projects for commercial, industrial, and residential clients for a wide variety of project types (industrial complexes, commercial developments, entertainment and institutional buildings, and residential development).

8. References and Supporting Documentation

- a) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" Ministry of the Environment of Ontario, December 1996.
- b) "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated July 27, 2009 and updated April 15, 2011.
- c) "The Ontario Water Resources Act R.R.O. 1990, Regulation 903 Amended to O. Reg. 128/03, August 2003.
- d) "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act", March 2004.
- e) "Ontario Regulation 153/04 (made under the Environmental Protection Act)," May 2004 (MOE).
- f) "Z769-00, Phase II Environmental Site Assessment," Canadian Standard Association, March 2000.
- g) "Environmental Protection Act, R.S.O. 1990, Chapter E.19," as amended, September 2004.
- h) Singer SN, Cheng CK, Scafe MG. (2003). *The Hydrogeology of Southern Ontario, Second Edition*, Report from the Ontario Ministry of the Environment.
- i) "Phase One Environmental Site Assessment (ESA), 869 Hurontario Street and 7564 Poplar Sideroad, Collingwood, Ontario" prepared by Terraprobe Inc. for Georgian International Land Corp. Coach dated November 7, 2014.
- j) "Fill Investigation, 869 Hurontario Street, Collingwood, Ontario" prepared by Terraprobe Inc. for Georgian International Land Corp. dated October 29, 2014.
- k) "Geotechnical Investigation Proposed Home Hardware Store, Collingwood, Ontario" prepared by Shaheen & Peaker Limited for Home Hardware Stored Limited, dated December 15, 2003.
- I) "Phase One Environmental Site Assessment, 839 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario" prepared by G2S Consulting Inc. for Charis Developments Ltd., dated November 19, 2021.
- m) Phase Two Environmental Site Assessment, 839 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario" prepared by G2S Consulting Inc. for Charis Developments Ltd., dated November 19, 2021.
- n) Phase One Environmental Site Assessment Update, 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario" prepared by G2S Consulting Inc. for Charis Developments Ltd., dated July 31, 2024.

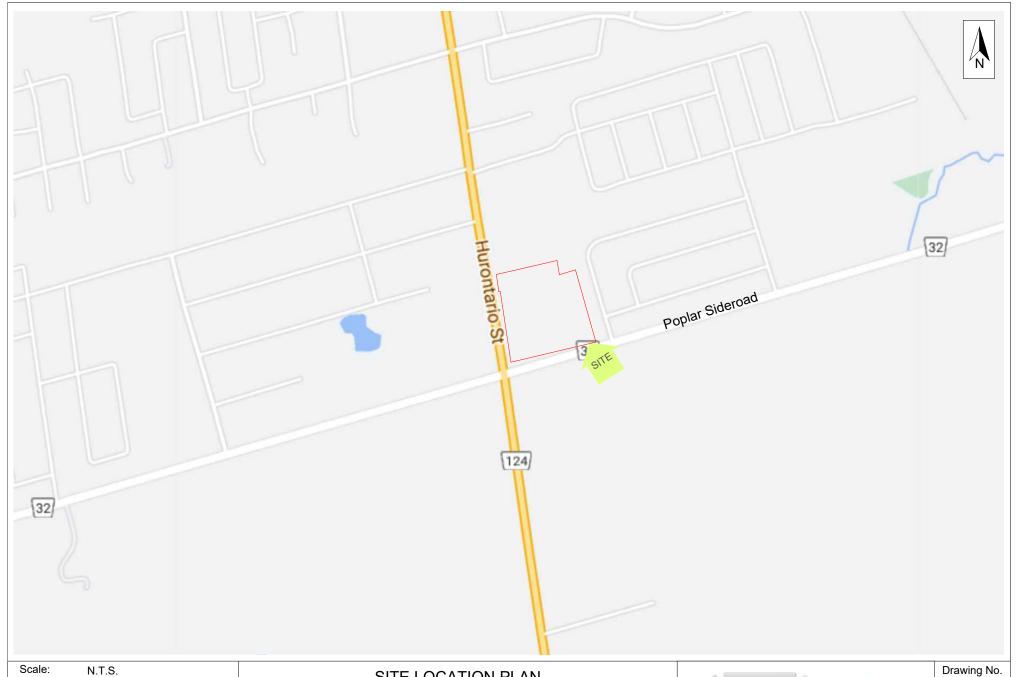
9. Limitations

This report has been prepared for the sole benefit of the Charis Developments Ltd. and is intended to provide information on the subsurface environmental conditions at the Site, 839, 853 and 869 Hurontario Street and 7564 Poplar Sideroad in Collingwood, Ontario. The report may not be used by any other person or entity without the expressed written consent of the Charis Developments Ltd. and G2S Consulting Inc. (G2S). Any use which a third party makes of this report, or any reliance on decisions made based on it, is the responsibility of such third parties. G2S accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.

The findings in this report are limited to the conditions at the Site at the time of this investigation as described herein. Conclusions presented in this report should not be construed as legal advice.

If Site conditions or applicable standards change or if any additional information becomes available at a future date, changes to the findings, conclusions and recommendations in this report may be necessary.

10. Closing Remarks

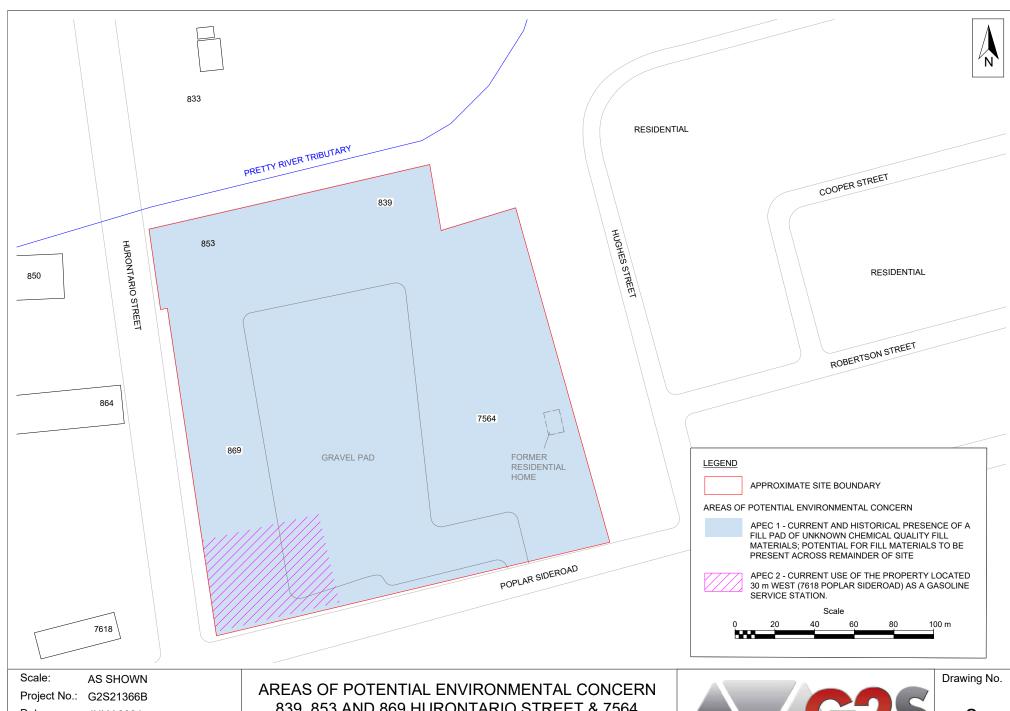

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

G2S Consulting Inc.

Melissa King, P.Geo., QP_{ESA} Head of Environmental Services Appendix A: Drawings

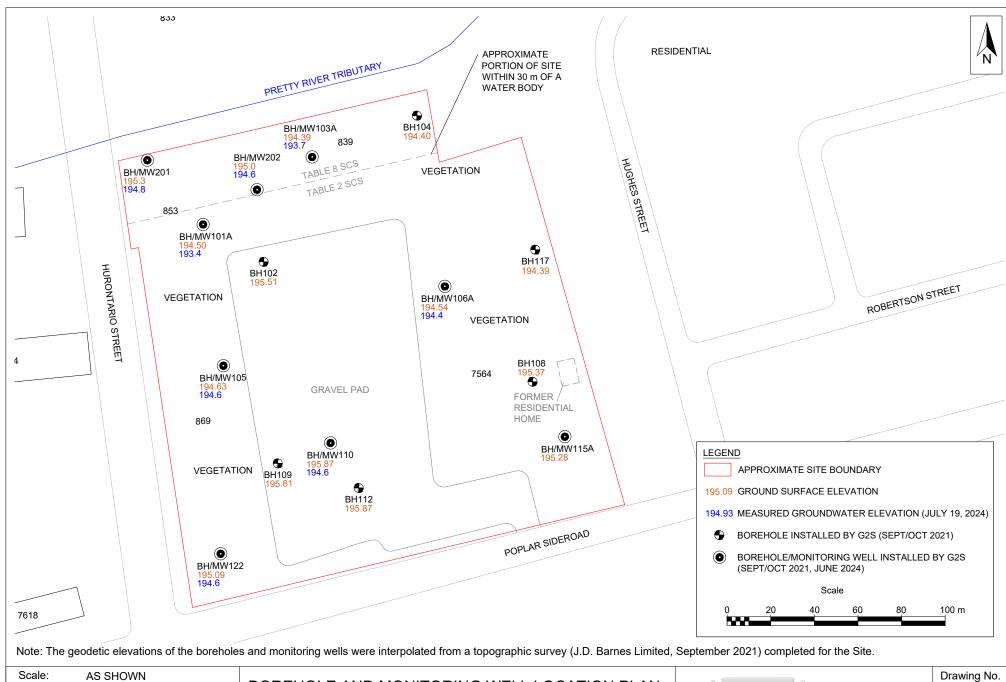
Project No.: G2S21366B Date: JULY 2024


Drawn by: ZB/DH

HURONTARIO&POPLAR.dwg File name:

SITE LOCATION PLAN 839, 853 AND 869 HURONTARIO STREET & 7564 POPLAR SIDEROAD

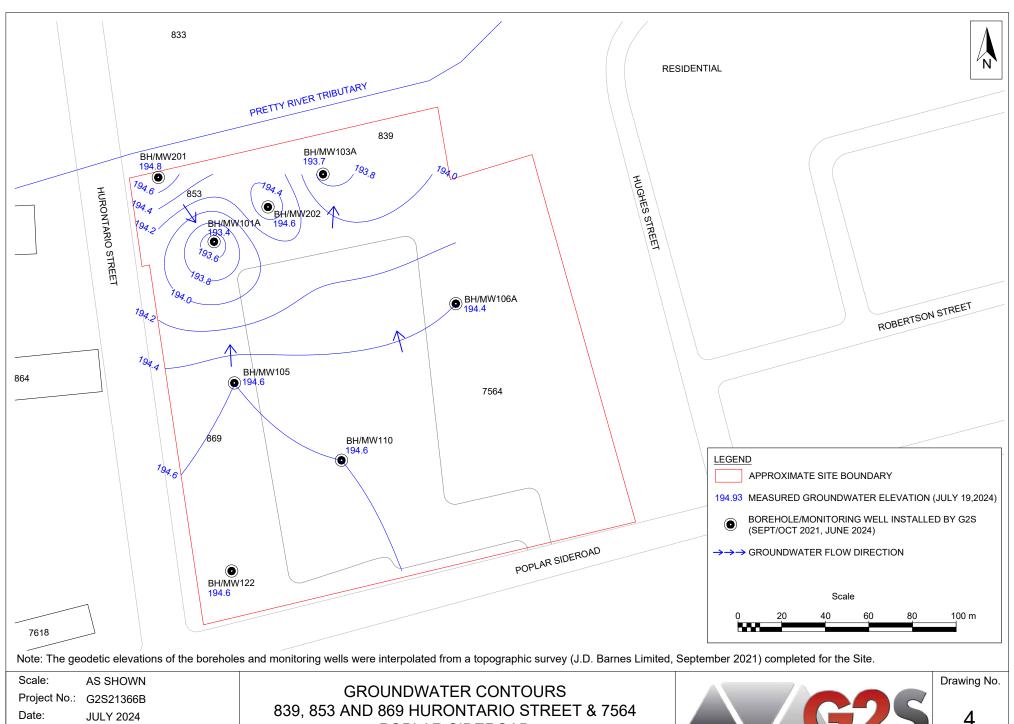
ONTARIO COLLINGWOOD



Date: **JULY 2024** Drawn by: ZB/DH

File name: HURONTARIO&POPLAR.dwg 839, 853 AND 869 HURONTARIO STREET & 7564 POPLAR SIDEROAD

ONTARIO COLLINGWOOD



Project No.: G2S21366B Date: **JULY 2024** ZB/DH Drawn by:

File name: HURONTARIO&POPLAR.dwg BOREHOLE AND MONITORING WELL LOCATION PLAN 839, 853 AND 869 HURONTARIO STREET & 7564 POPLAR SIDEROAD

COLLINGWOOD ONTARIO

ZB/DH Drawn by: File name: HURONTARIO&POPLAR.dwg POPLAR SIDEROAD

COLLINGWOOD ONTARIO

Appendix B: Borehole Logs

BOREHOLE NUMBER 102

PAGE 1 OF 1

	G25
Consulti	ng Inc.

CL	CLIENT _Charis Developments Ltd.				_ PR	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd				
PR	PROJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario					
DA	DATE STARTED 21-10-21 COMPLETED 21-10-21			_ GR	GROUND ELEVATION 195.51 m					
DF	DRILLING CONTRACTOR LST			_ LO	GGED	D BY _DB CHECKED BY _AA				
DF	ILLING METHOD Diedrich D50 Track				_ NO	TES				
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values			
-	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist	194.86		SS1	SPT	3	▲ 20/0			
- 1 -	becoming clayey silt, brown, some gravel, some silt, moist	193.99		SS2	SPT	22	30/0			
2	CLAYEY SILT: Brown to grey, some sand, stiff	193.22		SS3	SPT	10	▲ 25/0			
3	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact		-	SS4	SPT	16	10/0			
-				SS5	SPT	12	15/0 2 6 77 15			
BH DATA TEMPLATE.GDT 22-24				SS6	SPT	4	▲ • 0/0			
ATA TEMPLA	5.2 SANDY SILT TILL: Grey, some gravel,	190.33	<i>67.9</i> 3		VANE					
	trace clay, moist, compact	189.72	PHA1	SS7	SPT	19	▲ 5/0			
3S.GPJ G2S 20	Borehole terminated at 5.8 m.		***				Upon completion of augering Wet cave at 4.6 m Free water at 0.65 m after 24 hours			
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS,GPJ G2S 2021										

BOREHOLE NUMBER 104

		Consulting Inc.						PAGE 1	1 OF 1						
	CLI				PR	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd									
		OJECT NUMBER G2S21366B					PROJECT LOCATION Collingwood, Ontario								
	DA [·]	TE STARTED 21-10-22 COMPLETED	21-10-	22	GR	GROUND ELEVATION 194.40 m									
DRILLING CONTRACTOR LST															
	DR	LLING METHOD _ Diedrich D50 Track				_ NO	NOTES								
	DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	Z Pocket Penetrometer Vane PL MC LL O O O O O O O O O O O O O O O O O O	RAIN SIZE RIBUTION %						
-	-	TOPSOIL: ~100 mm FILL: Clayey silt, brown and grey mottled, some sand, moist	194.30		SS1	SPT	11		SA SI & CL						
-	1	CLAYEY SILT: Brown to grey, some sand, reworked appearance at top, moist, stiff SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, compact	193.62		SS2	SPT	8	8 • 0/0							
-	2				SS3	SPT	10	0/0							
-	3				SS4	SPT	13	0/0							
-	-	3.8	190.59	9	SS5	SPT	10	0/0							
E.GDT 22-2-4	4	SANDY SILT TILL: Grey, some gravel, moist, dense			SS6	SPT	33	33 • • • • • 0/0							
TA TEMPLAT	5	5.2	189.22			SPT	43								
2021 G2S GEOTECH BOREHOLE LOG G2S21386 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4		Borehole terminated at 5.2 m.						Upon completion of a Free water	No cave						

BOREHOLE NUMBER 105

	Consulting Inc.						PAGE 1 OF 1						
CL	JENT Charis Developments Ltd.			_ PR	OJEC	T NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd							
PR	ROJECT NUMBER G2S21366B				_ PR	PROJECT LOCATION Collingwood, Ontario							
DA	ATE STARTED 21-10-1 COMPLETED _	21-10-	1		_ GR	OUNE	DELEVATION 194.63 m						
DR	RILLING CONTRACTOR Davis												
DR	RILLING METHOD CME 45 Track				_ NO	TES .							
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 MOISTURE / PLASTICITY Pocket Penetrometer Vane 40 80 120 160 MOISTURE / PLASTICITY PLASTICITY PLASTICITY PLASTICITY OS GRAIN SIZE DISTRIBUTION GRAS AS I&CL						
	0.20 TOPSOIL: ~200 mm	194.43	<u></u>	ની									
	CLAYEY SILT: Brown, trace sand, stiff, very moist, occasional sand seams, moist, firm to stiff, reworked appearance at the top portion			SS1	SPT	1	25/0						
-	1.5	193.11		SS2	SPT	11	25/0						
2	becoming greyish, layered, numerous sand seams, very moist			SS3	SPT	8	▲ 20/0						
	2.3 SILT: Grey, layered, trace sand, some clay, very moist to wet, very loose to loose	192.34		SS4	SPT	6	H ● 20/0 : 0 9 72 19						
3				SS5	SPT	o ,	30/0						
4 4					VA								
- GDT	4.6	190.06											
TEMPLATE.GDT	SILTY SAND TILL: Grey, some gravel, trace clay, compact, wet	189.45		SS6	SPT	14	10/0						
BH DATA	Borehole terminated at 5.2 m.	100.10	K	и			Refer to report for groundwater elevation data						
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS GPJ G2S 2021 BH DATA													

BOREHOLE NUMBER 108

PAGE 1 OF 1

G2S Consulting Inc.		BOREHOLE
FNT Charis Developments Ltd	PROJECT NAME	839 & 869 Hurontario St & 7564

CLIENT Charis St & 7564 Poplar Side Rd PROJECT NUMBER G2S21366B **PROJECT LOCATION** Collingwood, Ontario GROUND ELEVATION 195.37 m DATE STARTED 21-10-21 **COMPLETED** 21-10-21 CHECKED BY AA LOGGED BY DB DRILLING CONTRACTOR LST **NOTES** DRILLING METHOD Diedrich D50 Track SPT N VALUES N values CPT values SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION ELEVATION (m) GRAPHIC LOG \(\frac{\(\Delta\)}{40}\) DEPTH (m) NUMBER N VALUE 30 TYPE MOISTURE / MATERIAL DESCRIPTION **PLASTICITY** Undrained Shear Strength (kPa GRAIN SIZE DISTRIBUTION 9 GR SA SI & CL 160 40 80 120 0.10~ 195.27 TOPSOIL: ~100 mm SPT SS1 10/0 FILL: Clayey silt, brown to dark brown, some sand, very moist 0.76 194.61 CLAYEY SILT: Brown and grey mottled, some sand seams, moist, very SPT SS2 16 193.87 1.5 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to very SPT 17 0/0 SS3 moist, compact SS4 SPT 10/0 3 SS5 SPT 11 5/0 191.56 3.8 SANDY SILT TILL: Grey, some gravel, 2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4 moist, compact, SS6 SPT 0/0

SPT

SS7

21

Borehole terminated at 5.2 m.

5

Upon completion of augering Cave at 4.4 m

Free water at 3.4 m

BOREHOLE NUMBER 109

			25													PA	AGE 1 OF 1
		Consulting						0.150	T N/A 845	000.0	000 11		. 04 0 :	7504	D l	0:4-	D.I
		CHARLES DEVELOPMENT							I NAME . T LOCATI					7564	Popiai	Side	Ka
		OJECT NUMBER G2S2		21 10	21						_		itario				
		· · · · · · · · · · · · · · · · · · ·	COMPLETED						ELEVAT				CUEC	VED I	DV ^	٨	
		ILLING CONTRACTOR _ ILLING METHOD _Diedr							BY DB						ы <u>А</u>	Α	
Ļ	л\ —	Diedi	ICH DOU HACK				_ 110			V VALU							
(m) 114010	DEPIH (M)	MATERIAI	_ DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N value 10 2 Undrained Pocket Penet	Shear Stre	values 40 ength (kPa) Vane	MOI	•	ΓΥ	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL
-	1 1 1	silt to silty, poss	gravel, brown, some ible cobble and boulder the surface, moist			SS1	SPT	8	A :			•	:		25/0		
	1	0.95 becoming claye some sand, son	y silt, brown and grey, ne gravel, moist	194.86	\bigotimes	SS2	SPT	11	A			•		: 	25/0		
<u> </u>	2	CLAYEY SILT: trace sand, moi	Brown to grey mottled, st, stiff to very stiff			SS3	SPT	14	A		:		10 —1		30/0		0 2 64 34
} - - ;	3	3.1		102.76		SS4	SPT	16	A				•		35/0		
-	-	becoming layer	ed with trace gravel	192.76		SS5	SPT	15	A				•		20/0		
EMPLATE.GDT 22-2-4	4	SILT: Grey, lay gravel, some cla	ered, trace sand, trace ay, very moist, compact	192.00		SS6	SPT	15	•			•) 	:	15/0		
	5		LL: Grey, some gravel,	190.63		4	SPT	9	A			•			15/0		
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA T		Borehole termin	ated at 5.2 m.											Ο _Γ	oon co	mpleti	on of augering No cave No free water

BH/MW NUMBER 110

	C	onsulting Inc.											PAC	GE 1 OF 1
CI		Charis Developments Ltd.				PR	OJEC [.]	FNAME 8	39 & 869 Hı	urontario St	t & 7564 l	Poplai	r Side R	d
		T NUMBER G2S21366B							N Collingw					
D	ATE ST	ARTED 21-10-1 COMPLETED	21-10-	-1		GR	OUND	ELEVATIO	N 195.87	m				
DI	RILLING	G CONTRACTOR Davis				_ LO	GGED	BY DB		СН	ECKED E	3Y _A	Α	
DI	RILLING	G METHOD CME 45 Track												
-				(5	Π			SPTN	VALUES			တ္	z	
DEPTH (m)		MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	10 20 Undrained She Pocket Penetrom	CPT values 30 40 ear Strength (kPa) eter Vane 120 160	MOISTU PLASTI PL MC I 0 20	ICITY	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL
-	-	FILL: Sand and gravel, brown, trace to some silt, possible cobble and boulder size material at the surface, moist			SS1	AU						25/0		
1	- - - -				SS2	SPT	52		>>_	\ •		25/0	Ţ	
2	1.6	SILT: Brown to grey, trace sand, some gravel, very moist, compact, reworked appearance at top portion	194.24		SS3	SPT	11	A		•		25/0		
3		CLAYEY SILT: Brown to grey mottled, trace sand, trace gravel, moist, stiff	100.00		SS4	SPT	14	•	225	•		45/0		
-	-				SS5	SPT	11	A	X			25/0		
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4 A	4.6		191.30											
ATA TEMPLA	5.3	SILT: Grey, occasional sand pockets, some clay, moist, loose	190.54	4	SS6	SPT	6	×		•		30/0		
2S 2021 BH D/	5.9	SANDY SILT TILL: Grey, some gravel, trace clay, very moist, compact	189.93		SS7	SPT	19	•	225	< ●		30/0		
<u>آ</u>		Borehole terminated at 5.9 m.									Date			el Readings: n) Elev. (m)
68.G											2022-01	1-21	1.4	194.4
의											2021-1 ² 2021-10		0.9 2.0	
뢰														
BOR														
1366														
G2S														
P00														
PCE														
30RE														
ECH														
GEOT														
G2S (
2021														

BOREHOLE NUMBER 112

PAGE 1 OF 1

_	G2S onsulting Inc.			BOKEHOLE
ENT	Charis Developments Ltd.	PROJEC	T NAME	839 & 869 Hurontario St & 756

CLIENT Charis Developments Ltd.	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd
PROJECT NUMBER G2S21366B	PROJECT LOCATION Collingwood, Ontario
DATE STARTED 21-9-30 COMPLETED 21-10-1	GROUND ELEVATION 195.87 m
DRILLING CONTRACTOR Davis	LOGGED BY DB CHECKED BY AA
DRILLING METHOD CME 45 Track	NOTES
	SPT N VALUES

DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VA N values CF 10 20 3 Undrained Shear S Pocket Penetrometer X	0 40 Strength (kPa) Vane	MOISTURE / PLASTICITY PL MC LL I I I I I I I I I I I I I I I I I I	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION ° GR SA SI & CL
	FILL: Sand and gravel, brown, some silt, possible cobble and boulder sized material at surface, moist			SS1	AU					15/0		
1	1.5	194.37		SS2	SPT	23	A		•	20/0		
2	SILT: Greyish brown, layered, trace sand, trace gravel, some clay moist to wet, very loose to loose			SS3	SPT	7	A		•	10/0		
3				SS4	SPT	10	A	×	•	20/0		
	- - -			SS5	SPT	4	A ×		•	15/0		
E.GDT 22-2-4				SS6	SPT	2)	A		•	20/0		
G2S 2021 BH DATA TEMPLATE GDT		190.54	ļ.	SS7	SPT	6	A		•	20/0		
S 2021 BH D	SANDY SILT TILL: Grey, some gravel, very moist, compact	189.93		SS8	SPT	12	A		•	15/0		
2021 G2S GEOTECH BOREHOLE LOG G2S2/1366 BOREHOLE LOGS.GPJ G2S	Borehole terminated at 5.9 m.								U	pon co		on of augering Cave at 3.0 m water at 3.1 m

BOREHOLE NUMBER 117

PAGE 1 OF 1

		G	25
C	nsult	i n a	Inc.

CL	IENT Charis Developments Ltd.				PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd										
PR	OJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario										
DA	TE STARTED 21-10-22 COMPLETED	21-10-2	22		GROUND ELEVATION 194.39 m										
DR	ILLING CONTRACTOR LST				LOGGED BY DB CHECKED BY AA										
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _									
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40	TION %							
	TOPSOIL: ~75 mm CLAYEY SILT: Brown to grey, occasional sand seams, moist to very moist firm to stiff reworked appearance	194.32	иии	SS1	SPT	5	▲ × 0/0								
1	moist, firm to stiff, reworked appearance at top portion			SS2	SPT	9	▲ 225 ● 0/0								
2	2.1	192.26		SS3	SPT	9	▲ 225 × ● 0/0								

Borehole terminated at 2.1 m.

Upon completion of augering No cave No free water

	Co	G25 nsulting Inc.						BH/MW NUMBER 122 PAGE 1 OF 1
CL	IENT _	Charis Developments Ltd.						CT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd
		NUMBER G2S21366B						CT LOCATION Collingwood, Ontario
		RTED 21-9-30 COMPLETED CONTRACTOR Davis						D BY DB CHECKED BY AA
		METHOD CME 45 Track						D BY DB CHECKED BY AA
					1	_ ```		L COT NI VALUES
DEPTH (m)		MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values N values
	0.25	TOPSOIL: ~250 mm	194.84	1	SS1	SPT	2	
	0.76	FILL: Clayey silt, brown to dark brown, mixed with organics, some sand, some gravel, moist	194.33		551	521	3	
1		CLAYEY SILT: Brown to grey, occasional sand seams, trace gravel, moist to very moist, stiff to very stiff			SS2	SPT	16	
2	2.3		192.80		SS3	SPT	11	
3		SILT: Greyish brown, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to loose	102.00		SS4	SPT	7	
					SS5	SPT	0 .	
77.77	4.6		190.52			VANE		WH 3.0
5		CLAYEY SILT: Brown to grey, trace sand, trace gravel, moist, very soft			SS6	SPT	0 .	WH 5 3 60 32
2021 G.53 GEOTECH BORREHOLE LOGS GAP G.53 ZUZI BH DATA TEMPLATI	6.1		188.99					
		SAND TILL: Grey, medium to coarse, mixed with gravel, trace silt, wet, compact to very dense			SS7	SPT	17	33 60 7 (
386 BOKEHOL 386 BOKEHOL								
8 8	8.2		186.86		SS8	SPT	64	>> A
		Borehole terminated at 8.2 m.						Water Level Readings <u>D</u> ate Depth (m) Elev. (m
OIECH BORE								2022-01-21 0.0 195.1 2021-11-03 0.1 195.0 2021-10-13 0.4 194.7
.021 GZS GE								

٧	Vater Level	Readings:
Date	Depth (m)	Elev. (m)
2022-01-21	0.0	195.1
2021-11-03	0.1	195.0
2021-10-13	0.4	194.7

BH/MW NUMBER 101A

Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Stickup Bentonite seal 1 ST Stickup Filter sand Water Level Reading Depth (m) Elev. (in page 1) Elev. (in page 2) Elev. (in page 2) Elev. (in page 3) Elev. (in page 4) Elev. (in page	O. 15	Consulting Inc.							0.0 7504	5 .	0: 1	5 .
DATE STARTED 22-1-7 COMPLETED 22-1-7 GROUND ELEVATION 194.50 m LOGGED BY DB CHECKED BY A DBLLING METHOD CME 45 Track MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Borehole terminated at 4.6 m. Borehole terminated at 4.6 m.												
DRILLING CONTRACTOR Davis DRILLING METHOD OME 45 Track NOTES MATERIAL DESCRIPTION MATERIAL DESCRIPTION Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Borehole terminated at 4.6 m. Date Description LOGGED BY DB CHECKED BY AA NOTES SPTN VALUES N Values CPT values 10 20 30 40 40 40 80 120 160 10 20 160 10 20 1												
Borehole terminated at 4.6 m. Continued by the search of the search o										RY A	Δ	
MATERIAL DESCRIPTION Solution Superior Superior											V 1	
MATERIAL DESCRIPTION Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Stockup Stoc		- OME 40 Hack								_		
Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Bentonite seal 1 ST Briter sand 1 ST Borehole terminated at 4.6 m. Water Level Reading Depth (m) Elev. (in page 1) Elev. (in page 2) Elev. (in page 2) Elev. (in page 3) Elev. (in page 4) Elev. (DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane	PLASTICITY PL MC LL	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE
	3	and 4.57 m for monitoring well installation			1	ST			10 20 30		▼ ater Le	GR SA SI & C Stickup Bentonite seal Filter sand Slotted screen evel Reading: (m) Elev. (n

BH/MW NUMBER 103A

PR DA	OJECT NUMBER G2S21366B TE STARTED 22-1-7 COMPLETED	22-1-7			_ PR _ GR	OJEC.		ood, Ontario	Poplar Side	
	ILLING CONTRACTOR Davis ILLING METHOD CME 45 Track						BY DB		SY AA	
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160		SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL
1 2 3	Straight auger to 2.29 m for sampling and 4.57 m for monitoring well installation			1	ST					Stickup Bentonite seal Filter sand
2021 G2S GEOTECH BOREHOLE LOG G2S2/1366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE GDT	Borehole terminated at 4.6 m.	189.82	2					<u>Date</u> 2022-01	Vater Le Depth	evel Readings: (m) Elev. (m) 0.7 193.7

BOREHOLE NUMBER 106A

	Consulting Inc.														P	AGE 1 OF 1
CL	IENT Charis Developments Ltd.				PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd											
PF	OJECT NUMBER G2S21366B									Collingwo						
D/	TE STARTED 22-1-7 COMPLETED	22-1-7	•		_ GR	ROUNE	ELE\	/ATI	ON	194.54 r	n					
DF	RILLING CONTRACTOR Davis															
DF	RILLING METHOD CME 45 Track				_ NO	TES .										
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	Undra Pocket	ained S	Shear Someter	UES T values 0 40 Strength (kPa) Vane 10 160	PL/ PL	-	TY LL -	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION %
- 1 - 2 - 2 - 3 - 3	Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 3.1 SILT: Grey, some sand, some clay, trace gravel, wet, loose	191.49	99	SS1		6	A				10	20	30			GR SA SI &CL Stickup Bentonite seal Filter sand Slotted screen
GDT 22	4.4	190.12	2	SS2	SPT	6	A						•			
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4 1-2-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4	Borehole terminated at 4.6 m.	190.12	2										Refe	er to re	eport fo	or groundwater elevation data

BH/MW NUMBER 115A

		G2 S						PAGE 1 OF	1
	^I I	Consulting Inc. ENT Charis Developments Ltd.				DD	O IEC	CT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd	
		ENT Charis Developments Ltd. DJECT NUMBER G2S21366B						CT LOCATION Collingwood, Ontario	
		TE STARTED 22-1-7 COMPLETED	22-1-7	,				ID ELEVATION 195.28 m	
		LLING CONTRACTOR Davis						D BY _ DB CHECKED BY _ AA	
		LLING METHOD CME 45 Track							
H			Τ	T.,				SPT N VALUES N values CPT values	
	Œ.		ELEVATION (m)	GRAPHIC LOG	<u>~</u>		ш		
	DEPTH (m)	MATERIAL DESCRIPTION		읟	NUMBER	TYPE	N VALUE	MOISTURE / NOISTURE /	
			EVA	₹AP	<u>Ş</u>	[-		Undrained Shear Strength (kPa) Pocket Penetrometer Vane PLASTICITY SET OF STRENGTH	
			=	5				Pocket Penetrometer Vane PL MC LL GRAIN S DISTRIBUT GR SA SI GR SA SI	IZE ON % & CL
F	-	Straight auger to 3.05 m for sampling and 4.57 m for monitoring well						Stickup	
ŀ	-	installation							
Ī	1								
H	1								
ţ	1							Bentonite sea	al
-	-								
Ŀ	2								
ŀ	-								
ŀ	-								
-	3							Filter sand	
F	<u>ه</u>	SILT: Grey, some sand, some clay,	192.23	3 					
F]	wet, loose			SS1	SPT	4		
ŀ	-				-				
2-2-4	4							Slotted scree	n
DT 2	-	4.3 4.4 ODANIELIN OUT TILL O	190.98	3	SS2	SPT	0 ,		
EMPLATE.GDT 22-2-4		GRAVELLY SILT TILL: Grey, some sand, moist	1.00.0						
EMPL/		Borehole terminated at 4.6 m.						Water Level Readii <u>Date</u> Depth (m) Elev.	ngs: (m)
TA TE								2022-01-21 0.6 194	1.7
H DA									
021 E									
G2S 2									
GPJ									
068.									
)LE L									
REHO									
36 BO									
S2136									
G G2									
LE LO									
ZEHO									
H BOF									
OTECI									
2021 G2S GEOTECH BOREHOLE LOG G2S21386 BOREHOLE LOGS.GPJ G2S 2021 BH DATA T									
21 G2									
20,									

Г									BH/MW	NUI	MBI	ER 201
	Consulting Inc.										P	AGE 1 OF 1
CL	LIENT Charis Developments Ltd.				PR	OJEC ⁻	TNAME Geo	technical In	vestigation for T	he Gat	eway	Centre
PF	ROJECT NUMBER G2S21366								tario St, Collingw			
l	ATE STARTED 24-6-4 COMPLETED	D 24-6-5					ELEVATION		-			
ı	RILLING CONTRACTOR Davis Drilling Ltd.						_		CHECKED	BY A	AA	
ı	RILLING METHOD CME 55 Track											
Ľ.												
<u>۔</u>		ELEVATION (m)	90	l			SPT N VAL N values CP	T values		SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	
DEPTH (m)	·	N O	GRAPHIC LOG	NUMBER	Щ	VALUE	10 20 30	40	MOISTURE /	(ppn	TRUC	
Ε̈́	MATERIAL DESCRIPTION	ATI	표	M	TYPE	\ <u>\</u>	Undrained Shear St	trength (kPa)	PLASTICITY	AS R X/IBL	SNO	
ᆸ		LE/	ЗRА	Ž		z	Pocket Penetrometer	Vane	PL MC LL	F. E.	III C	GRAIN SIZE
							40 80 120		10 20 30	Š	×	DISTRIBUTION GR SA SI & CI
-	- 0.05 GRANULAR: ~50 mm	195.25	\bowtie	S1	SPT	10				0/0		Stickup protective casing
-	FILL: Clayey silt, greyish brown, some sand, some gravel, trace organics,		\bowtie	}								set in concrete
1	moist		\bowtie			_		<u> </u>	<u> </u>			
-	-		\bowtie	S2	SPT	8	A : :	:		0/0		
ļ	1.5	193.78										
2	CLAYEY SILT: Brown and grey, some sand, trace organics, reworked			S3	SPT	15	A	225	•	0/0		
-	appearance at top portion, moist, very	193.01						:	: : :	Ϊ		Bentonite seal
Ŀ	becoming greyish brown, very moist,	<i>-</i> /		S4	SPT	10				0/0		
3	increasing plasticity with depth				0, 1			225		0,0		
Ļ	1									-		
-	-			S5	SPT	10	A	×	•	0/0		
Ė,	1											
4	<u> </u>											Filter sand
	4.6	190.73										Tiller Saria
- 5 -	SANDY SILT TILL: Grey, some gravel,	100.70			ODT					0.10		
5	trace clay, moist, dense to very dense			S6	SPT	55		: >> 🛕 (0/0	l:目:	`.
	1						1 ! ! !				:: <u> </u> :	
ŀ	1			:				:			目	
6	4						ļ <u>.</u>					· Slotted screen
- 6 -	1			S7	SPT	43		A		0/0		
-	-	400.44				70				3,0		
- 7 -	GRAVEL: Grey, trace silt, some sand,	188.44	βŤ	S8	SPT	50	 	:50/125 m	m : : : : : : : : : : : : : : : : : : :	0/0		
ŀ	wet		o (}				50/05				
Ē	7.5 LIMESTONE BEDROCK: Refer to	187.78 / 187.76		S9	SPT /	50		50/25 mi	n .			<u>:</u>
8	8.0 Rock Core Log for bedrock	187.35	\bigotimes	S10	RC							
	8.1 characterization details	187.25	₭//	S11	RC ,	l			:	Ϊ.	1	1

2021 G2S GEOTECH BOREHOLE LOG G2S21366 200 SERIES BOR RUN 1: Total Recovery (100%) - RQD (26%) Poor Quality Low to Medium Strength RC S12 9 RUN 2: Total Recovery (98%) - RQD (0%) Very Poor Quality Medium Strength 185.77 9.5 RUN 3: Total Recovery (100%) - RQD (64%) Fair Quality Very Low to Medium Strength S13 RC 11 RUN 4: Total Recovery (99%) - RQD (89%) Good Quality Very Low to High Strength 184.20 11.1 Water Level Readings: Date Depth (m) Elev. (m) 2024-06-20 2024-06-26 2024-07-19

Borehole terminated at 11.1 m.

194.20 194.68

194.78

1.10 0.62 0.52

BH/MW NUMBER 202

		Consulting Inc.							F	PAGE 1 OF 1					
	CL	ENT Charis Developments Ltd.				_ PR	OJEC	F NAME Geotechnical Investigation for	The Gateway	Centre					
	PR	OJECT NUMBER G2S21366					OJEC	LOCATION 853 Hurontario St, Colling	wood, ON						
	DA	TE STARTED 24-6-4 COMPLETED	24-6-4												
	DR	ILLING CONTRACTOR Davis Drilling Ltd.				LOGGED BY _DB CHECKED BY _AA									
	DR	ILLING METHOD CME 55 Track				_ NC	TES .								
	DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane PL MC LL	SOIL GAS READINGS HEXIBL (ppm)	GRAIN SIZE DISTRIBUTION %					
ł		0.15 TOPSOIL: ~150 mm	194.85	1,17,	S1A			40 80 120 160 10 20 30	0/0	GR SA SI & CL Stickup					
	 	CLAYEY SILT: Brown and grey, trace sand, trace organics, reworked appearance at top portion, moist, stiff			S1B	SPT	4	•	0/0	protective casing set in concrete					
					S2	SPT	9	* × • • • • • • • • • • • • • • • • • •	0/0	Bentonite seal					
	2				S3	SPT	14	<u> </u>	0/0						
	3	3.1	191.95		S4	SPT	12	* × •	0/0						
	 	becoming grey, increasing plasticity with depth			S5	SPT	9	* × •	0/0	Filter sand					
24-7-30	4														
LATE GDT	5	SANDY SILT TILL: Grey, some gravel to gravelly, rock fragments, wet, compact	190.43		S6	SPT	20	<u> </u>	0/0						
BH DATA TEMPLATE GDT 24-7-30	6	·	400.00							Slotted screen					
G2S 2021 BH		GRAVEL: Grey, some sand, some silt, wet	188.90	000	S7	SPT	64	>> ▲ ● 50/25 mm	0/0						
3PJ G		No further progress due to auger and	1 100.14	ک ط	S8	SPT	50		Water I	_evel Readings:					
OGS.(sampler refusal on probable bedrock Borehole terminated at 6.9 m.						Date		n (m) Elev. (m)					
REHOLE L								2024	-06-26	0.69 194.31 0.42 194.58 0.36 194.64					
2021 G2S GEOTECH BOREHOLE LOG G2S21366 200 SERIES BOREHOLE LOGS.GPJ															

Appendix C: Analytical Results Tables

Table 1: Soil Quality Results Petroleum Hydrocarbons (PHCs) (F1-F4) and BTEX

Parameter	Unit	*Table 2 SCS	*Table 8 SCS R/P/I/I/C/C Property	ation	n							
r al ametel	Oint	I/C/C Property Use	Hoo	BH102 SS2	BH104 SS1	BH105 SS1	BH108 SS1	BH109 SS3	BH110 SS4	BH112 SS4	BH117 SS2	BH122 SS5
Date Sampled				21-Oct-21	22-Oct-21	01-Oct-21	21-Oct-21	21-Oct-21	01-Oct-21	30-Sep-21	22-Oct-21	30-Sep-21
Depth	mbgs			0.8 - 1.4	0 - 0.6	0 - 0.6	0 - 0.6	1.5 - 2.1	2.3 - 2.9	2.3 - 2.9	0.8 - 1.4	3.0 - 3.6
Benzene	ug/g	0.4	0.02	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Ethylbenzene	ug/g	1.6	0.05	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Toluene	ug/g	9	0.2	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
Xylenes	ug/g	30	0.05	<0.050	<0.050	0.072	<0.050	<0.020	<0.050	< 0.050	<0.050	<0.050
Petroleum Hydrocarbons F1	ug/g	65	25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Petroleum Hydrocarbons F2	ug/g	250	10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3	ug/g	2500	240	<50	<50	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons F4	ug/g	6600	120	<50	<50	<50	<50	<50	<50	<50	<50	<50

^{*}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS -Site Condition Standards

I/C/C - Industrial/Commercial/Community

R/P/I - Residential/Parkland/Institutional

Xylenes exceeds the Table 8 SCS in BH105 SS1; BH105 SS1 is located at a distance greater than 30 m from a water body and therefore meets the applicable MECP Table 2 SCS

Table 2: Soil Quality Results Volatile Organic Compounds (VOCs)

Parameter	Unit	*Table 2 SCS	*Table 8 SCS R/P/I/I/C/C Property		Sample Id	entification	
, dramoto,	S.I.I.C	I/C/C Property Use	Use	BH109 SS3	BH110 SS4	BH112 SS4	BH122 SS5
Date Sampled				21-Oct-21	01-Oct-21	30-Sep-21	30-Sep-21
Depth	mbgs			1.5 - 2.1	2.3 - 2.9	2.3 - 2.9	3.0 - 3.6
Acetone	ug/g	28	0.5	<0.50	<0.50	<0.50	<0.50
Benzene	ug/g	0.4	0.02	<0.0068	<0.0068	<0.0068	<0.0068
Bromodichloromethane	ug/g	1.9	0.05	<0.050	< 0.050	<0.050	<0.050
Bromoform	ug/g	1.7	0.05	<0.050	< 0.050	< 0.050	<0.050
Bromomethane	ug/g	0.05	0.05	<0.050	< 0.050	< 0.050	<0.050
Carbon tetrachloride	ug/g	0.71	0.05	<0.050	< 0.050	< 0.050	<0.050
Chlorobenzene	ug/g	2.7	0.05	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	ug/g	2.9	0.05	<0.050	<0.050	<0.050	<0.050
Chloroform	ug/g	0.18	0.05	<0.050	< 0.050	<0.050	<0.050
1.2-Dibromoethane	ug/g	0.05	0.05	<0.050	<0.050	<0.050	<0.050
1.2-Dichlorobenzene	ua/a	1.7	0.05	<0.050	<0.050	<0.050	<0.050
1.3-Dichlorobenzene	ug/g	12	0.05	<0.050	<0.050	<0.050	<0.050
1.4-Dichlorobenzene	ug/g	0.57	0.05	< 0.050	< 0.050	<0.050	<0.050
Dichlorodifluoromethane	ug/g	25	0.05	<0.050	<0.050	<0.050	<0.050
1.1-Dichloroethane	ug/g	0.6	0.05	<0.050	<0.050	<0.050	<0.050
1.2-Dichloroethane	ug/g	0.05	0.05	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	ug/g	0.48	0.05	<0.050	<0.050	<0.050	<0.050
cis-1,2-Dichloroethylene	ug/g	2.5	0.05	<0.050	<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g	2.5	0.05	<0.050	<0.050	<0.050	<0.050
Methylene Chloride	ug/g	2	0.05	<0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	ug/g	0.68	0.05	<0.050	<0.050	<0.050	<0.050
1.3-Dichloropropene (cis & trans)	ua/a	0.081	0.05	<0.042	<0.042	<0.042	<0.042
Ethylbenzene	ug/g	1.6	0.05	<0.018	<0.018	<0.018	<0.018
n-Hexane	ug/g	88	0.05	<0.050	< 0.050	< 0.050	<0.050
Methyl Ethyl Ketone	ug/g	88	0.5	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	210	0.5	<0.50	<0.50	<0.50	<0.50
MTBE	ug/g	2.3	0.05	<0.050	<0.050	<0.050	<0.050
Styrene	ug/g	43	0.05	<0.050	<0.050	<0.050	<0.050
1.1.1.2-Tetrachloroethane	ug/g	0.11	0.05	<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g	0.094	0.05	<0.050	<0.050	<0.050	<0.050
Tetrachloroethylene	ug/g	2.5	0.05	<0.050	<0.050	<0.050	<0.050
Toluene	ug/g	9	0.2	<0.080	<0.080	<0.080	<0.080
1.1.1-Trichloroethane	ug/g	12	0.05	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	ug/g	0.11	0.05	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	ug/g	0.61	0.05	<0.010	<0.010	<0.010	<0.010
Trichlorofluoromethane	ug/g	5.8	0.25	<0.050	<0.050	<0.050	<0.050
Vinyl chloride	ug/g	0.25	0.02	<0.020	<0.020	<0.020	<0.020
Xylenes (Total)	ug/g	30	0.05	<0.050	<0.050	<0.050	<0.050

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards
I/C/C - Industrial/Commercial/Community

R/P/I - Residential/Parkland/Institutional

Table 3: Soil Quality Results Polycyclic Aromatic Hydrocarbons (PAHs)

		*T-1-1-0 000	*Table 8 SCS	Sample Identification						
Parameter	Unit	*Table 2 SCS I/C/C Property Use	R/P/I/I/C/C Property Use	BH102 SS2	BH105 SS1	BH112 SS4	BH117 SS2			
Date Sampled				21-Oct-21	01-Oct-21	30-Sep-21	22-Oct-21			
Depth	mbgs			0.8 - 1.4	0 - 0.6	2.3 - 2.9	0.8 - 1.4			
Acenaphthene	ug/g	29	0.072	<0.050	<0.050	<0.050	<0.050			
Acenaphthylene	ug/g	0.17	0.093	<0.050	<0.050	<0.050	<0.050			
Anthracene	ug/g	0.74	0.22	<0.050	< 0.050	< 0.050	< 0.050			
Benzo(a)anthracene	ug/g	0.96	0.36	<0.050	< 0.050	< 0.050	< 0.050			
Benzo(a)pyrene	ug/g	0.3	0.3	<0.050	< 0.050	< 0.050	< 0.050			
Benzo(b&j)fluoranthene	ug/g	0.96	0.47	< 0.050	< 0.050	< 0.050	<0.050			
Benzo(g,h,i)perylene	ug/g	9.6	0.68	< 0.050	< 0.050	<0.050	<0.050			
Benzo(k)fluoranthene	ug/g	0.96	0.48	< 0.050	<0.050	<0.050	<0.050			
Chrysene	ug/g	9.6	2.8	<0.050	< 0.050	< 0.050	<0.050			
Dibenz(a,h)anthracene	ug/g	0.1	0.1	< 0.050	< 0.050	< 0.050	< 0.050			
Fluoranthene	ug/g	9.6	0.69	< 0.050	< 0.050	< 0.050	< 0.050			
Fluorene	ug/g	69	0.19	< 0.050	< 0.050	< 0.050	< 0.050			
Indeno(1,2,3-cd)pyrene	ug/g	0.95	0.23	< 0.050	< 0.050	< 0.050	< 0.050			
1+2-Methylnaphthalenes	ug/g	42	0.59	<0.042	<0.042	<0.042	<0.042			
1-Methylnaphthalene	ug/g	42	0.59	< 0.030	<0.030	<0.030	<0.030			
2-Methylnaphthalene	ug/g	42	0.59	< 0.030	< 0.030	< 0.030	< 0.030			
Naphthalene	ug/g	28	0.09	<0.013	<0.013	<0.013	<0.013			
Phenanthrene	ug/g	16	0.69	<0.046	<0.046	<0.046	<0.046			
Pyrene	ug/g	96	1	< 0.050	< 0.050	< 0.050	<0.050			

^{*}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

I/C/C - Industrial/Commercial/Community

R/P/I - Residential/Parkland/Institutional

Table 4: Soil Quality Results Metals and Inorganics

			*Table 8 SCS				Sam	ple Identifica	ation			
Parameter	Unit	*Table 2 SCS I/C/C Property Use	R/P/I/I/C/C Property Use	BH102 SS2	BH104 SS1	BH105 SS1	BH108 SS1	BH109 SS3	BH110 SS4	BH112 SS4	BH117 SS2	BH122 SS5
Date Sampled				21-Oct-21	22-Oct-21	01-Oct-21	21-Oct-21	21-Oct-21	01-Oct-21	30-Sep-21	22-Oct-21	30-Sep-21
Depth	mbgs			0.8 - 1.4	0 - 0.6	0 - 0.6	0 - 0.6	1.5 - 2.1	2.3 - 2.9	2.3 - 2.9	0.8 - 1.4	3.0 - 3.6
Antimony	ug/g	50	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	ug/g	18	18	7.7	4.2	6	2.7	4.5	4.6	3.9	5.3	3.2
Barium	ug/g	670	220	33	56.3	81.6	38.9	54.1	60.9	54.3	58.7	45.4
Beryllium	ug/g	10	2.5	<0.50	0.57	0.81	<0.50	0.57	0.52	0.54	0.63	<0.50
Boron, Hot Water Ext.	ug/g	2	1.5	<0.10	0.22	0.33	0.36	0.35	0.23	0.22	0.25	0.47
Boron	ug/g	120	36	14.4	12.5	16.5	7.2	14.9	13.9	16.5	16.6	14.1
Cadmium	ug/g	1.9	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium	ug/g	160	70	13.7	21	29.4	15.5	19.9	20.4	20.5	23	18.3
Cobalt	ug/g	100	22	7.1	8.9	12.4	5.1	9.5	9.8	9.2	10.9	8.5
Copper	ug/g	300	92	38.2	15.5	22.3	8.2	18	17.6	17.5	21	18.7
Lead	ug/g	120	120	8.6	8.8	8.1	8.4	6	6.1	5.8	6.6	5.8
Mercury	ug/g	20	0.27	0.0199	0.0327	0.0191	0.0301	0.0094	0.0104	0.007	0.0113	0.0075
Molybdenum	ug/g	40	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel	ug/g	340	82	15	19	28.2	10.6	21.8	20.9	20	23.6	18.7
Selenium	ug/g	5.5	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	ug/g	50	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	ug/g	3.3	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
Uranium	ug/g	33	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium	ug/g	86	86	20.8	29.2	42.5	25.5	29	28.8	29.7	33.1	25.8
Zinc	ug/g	340	290	27.9	47.7	52	29.1	37.5	39.6	39.1	42.4	35.9
Chromium, Hexavalent	ug/g	10	0.66	<0.20	0.59	0.36	0.23	<0.20	<0.20	<0.20	0.26	<0.20
Conductivity	mS/cm	1.4	0.7	0.152	0.247	0.233	0.298	0.178	0.221	0.154	0.131	0.395
Cyanide	ug/g	0.051	0.051	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050
SAR	SAR	12	5	0.28	0.18	1.25	0.2	0.76	0.39	0.62	0.29	0.8

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

I/C/C - Industrial/Commercial/Community

R/P/I - Residential/Parkland/Institutional

Table 5: Groundwater Quality Results PHCs and BTEX

Barrandar	Unit	*Table 2 SCS	s	Sample Identification					
Parameter	Fable 2 300		MW105	MW110	MW122				
Date Sample	t		13-Oct-21	13-Oct-21	13-Oct-21				
Benzene	ug/g	5	<0.5	<0.5	<0.5				
Ethylbenzene	ug/g	2.4	<0.5	<0.5	<0.5				
Toluene	ug/g	24	<0.5	<0.5	<0.5				
Xylenes	ug/g	300	<0.5	<0.5	<0.5				
Petroleum Hydrocarbons F1	ug/g	750	<25	<25	<25				
Petroleum Hydrocarbons F2	ug/g	150	<100	<100	<100				
Petroleum Hydrocarbons F3	ug/g	500	<100	<100	<100				
Petroleum Hydrocarbons F4	ug/g	500	<100	<100	<100				

^{*}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS -Site Condition Standards

Table 6: Groundwater Quality Results VOCs

Parameter	Unit	*Table 2 SCS	s	Sample Identification					
i didinoto.	S.I.I.	Tublo 2 000	MW105	MW110	MW122				
Date Sampled			13-Oct-21	13-Oct-21	13-Oct-21				
Acetone	ug/g	2700	<5.0	<5.0	<5.0				
Benzene	ug/g	5	<0.5	<0.5	<0.5				
Bromodichloromethane	ug/g	16	<0.5	<0.5	<0.5				
Bromoform	ug/g	25	<0.5	<0.5	<0.5				
Bromomethane	ug/g	0.89	<0.5	<0.5	<0.5				
Carbon Tetrachloride	ug/g	0.79	<0.2	<0.2	<0.2				
Chlorobenzene	ug/g	30	<0.5	<0.5	<0.5				
Chloroform	ug/g	2.4	<0.5	<0.5	<0.5				
Dibromochloromethane	ug/g	25	<0.5	<0.5	<0.5				
Dichlorodifluoromethane	ug/g	590	<1.0	<1.0	<1.0				
1,2-Dichlorobenzene	ug/g	3	<0.5	<0.5	<0.5				
1,3-Dichlorobenzene	ug/g	59	<0.5	<0.5	<0.5				
1,4-Dichlorobenzene	ug/g	1	<0.5	<0.5	<0.5				
1,1-Dichloroethane	ug/g	5	<0.5	<0.5	<0.5				
1,2-Dichloroethane	ug/g	1.6	<0.5	<0.5	<0.5				
1,1-Dichloroethylene	ug/g	1.6	<0.5	<0.5	<0.5				
cis-1,2-Dichloroethylene	ug/g	1.6	<0.5	<0.5	<0.5				
trans-1,2-Dichloroethylene	ug/g	1.6	<0.5	<0.5	<0.5				
1,2-Dichloropropane	ug/g	5	<0.5	<0.5	<0.5				
1,3-Dichloropropene, total	ug/g	0.5	<0.5	<0.5	<0.5				
Ethylbenzene	ug/g	2.4	<0.5	<0.5	<0.5				
Ethylene dibromide (dibromoethane, 1,2-)	ug/g	0.2	<0.2	<0.2	<0.2				
Hexane	ug/g	51	<1.0	<1.0	<1.0				
Methyl Ethyl Ketone (2-Butanone)	ug/g	1800	<5.0	<5.0	<5.0				
Methyl Isobutyl Ketone	ug/g	640	<5.0	<5.0	<5.0				
Methyl tert-butyl ether	ug/g	15	<2.0	<2.0	<2.0				
Methylene Chloride	ug/g	50	<5.0	<5.0	<5.0				
Styrene	ug/g	5.4	<0.5	<0.5	<0.5				
1,1,1,2-Tetrachloroethane	ug/g	1.1	<0.5	<0.5	<0.5				
1,1,2,2-Tetrachloroethane	ug/g	1	<0.5	<0.5	<0.5				
Tetrachloroethylene	ug/g	1.6	<0.5	<0.5	<0.5				
Toluene	ug/g	24	<0.5	<0.5	<0.5				
1,1,1-Trichloroethane	ug/g	200	<0.5	<0.5	<0.5				
1,1,2-Trichloroethane	ug/g	4.7	<0.5	<0.5	<0.5				
Trichloroethylene	ug/g	1.6	<0.5	<0.5	<0.5				
Trichlorofluoromethane	ug/g	150	<1.0	<1.0	<1.0				
Vinyl Chloride	ug/g	0.5	<0.5	<0.5	<0.5				
Xylenes, total	ug/g	300	<0.5	<0.5	<0.5				

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of

the Environmental Protection Act , dated April 2011.

SCS -Site Condition Standards

Table 7: Groundwater Quality Results Metals

			s	Sample Identification						
Parameter	Unit	*Table 2 SCS	MW105	MW110	MW122					
Date Sampled			13-Oct-21	13-Oct-21	13-Oct-21					
Antimony	ug/g	6	<0.5	<0.5	<0.5					
Arsenic	ug/g	25	1.2	<1.0	3.5					
Barium	ug/g	1000	118	95.8	219					
Beryllium	ug/g	4	<0.5	<0.5	<0.5					
Boron	ug/g	5000	350	187	332					
Cadmium	ug/g	2.7	<0.2	<0.2	<0.2					
Chromium	ug/g	50	<1.0	<1.0	<1.0					
Cobalt	ug/g	3.8	<0.5	1.4	<0.5					
Copper	ug/g	87	<0.5	5.3	0.7					
Lead	ug/g	10	<0.2	0.2	<0.2					
Molybdenum	ug/g	70	<0.5	1.2	2.4					
Nickel	ug/g	100	<1.0	1.9	<1.0					
Selenium	ug/g	10	<1.0	<1.0	<1.0					
Silver	ug/g	1.5	<0.2	<0.2	<0.2					
Sodium	ug/g	490000	46000	32000	81400					
Thallium	ug/g	2	<0.5	<0.5	<0.5					
Uranium	ug/g	20	0.2	4.2	1.2					
Vanadium	ug/g	6.2	<0.5	0.6	<0.5					
Zinc	ug/g	1100	<5.0	<5.0	5.4					

^{**}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

Appendix D: Certificates of Analysis

351 Nash Road North, unit 9B Hamilton, ON L8H 7P4 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

G2S Environmental Consulting Inc. (Burlington)

4361 Harvester Road, Unit 12 Burlington, ON L7L 5M4 Attn: Dana Haslett

Client PO:

Project: G2S21366

Custody:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021

Order #: 2142318

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2142318-01	MW105
2142318-02	MW110
2142318-03	MW122

Approved By:

HELL !

Alex Enfield, MSc Lab Manager

Order #: 2142318

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021 Project Description: G2S21366

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	15-Oct-21	18-Oct-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Oct-21	20-Oct-21
REG 153: Metals by ICP/MS, water	EPA 200.8, ICP-MS	18-Oct-21	18-Oct-21
REG 153: VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	18-Oct-21	18-Oct-21

Order #: 2142318

Report Date: 20-Oct-2021

Order Date: 14-Oct-2021

Project Description: G2S21366

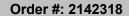
Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Summary of Exceedances

(If this page is blank then there are no exceedances)

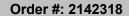

Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances. Regulatory limits displayed in brackets, (), applies to medium and fine textured soils.

Criteria:

Client ID	Analyte	MDL / Units	Result	Reg 153/04 (2011)-Table 2 Potable Groundwater

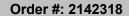


Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021 Project Description: G2S21366

	Client ID:	MW105	MW110	MW122	-		
	Sample Date:	13-Oct-2021	13-Oct-2021	13-Oct-2021	-	Criteria:	
	Sample ID:	2142318-01	2142318-02	2142318-03	-	Reg 153/04 (2011)-Table 2 Potable Groun	ndwater
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Metals					1		
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	-	(6) 6 ug/L	
Arsenic	1.0 ug/L	1.2	<1.0	3.5	-	(25) 25 ug/L	
Barium	1.0 ug/L	118	95.8	219	-	(1,000) 1,000 ug/L	
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-	(4) 4 ug/L	
Boron	10.0 ug/L	350	187	332	-	(5,000) 5,000 ug/L	
Cadmium	0.2 ug/L	<0.2	<0.2	<0.2	-	(2.7) 2.7 ug/L	
Chromium	1.0 ug/L	<1.0	<1.0	<1.0	-	(50) 50 ug/L	
Cobalt	0.5 ug/L	<0.5	1.4	<0.5	-	(3.8) 3.8 ug/L	Ī
Copper	0.5 ug/L	<0.5	5.3	0.7	-	(87) 87 ug/L	
Lead	0.2 ug/L	<0.2	0.2	<0.2	-	(10) 10 ug/L	Ī
Molybdenum	0.5 ug/L	<0.5	1.2	2.4	-	(70) 70 ug/L	
Nickel	1.0 ug/L	<1.0	1.9	<1.0	-	(100) 100 ug/L	
Selenium	1.0 ug/L	<1.0	<1.0	<1.0	-	(10) 10 ug/L	
Silver	0.2 ug/L	<0.2	<0.2	<0.2	-	(1.5) 1.5 ug/L	
Sodium	200 ug/L	46000	32000	81400	-	(490,000) 490,000 ug/L	
Thallium	0.5 ug/L	<0.5	<0.5	<0.5	-	(2) 2 ug/L	
Uranium	0.2 ug/L	0.2	4.2	1.2	-	(20) 20 ug/L	
Vanadium	0.5 ug/L	<0.5	0.6	<0.5	-	(6.2) 6.2 ug/L	
Zinc	5.0 ug/L	<5.0	<5.0	5.4	-	(1,100) 1,100 ug/L	
Volatiles	•						
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	-	(2,700) 2,700 ug/L	
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-	(5) 5 ug/L	
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(16) 16 ug/L	


Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021

Project Description: G2S21366

	Client ID:	MW105	MW110	MW122	-	
	Sample Date:	13-Oct-2021	13-Oct-2021	13-Oct-2021	-	Criteria:
	Sample ID:	2142318-01	2142318-02	2142318-03	-	Reg 153/04 (2011)-Table 2 Potable Groundwater
	Matrix:	Ground Water	Ground Water	Ground Water	-	
	MDL/Units					
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-	(25) 25 ug/L
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(0.89) 0.89 ug/L
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-	(5) 0.79 ug/L
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	(30) 30 ug/L
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	-	(22) 2.4 ug/L
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(25) 25 ug/L
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	(590) 590 ug/L
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	(3) 3 ug/L
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	(59) 59 ug/L
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	(1) 1 ug/L
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(5) 5 ug/L
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(5) 1.6 ug/L
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	(14) 1.6 ug/L
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	(17) 1.6 ug/L
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	(17) 1.6 ug/L
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-	(5) 5 ug/L
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-	(0.5) 0.5 ug/L
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	(2.4) 2.4 ug/L
Ethylene dibromide (dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	-	(0.2) 0.2 ug/L
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-	(520) 51 ug/L
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-	(1,800) 1,800 ug/L

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021

Project Description: G2S21366

	Client ID:	MW105	MW110	MW122	-	
	Sample Date:	13-Oct-2021	13-Oct-2021	13-Oct-2021	-	Criteria:
	Sample ID:	2142318-01	2142318-02	2142318-03	-	Reg 153/04 (2011)-Table 2 Potable Groundwater
	Matrix:	Ground Water	Ground Water	Ground Water	-	
	MDL/Units					
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-	(640) 640 ug/L
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-	(15) 15 ug/L
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-	(50) 50 ug/L
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-	(5.4) 5.4 ug/L
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(1.1) 1.1 ug/L
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(1) 1 ug/L
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	(17) 1.6 ug/L
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-	(24) 24 ug/L
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(200) 200 ug/L
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	(5) 4.7 ug/L
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	(5) 1.6 ug/L
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	(150) 150 ug/L
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-	(1.7) 0.5 ug/L
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-	
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-	(300) 300 ug/L
4-Bromofluorobenzene	Surrogate	110%	109%	101%	-	
Dibromofluoromethane	Surrogate	72.0%	71.7%	70.6%	-	
Toluene-d8	Surrogate	104%	104%	103%	-	
Hydrocarbons			•	•		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-	(750) 750 ug/L
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-	(150) 150 ug/L
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	-	(500) 500 ug/L
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	-	(500) 500 ug/L

Order #: 2142318

Certificate of Analysis

Report Date: 20-Oct-2021

Client: G2S Environmental Consulting Inc. (Burlington)

Order Date: 14-Oct-2021

Project Description: G2S21366

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Irocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
als			J						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1.0	ug/L						
Barium	ND	1.0	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10.0	ug/L						
Cadmium	ND	0.2	ug/L						
Chromium	ND	1.0	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.2	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1.0	ug/L						
Selenium	ND	1.0	ug/L						
Silver	ND	0.2	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND ND	0.5	ug/L ug/L						
Uranium	ND ND	0.3	ug/L ug/L						
Vanadium	ND ND	0.5	ug/L ug/L						
Zinc	ND ND	5.0	ug/L ug/L						
atiles	ND	5.0	ug/L						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						

Order #: 2142318

Report Date: 20-Oct-2021

Order Date: 14-Oct-2021

Project Description: G2S21366

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	81.8		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	57.7		ug/L		72.1	50-140			
Surrogate: Toluene-d8	82.3		ug/L		103	50-140			

Client PO:

Order #: 2142318

Report Date: 20-Oct-2021

Certificate of Analysis Client: G2S Environmental Consulting Inc. (Burlington) Order Date: 14-Oct-2021

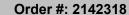
Project Description: G2S21366

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
/drocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
etals									
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	2.6	1.0	ug/L	2.6			0.2	20	
Barium	21.0	1.0	ug/L	20.5			2.0	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	378	100	ug/L	312			18.9	20	
Cadmium	ND	0.2	ug/L	ND			NC	20	
Chromium	ND	1.0	ug/L	ND			NC	20	
Cobalt	1.0	0.5	ug/L	1.0			0.4	20	
Copper	0.9	0.5	ug/L	0.9			7.4	20	
Lead	ND	0.2	ug/L	ND			NC	20	
Molybdenum	1.8	0.5	ug/L	1.6			11.6	20	
Nickel	ND	1.0	ug/L	ND			NC	20	
Selenium	1.4	1.0	ug/L	1.3			7.6	20	
Silver	ND	0.2	ug/L	ND			NC	20	
Sodium	144000	2000	ug/L	139000			3.7	20	
Thallium	ND	0.5	ug/L	ND			NC	20	
Uranium	7.1	0.3	ug/L	6.5			7.6	20	
Vanadium	ND	0.5		ND			NC	20	
Zinc	6.0	5.0	ug/L ug/L	6.0			0.2	20	
	0.0	5.0	ug/L	0.0			0.2	20	
platiles			_						
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	

Order #: 2142318

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021

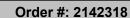

Project Description: G2S21366

Certificate of Analysis
Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	80.9		ug/L		101	50-140			
Surrogate: Dibromofluoromethane	61.4		ug/L		76.7	50-140			
Surrogate: Toluene-d8	82.8		ug/L		104	50-140			



Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021 Project Description: G2S21366

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
drocarbons									
F1 PHCs (C6-C10)	809	25	ug/L	ND	114	68-117			
F2 PHCs (C10-C16)	1700	100	ug/L	ND	103	60-140			
F3 PHCs (C16-C34)	4230	100	ug/L	ND	114	60-140			
F4 PHCs (C34-C50)	2510	100	ug/L	ND	93.9	60-140			
etals									
Antimony	47.0	0.5	ug/L	ND	94.1	70-130			
Arsenic	57.7	1.0	ug/L	2.6	110	70-130			
Barium	71.0	1.0	ug/L	20.5	101	70-130			
Beryllium	47.8	0.5	ug/L	ND	95.6	70-130			
Boron	294	10.0	ug/L	312	-36.1	70-130			QM-4X
Cadmium	44.4	0.2	ug/L	ND	88.9	70-130			
Chromium	46.1	1.0	ug/L	ND	92.2	70-130			
Cobalt	44.9	0.5	ug/L	1.0	87.8	70-130			
Copper	45.6	0.5	ug/L	0.9	89.4	70-130			
Lead	43.6	0.2	ug/L	ND	87.1	70-130			
Molybdenum	50.6	0.5	ug/L	1.6	97.9	70-130			
Nickel	45.7	1.0	ug/L	ND	91.4	70-130			
Selenium	57.2	1.0	ug/L	1.3	112	70-130			
Silver	44.7	0.2	ug/L	ND	89.5	70-130			
Sodium	135000	200	ug/L	139000	-373	70-130			QM-4X
Thallium	43.7	0.5	ug/L	ND	87.5	70-130			
Uranium	49.6	0.2	ug/L	6.5	86.1	70-130			
Vanadium	48.4	0.5	ug/L	ND	96.8	70-130			
Zinc	53.1	5.0	ug/L	6.0	94.2	70-130			
latiles									
Acetone	100	5.0	ug/L	ND	103	50-140			
Benzene	43.8	0.5	ug/L	ND	109	50-140			
Bromodichloromethane	41.7	0.5	ug/L	ND	104	50-140			
Bromoform	37.0	0.5	ug/L	ND	92.2	50-140			
Bromomethane	44.7	0.5	ug/L	ND	112	50-140			
Carbon Tetrachloride	39.7	0.2	ug/L	ND	99.3	50-140			
Chlorobenzene	39.3	0.5	ug/L	ND	97.7	50-140			
Chloroform	41.8	0.5	ug/L	ND	104	50-140			

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021

Project Description: G2S21366

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Dibromochloromethane	38.9	0.5	ug/L	ND	97.3	50-140			
Dichlorodifluoromethane	44.7	1.0	ug/L	ND	112	50-140			
1,2-Dichlorobenzene	39.0	0.5	ug/L	ND	97.5	50-140			
1,3-Dichlorobenzene	38.5	0.5	ug/L	ND	96.3	50-140			
1,4-Dichlorobenzene	38.0	0.5	ug/L	ND	94.7	50-140			
1,1-Dichloroethane	41.0	0.5	ug/L	ND	103	50-140			
1,2-Dichloroethane	42.6	0.5	ug/L	ND	106	50-140			
1,1-Dichloroethylene	38.1	0.5	ug/L	ND	95.3	50-140			
cis-1,2-Dichloroethylene	40.0	0.5	ug/L	ND	99.4	50-140			
trans-1,2-Dichloroethylene	38.6	0.5	ug/L	ND	96.1	50-140			
1,2-Dichloropropane	44.5	0.5	ug/L	ND	111	50-140			
cis-1,3-Dichloropropylene	43.1	0.5	ug/L	ND	108	50-140			
trans-1,3-Dichloropropylene	42.4	0.5	ug/L	ND	106	50-140			
Ethylbenzene	39.9	0.5	ug/L	ND	99.2	50-140			
Ethylene dibromide (dibromoethane, 1,2-	40.1	0.2	ug/L	ND	99.9	50-140			
Hexane	42.0	1.0	ug/L	ND	105	50-140			
Methyl Ethyl Ketone (2-Butanone)	116	5.0	ug/L	ND	113	50-140			
Methyl Isobutyl Ketone	124	5.0	ug/L	ND	127	50-140			
Methyl tert-butyl ether	118	2.0	ug/L	ND	118	50-140			
Methylene Chloride	40.6	5.0	ug/L	ND	101	50-140			
Styrene	39.7	0.5	ug/L	ND	98.2	50-140			
1,1,1,2-Tetrachloroethane	38.9	0.5	ug/L	ND	97.4	50-140			
1,1,2,2-Tetrachloroethane	41.5	0.5	ug/L	ND	103	50-140			
Tetrachloroethylene	37.7	0.5	ug/L	ND	93.7	50-140			
Toluene	39.8	0.5	ug/L	ND	99.4	50-140			
1,1,1-Trichloroethane	40.0	0.5	ug/L	ND	100	50-140			
1,1,2-Trichloroethane	44.4	0.5	ug/L	ND	111	50-140			
Trichloroethylene	44.0	0.5	ug/L	ND	110	50-140			
Trichlorofluoromethane	40.4	1.0	ug/L	ND	101	50-140			
Vinyl chloride	40.9	0.5	ug/L	ND	102	50-140			
m,p-Xylenes	77.8	0.5	ug/L	ND	97.0	50-140			
o-Xylene	39.1	0.5	ug/L	ND	97.3	50-140			
Surrogate: 4-Bromofluorobenzene	84.1		ug/L		105	50-140			
Surrogate: Dibromofluoromethane	105		ug/L		132	50-140			
Surrogate: Toluene-d8	79.9		ug/L		99.8	50-140			

Order #: 2142318

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO:

Report Date: 20-Oct-2021 Order Date: 14-Oct-2021 Project Description: G2S21366

Qualifier Notes:

QC Qualifiers :

QM-4X: The spike recovery was outside of QC acceptance limits due to elevated analyte concentration.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel ID: 2142318

Chain Of Custody Paracel Order Number (Lab Use Only) (Lab Use Only)

	L	ABORATORIES	LTD.																				
Clien	t Name:	G2S Consulting Inc.				Projec	t Ref: C	628 21385 -20	962										Page	1 of	1		
Conta	act Name:	Dana Haslett				Quote		Standing offer										Turi	narou	ınd Ti	me		
Addr	ess:	4361 Harvester Road,	Suite 12			PO#:										1 day					3 day		
		Burlington, ON L7L 5M	Л4			E-mail: danah@g2sconsulting.com										☐ 2 day [×	Regular		
Telep	ohone:	905-331-3735														Date Required:							
	Reg	gulation 153/04	Other F	Regulation	l N	Matrix Type: S (Soil/Sed.) GW (Ground Water)										Dogwingd Applysis							
	Table 1	Res/Park Med/Fine	REG 558	PWQ0	1	SW (Surface Water) SS (Storm/Sanitary Sewer)								Required Analysis									
×	able 2	■ Ind/Comm ☐ Coarse	CCME	☐ MISA			P (P	aint) A (Air) O (Ot	her)	ſ.,	Π										T		
	able 3	Agri/Other	SU - Sani	SU - Storm		Ontainers Sample Lakeu F1F4+BTEX																	
	able		Mun:			ae u	of Containers	Sample Taken		-F4			by ICP										
-	For RSC	C:□ Yes 🗷 No		Matrix	Air Volume	Š			SE	1.5	-ş	Metals b		_	B (HWS)								
	Sample ID/Location Name				Ma	ķ	9	Date	Time	PHCs	VOCs	PAHs	Me	Η̈́	S-S	B (F	- "						
1	MW105				GW		5	Oct. 13/2021		√			\checkmark										
2	MW11	0			GW		5	Oct. 13/2021		V	V		1										
3	MW12	22			GW		5	Oct. 13/2021		1	V	П	7		$\overline{\sqcap}$	П					1		
4										T	Ī	Ī	П	Ī	$\overline{\sqcap}$	Ī			1	忙	怔		
5										T	T	П	П	П	Ī	Ī				i	ir		
6										T	T	Ħ	Ħ	Ħ	Ħ	Ħ				⇈	忙	1	
7						,				t	r	Ħ	Ħ	Ħ	Ħ	Ħ				⇈	忙	1	
8						-		-		t	T	Ħ	Ħ	Ħ	Ħ	Ħ	П			⇈	忙	1	
9			r					1		t	r	Ħ	Ħ	Ħ	Ħ	Ħ		H	╫	₩	忙		
10								. \		┢	T	Ħ	H	Ħ	Ħ	Ħ		┢		詍	掯	1	
	nents:								-		-			۲	Meti	hod of	Delive	erv:	11		-11-		
															-	75		0					
Relin	quished	y (Sign):		Received By Dr	river/De	epot:		7,11	Received at Laby	11	/		1	7/8	Verit	fied B	1		01	1/			
Relinquished By (Print): Emma Keefe Date/Time:						10	12.1	Date/Time: Ox	+1	41	21	1:0	5	Date	/Time	0	(4)	41	7.1	1:	15		
Date,	Date/Time: Oct 14,2021 9:00 am Temperature:							°C	Temperature:	7	9	°C			pH V	Verified: W By:							
ain of	Custody (Env).xlsx						Revsion 3.0			-												

G2S ENVIRONMENTAL CONSULTING, INC.

Date Received: 06-OCT-21

ATTN: DANA HASLETT

Report Date: 12-NOV-21 08:54 (MT)

4361 Harvester Road Version: FINAL REV. 2

Unit 12
BURLINGTON ON L7L 5M4

Client Phone: 905-331-3735

Certificate of Analysis

Lab Work Order #: L2648566

Project P.O. #: HURONTARIO/POPLAR

Job Reference: G2S21366

C of C Numbers: Legal Site Desc:

Mathy Mahadeya Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 2 of 15

12-NOV-21 08:54 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
_	gulation 153/04 - A	April 15, 2011 Standards - T2-Soil-Ind/Com/Co s)	ommu Property Use (Fine)			
Ontario Reg	gulation 153/04 - <i>i</i>	April 15, 2011 Standards - T8-Soil-Res/Park/In	st/Ind/Com/Commu Proper	rty Use		
L2648566-1	BH105 SS1	Volatile Organic Compounds	Xylenes (Total)	0.072	0.05	ug/g

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 3 of 15

12-NOV-21 08:54 (MT)

Physical Tests - SOIL

	5	Sample	Lab ID e Date ple ID	L2648566-1 01-OCT-21 BH105 SS1	L2648566-2 01-OCT-21 BH110 SS4	L2648566-3 30-SEP-21 BH112 SS4	L2648566-4 30-SEP-21 BH122 SS5
Analyte	(Unit		Limits				
Conductivity	mS/cm	1.4	0.7	0.233	0.221	0.154	0.395
% Moisture	%	-	-	17.7	16.7	17.2	22.5
pН	pH units	-	-	7.50	7.74	7.72	7.65

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 4 of 15

12-NOV-21 08:54 (MT)

Cyanides - SOIL

Guide Limits								
Linit #1 #2			Guide	Limits				
Analyte Office #1 #2	Analyte	Unit	#1	#2				
	id Diss	ug/g	0.051	0.051	<0.050	<0.050	<0.050	<0.050

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine) Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 5 of 15

12-NOV-21 08:54 (MT)

Saturated Paste Extractables - SOIL

	Sampl	e Date	L2648566-1 01-OCT-21 BH105 SS1	L2648566-2 01-OCT-21 BH110 SS4	L2648566-3 30-SEP-21 BH112 SS4	L2648566-4 30-SEP-21 BH122 SS5
Unit	Guide #1	Limits #2				
SAR	12	5	1.25	0.39	0.62	0.80
mg/L	-	-	23.3	23.7	14.6	24.8
mg/L	-	-	2.97	6.57	3.88	13.2
mg/L	_	-	24.2	8.22	10.4	19.8
	SAR mg/L mg/L	Sampl Sam Guide Unit #1 SAR 12 mg/L - mg/L -	SAR 12 5 mg/L mg/L	Sample Date 01-OCT-21 BH105 SS1	Sample Date Sample ID 01-OCT-21 01-OCT-21 01-OCT-21 BH105 SS1 BH110 SS4 Guide Limits Unit #1 #2 SAR 12 5 1.25 0.39 mg/L 23.3 23.7 mg/L 2.97 6.57	Sample Date Sample ID 01-OCT-21 BH105 SS1 01-OCT-21 BH110 SS4 30-SEP-21 BH112 SS4 Guide Limits Unit #1 #2 SAR 12 5 1.25 0.39 0.62 mg/L 23.3 23.7 14.6 mg/L 2.97 6.57 3.88

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)

Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 6 of 15

12-NOV-21 08:54 (MT)

Metals - SOIL

			Lab ID	L2648566-1	L2648566-2	L2648566-3	L2648566-4
		Sampl		01-OCT-21	01-OCT-21	30-SEP-21	30-SEP-21
		Sam	ple ID	BH105 SS1	BH110 SS4	BH112 SS4	BH122 SS5
			Limits				
Analyte	Unit	#1	#2				
Antimony (Sb)	ug/g	50	1.3	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	ug/g	18	18	6.0	4.6	3.9	3.2
Barium (Ba)	ug/g	670	220	81.6	60.9	54.3	45.4
Beryllium (Be)	ug/g	10	2.5	0.81	0.52	0.54	<0.50
Boron (B)	ug/g	120	36	16.5	13.9	16.5	14.1
Boron (B), Hot Water Ext.	ug/g	2	1.5	0.33	0.23	0.22	0.47
Cadmium (Cd)	ug/g	1.9	1.2	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	ug/g	160	70	29.4	20.4	20.5	18.3
Cobalt (Co)	ug/g	100	22	12.4	9.8	9.2	8.5
Copper (Cu)	ug/g	300	92	22.3	17.6	17.5	18.7
Lead (Pb)	ug/g	120	120	8.1	6.1	5.8	5.8
Mercury (Hg)	ug/g	20	0.27	0.0191	0.0104	0.0070	0.0075
Molybdenum (Mo)	ug/g	40	2	<1.0	<1.0	<1.0	<1.0
Nickel (Ni)	ug/g	340	82	28.2	20.9	20.0	18.7
Selenium (Se)	ug/g	5.5	1.5	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	50	0.5	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	ug/g	3.3	1	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	33	2.5	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	86	86	42.5	28.8	29.7	25.8
Zinc (Zn)	ug/g	340	290	52.0	39.6	39.1	35.9

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)

Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 7 of 15

12-NOV-21 08:54 (MT)

Speciated Metals - SOIL

•		Sampl	Lab ID e Date iple ID	L2648566-1 01-OCT-21 BH105 SS1	L2648566-2 01-OCT-21 BH110 SS4	L2648566-3 30-SEP-21 BH112 SS4	L2648566-4 30-SEP-21 BH122 SS5
Analyte	Unit	Guide #1	Limits #2				
Chromium, Hexavalent	ug/g	10	0.66	0.36	<0.20	<0.20	<0.20

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine) Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 8 of 15

12-NOV-21 08:54 (MT)

Volatile Organic Compounds - SOIL

		Sample	ab ID Date ple ID	L2648566-1 01-OCT-21 BH105 SS1	L2648566-2 01-OCT-21 BH110 SS4	L2648566-3 30-SEP-21 BH112 SS4	L2648566-4 30-SEP-21 BH122 SS5
Analyte	Unit	Guide #1	Limits #2				
Acetone	ug/g	28	0.5		<0.50	<0.50	<0.50
Benzene	ug/g	0.4	0.02	<0.0068	<0.0068	<0.0068	<0.0068
Bromodichloromethane	ug/g	1.9	0.05		< 0.050	<0.050	<0.050
Bromoform	ug/g	1.7	0.05		<0.050	<0.050	<0.050
Bromomethane	ug/g	0.05	0.05		<0.050	<0.050	<0.050
Carbon tetrachloride	ug/g	0.71	0.05		<0.050	<0.050	<0.050
Chlorobenzene	ug/g	2.7	0.05		<0.050	<0.050	<0.050
Dibromochloromethane	ug/g	2.9	0.05		<0.050	<0.050	<0.050
Chloroform	ug/g	0.18	0.05		<0.050	<0.050	<0.050
1,2-Dibromoethane	ug/g	0.05	0.05		<0.050	<0.050	<0.050
1,2-Dichlorobenzene	ug/g	1.7	0.05		<0.050	<0.050	<0.050
1,3-Dichlorobenzene	ug/g	12	0.05		<0.050	<0.050	<0.050
1,4-Dichlorobenzene	ug/g	0.57	0.05		<0.050	<0.050	<0.050
Dichlorodifluoromethane	ug/g	25	0.05		<0.050	<0.050	<0.050
1,1-Dichloroethane	ug/g	0.6	0.05		<0.050	< 0.050	<0.050
1,2-Dichloroethane	ug/g	0.05	0.05		<0.050	<0.050	<0.050
1,1-Dichloroethylene	ug/g	0.48	0.05		<0.050	< 0.050	<0.050
cis-1,2-Dichloroethylene	ug/g	2.5	0.05		<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g	2.5	0.05		<0.050	< 0.050	<0.050
Methylene Chloride	ug/g	2	0.05		<0.050	<0.050	<0.050
1,2-Dichloropropane	ug/g	0.68	0.05		<0.050	< 0.050	<0.050
cis-1,3-Dichloropropene	ug/g	-	-		<0.030	<0.030	<0.030
trans-1,3-Dichloropropene	ug/g	-	-		<0.030	<0.030	<0.030
1,3-Dichloropropene (cis & trans)	ug/g	0.081	0.05		<0.042	<0.042	<0.042
Ethylbenzene	ug/g	1.6	0.05	<0.018	<0.018	<0.018	<0.018
n-Hexane	ug/g	88	0.05		<0.050	<0.050	<0.050
Methyl Ethyl Ketone	ug/g	88	0.5		<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	210	0.5		<0.50	<0.50	<0.50
MTBE	ug/g	2.3	0.05		< 0.050	<0.050	<0.050
Styrene	ug/g	43	0.05		< 0.050	< 0.050	<0.050

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 9 of 15

12-NOV-21 08:54 (MT)

Volatile Organic Compounds - SOIL

		L	ab ID	L2648566-1	L2648566-2	L2648566-3	L2648566-4
		Sample	e Date	01-OCT-21	01-OCT-21	30-SEP-21	30-SEP-21
		Sam	ple ID	BH105 SS1	BH110 SS4	BH112 SS4	BH122 SS5
Analyte	Unit	Guide #1	Limits #2				
1,1,1,2-Tetrachloroethane	ug/g	0.11	0.05		<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g	0.094	0.05		<0.050	<0.050	<0.050
Tetrachloroethylene	ug/g	2.5	0.05		< 0.050	< 0.050	< 0.050
Toluene	ug/g	9	0.2	<0.080	<0.080	<0.080	<0.080
1,1,1-Trichloroethane	ug/g	12	0.05		<0.050	<0.050	< 0.050
1,1,2-Trichloroethane	ug/g	0.11	0.05		<0.050	<0.050	< 0.050
Trichloroethylene	ug/g	0.61	0.05		<0.010	<0.010	<0.010
Trichlorofluoromethane	ug/g	5.8	0.25		<0.050	<0.050	<0.050
Vinyl chloride	ug/g	0.25	0.02		<0.020	<0.020	<0.020
o-Xylene	ug/g	-	-	0.072	<0.020	<0.020	<0.020
m+p-Xylenes	ug/g	-	-	<0.030	<0.030	<0.030	<0.030
Xylenes (Total)	ug/g	30	0.05	0.072	<0.050	<0.050	< 0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	99.5	80.4	81.8	81.8
Surrogate: 1,4-Difluorobenzene	%	-	-	96.6	86.3	88.5	88.0

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)

Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 10 of 15

12-NOV-21 08:54 (MT)

Hvdrocarbons - SOIL

	I	_ab ID	L2648566-1	L2648566-2	L2648566-3	L2648566-4
	Sample	e Date	01-OCT-21	01-OCT-21	30-SEP-21	30-SEP-21
	Sam	ple ID	BH105 SS1	BH110 SS4	BH112 SS4	BH122 SS5
	Guide	Limits				
Unit	#1	#2				
ug/g	65	25	<5.0	<5.0	<5.0	<5.0
ug/g	65	25	<5.0	<5.0	<5.0	<5.0
ug/g	250	10	<10	<10	<10	<10
ug/g	-	-	<10		<10	
ug/g	2500	240	<50	<50	<50	<50
ug/g	-	-	<50		<50	
ug/g	6600	120	<50	<50	<50	<50
ug/g	-	-	<72	<72	<72	<72
	-	-	YES	YES	YES	YES
%	-	-	85.3	88.2	83.9	84.4
%	-	-	89.0	96.6	90.4	84.7
	ug/g ug/g ug/g ug/g ug/g ug/g ug/g	Sample Sam Sam Sam Sam Sam Guide Unit #1 ug/g 65 ug/g 65 ug/g 2500 ug/g - ug/g 2500 ug/g - ug/g 6600 ug/g - ug/g 6600 ug/g -	ug/g 65 25 ug/g 65 25 ug/g 250 10 ug/g - ug/g 2500 240 ug/g - ug/g 6600 120 ug/g	Sample Date Sample ID 01-OCT-21 BH105 SS1 Guide Limits #1 #2 ug/g 65 25 <5.0 ug/g 65 25 <5.0	Sample Date Sample ID 01-OCT-21 BH105 SS1 01-OCT-21 BH110 SS4 Guide Limits #1 #2 ug/g 65 25 <5.0 <5.0 ug/g 65 25 <5.0	Sample Date Sample ID 01-OCT-21 01-OCT-21 30-SEP-21 BH105 SS1 BH110 SS4 BH112 SS4 Guide Limits BH105 SS1 BH110 SS4 BH112 SS4 Unit #1 #2 ug/g 65 25 <5.0

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

Naphthalene

Pyrene

Phenanthrene

Surrogate: 2-Fluorobiphenyl

Surrogate: d14-Terphenyl

ANALYTICAL REPORT

L2648566 CONT'D....

Job Reference: G2S21366

PAGE 11 of 15

12-NOV-21 08:54 (MT)

Polycyclic Aromatic Hydrocarbons - SOIL

i orgogonio / nomano rigai					
-		ı	Lab ID	L2648566-1	L2648566-3
		Sample		01-OCT-21	30-SEP-21
		Sam	ple ID	BH105 SS1	BH112 SS4
		Guide	Limits		
Analyte	Unit	#1	#2		
Acenaphthene	ug/g	29	0.072	<0.050	<0.050
Acenaphthylene	ug/g	0.17	0.093	<0.050	<0.050
Anthracene	ug/g	0.74	0.22	<0.050	<0.050
Benzo(a)anthracene	ug/g	0.96	0.36	<0.050	<0.050
Benzo(a)pyrene	ug/g	0.3	0.3	<0.050	<0.050
Benzo(b&j)fluoranthene	ug/g	0.96	0.47	<0.050	<0.050
Benzo(g,h,i)perylene	ug/g	9.6	0.68	<0.050	<0.050
Benzo(k)fluoranthene	ug/g	0.96	0.48	<0.050	<0.050
Chrysene	ug/g	9.6	2.8	<0.050	<0.050
Dibenz(a,h)anthracene	ug/g	0.1	0.1	<0.050	<0.050
Fluoranthene	ug/g	9.6	0.69	<0.050	<0.050
Fluorene	ug/g	69	0.19	<0.050	<0.050
Indeno(1,2,3-cd)pyrene	ug/g	0.95	0.23	<0.050	<0.050
1+2-Methylnaphthalenes	ug/g	42	0.59	<0.042	<0.042
1-Methylnaphthalene	ug/g	42	0.59	<0.030	<0.030
2-Methylnaphthalene	ug/g	42	0.59	<0.030	<0.030

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

ug/g

ug/g

ug/g

28

16

96

0.09

0.69

1

< 0.013

< 0.046

< 0.050

92.0

101.6

< 0.013

< 0.046

< 0.050

91.0

99.3

L2648566 CONT'D....
Job Reference: G2S21366
PAGE 12 of 15
12-NOV-21 08:54 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

BTX-511-HS-WT

Soil

BTEX-O.Reg 153/04 (July 2011)

SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CN-WAD-R511-WT

Soil

Cyanide (WAD)-O.Reg 153/04 (July

MOE 3015/APHA 4500CN I-WAD

2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-WT

Soil

Hexavalent Chromium in Soil

SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT

Soil

Conductivity (EC)

MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT

Soil

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

L2648566 CONT'D....
Job Reference: G2S21366
PAGE 13 of 15
12-NOV-21 08:54 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

L2648566 CONT'D....
Job Reference: G2S21366
PAGE 14 of 15
12-NOV-21 08:54 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil ABN-Calculated Parameters SW846 8270

MOISTURE-WT Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

PAH-511-WT Soil PAH-O.Reg 153/04 (July 2011) SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Soil
 VOC-O.Reg 153/04 (July 2011)
 SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

L2648566 CONT'D.... Job Reference: G2S21366 PAGE 15 of 15 12-NOV-21 08:54 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2648566 Report Date: 12-NOV-21 Page 1 of 24

G2S ENVIRONMENTAL CONSULTING, INC. Client:

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R561581	2							
WG3635407-4 DUP Boron (B), Hot Water		L2648582-2 <0.10	<0.10	RPD-NA	ug/g	N/A	30	12-OCT-21
WG3635407-2 IRM Boron (B), Hot Water	Ext.	WT SAR4	98.5		%		70-130	12-OCT-21
WG3635407-3 LCS Boron (B), Hot Water			106.0		%		70-130	12-OCT-21
WG3635407-1 MB Boron (B), Hot Water	Ext.		<0.10		ug/g		0.1	12-OCT-21
Batch R561582	9							
WG3634874-4 DUP Boron (B), Hot Water		L2649248-5 0.23	0.23		ug/g	3.0	30	12-OCT-21
WG3634874-2 IRM Boron (B), Hot Water	Ext.	WT SAR4	118.1		%		70-130	12-OCT-21
WG3634874-3 LCS Boron (B), Hot Water			109.0		%		70-130	12-OCT-21
WG3634874-1 MB Boron (B), Hot Water	Ext.		<0.10		ug/g		0.1	12-OCT-21
BTX-511-HS-WT	Soil							
Batch R561558	7							
WG3633976-4 DUP Benzene		WG3633976-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	12-OCT-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	12-OCT-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	12-OCT-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	12-OCT-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	12-OCT-21
WG3633976-2 LCS Benzene			111.8		%		70-130	12-OCT-21
Ethylbenzene			98.8		%		70-130	12-OCT-21
m+p-Xylenes			99.3		%		70-130	12-OCT-21
o-Xylene			99.4		%		70-130	12-OCT-21
Toluene			105.0		%		70-130	12-OCT-21
WG3633976-1 MB Benzene			<0.0068		ug/g		0.0068	12-OCT-21
Ethylbenzene			<0.018		ug/g		0.018	12-OCT-21
m+p-Xylenes			<0.030		ug/g		0.03	12-OCT-21
o-Xylene			<0.020		ug/g		0.02	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 2 of 24

G2S ENVIRONMENTAL CONSULTING, INC. Client:

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5615587 WG3633976-1 MB Toluene			<0.080		ug/g		0.08	12-OCT-21
Surrogate: 1,4-Difluorob	enzene		114.6		%		50-140	12-OCT-21
Surrogate: 4-Bromofluor	obenzene		109.7		%		50-140	12-OCT-21
WG3633976-5 MS		WG3633976-3						
Benzene			116.5		%		60-140	12-OCT-21
Ethylbenzene			102.6		%		60-140	12-OCT-21
m+p-Xylenes			103.9		%		60-140	12-OCT-21
o-Xylene			103.0		%		60-140	12-OCT-21
Toluene			109.0		%		60-140	12-OCT-21
CN-WAD-R511-WT	Soil							
Batch R5617330 WG3635715-3 DUP Cyanide, Weak Acid Dis	s	L2648720-3 <0.050	<0.050	RPD-NA	ug/g	N/A	35	13-OCT-21
WG3635715-2 LCS Cyanide, Weak Acid Dis	s		89.6		%		80-120	13-OCT-21
WG3635715-1 MB Cyanide, Weak Acid Dis	s		<0.050		ug/g		0.05	13-OCT-21
WG3635715-4 MS Cyanide, Weak Acid Dis	s	L2648720-3	86.8		%		70-130	14-OCT-21
CR-CR6-IC-WT	Soil							
Batch R5617419 WG3635643-4 CRM Chromium, Hexavalent		WT-SQC012	81.0		%		70-130	14-OCT-21
WG3635643-3 DUP		L2648566-3	01.0		70		70-130	14-001-21
Chromium, Hexavalent		<0.20	<0.20	RPD-NA	ug/g	N/A	35	14-OCT-21
WG3635643-2 LCS Chromium, Hexavalent			96.5		%		80-120	14-OCT-21
WG3635643-1 MB Chromium, Hexavalent			<0.20		ug/g		0.2	14-OCT-21
EC-WT	Soil							
Batch R5616622								
WG3635410-4 DUP Conductivity		WG3635410-3 0.512	0.498		mS/cm	2.8	20	13-OCT-21
WG3635410-2 IRM Conductivity		WT SAR4	107.9		%		70-130	13-OCT-21
WG3636661-1 LCS								

Page 3 of 24

Workorder: L2648566 Report Date: 12-NOV-21

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Soil							
	616622								
WG3636661-1 Conductivity	LCS			96.3		%		90-110	13-OCT-21
WG3635410-1 Conductivity	MB			<0.0040		mS/cm		0.004	13-OCT-21
Batch R5	617278								
WG3634889-4 Conductivity	DUP		WG3634889-3 0.0787	0.0816		mS/cm	3.6	20	14-OCT-21
WG3634889-2 Conductivity	IRM		WT SAR4	108.3		%		70-130	14-OCT-21
WG3637564-1 Conductivity	LCS			97.2		%		90-110	14-OCT-21
WG3634889-1 Conductivity	МВ			<0.0040		mS/cm		0.004	14-OCT-21
F1-HS-511-WT		Soil							
Batch R5	615587								
WG3633976-4 F1 (C6-C10)	DUP		WG3633976-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	12-OCT-21
WG3633976-2 F1 (C6-C10)	LCS			92.7		%		80-120	12-OCT-21
WG3633976-1 F1 (C6-C10)	MB			<5.0		ug/g		5	12-OCT-21
Surrogate: 3,4-	Dichlorote	oluene		100.6		%		60-140	12-OCT-21
WG3633976-5 F1 (C6-C10)	MS		WG3633976-3	93.6		%		60-140	12-OCT-21
	615811							00 140	12 001 21
WG3634824-4 F1 (C6-C10)	DUP		WG3634824-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	12-OCT-21
WG3634824-2 F1 (C6-C10)	LCS			100.5		%		80-120	12-OCT-21
WG3634824-1 F1 (C6-C10)	МВ			<5.0		ug/g		5	12-OCT-21
Surrogate: 3,4-	Dichlorote	oluene		97.9		%		60-140	12-OCT-21
WG3634824-5 F1 (C6-C10)	MS		WG3634824-3	122.0		%		60-140	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 4 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
WG3634868-4	616586 DUP		WG3634868-3						
F1 (C6-C10)			<5.0	<5.0	RPD-NA	ug/g	N/A	30	13-OCT-21
WG3634868-2 F1 (C6-C10)	LCS			96.6		%		80-120	13-OCT-21
WG3634868-1 F1 (C6-C10)	MB			<5.0		ug/g		5	13-OCT-21
Surrogate: 3,4-D	Dichloroto	oluene		88.1		%		60-140	13-OCT-21
WG3634868-5 F1 (C6-C10)	MS		WG3634868-3	115.1		%		60-140	13-OCT-21
F2-F4-511-WT		Soil							
Batch R56	617195								
WG3635446-3	DUP		WG3635446-5	-10	DDD 114	110/0	N 1 / A	20	44 OOT 01
F2 (C16-C16)			<10 <50	<10 <50	RPD-NA	ug/g	N/A	30	14-OCT-21
F3 (C16-C34) F4 (C34-C50)			<50 <50	<50 <50	RPD-NA	ug/g	N/A	30	14-OCT-21
WG3635446-2	LCS		<50		RPD-NA	ug/g	N/A	30	14-OCT-21
F2 (C10-C16)				83.4		%		80-120	14-OCT-21
F3 (C16-C34) F4 (C34-C50)				84.8 90.4		% %		80-120	14-OCT-21
,				90.4		70		80-120	14-OCT-21
WG3635446-1 F2 (C10-C16)	MB			<10		ug/g		10	14-OCT-21
F3 (C16-C34)				<50		ug/g		50	14-OCT-21
F4 (C34-C50)				<50		ug/g		50	14-OCT-21
Surrogate: 2-Bro	omobenz	otrifluoride		90.6		%		60-140	14-OCT-21
WG3635446-4 F2 (C10-C16)	MS		WG3635446-5	91.1		%		60-140	14-OCT-21
F3 (C16-C34)				91.2		%		60-140	14-OCT-21
F4 (C34-C50)				96.7		%		60-140	14-OCT-21
HG-200.2-CVAA-W	Т	Soil							
Batch R56	615382								
WG3634832-9 Mercury (Hg)	CRM		WT-SS-2	102.0		%		70-130	11-OCT-21
WG3634832-13 Mercury (Hg)	DUP		WG3634832-1 3	2 0.0126		ug/g	2.5	40	11-OCT-21
WG3634832-10 Mercury (Hg)	LCS			99.5		%		80-120	11-OCT-21
WG3634832-8	МВ								

Workorder: L2648566

Report Date: 12-NOV-21

Page 5 of 24

Client:

G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-200.2-CVAA-WT	Soil							
Batch R5615382 WG3634832-8 MB Mercury (Hg)			<0.0050		mg/kg		0.005	11-OCT-21
Batch R5615544 WG3635380-2 CRM Mercury (Hg)		WT-SS-2	97.0		%		70-130	12-OCT-21
WG3635380-6 DUP Mercury (Hg)		WG3635380-5 0.0104	0.0101		ug/g	3.2	40	12-OCT-21
WG3635380-3 LCS Mercury (Hg)			104.0		%		80-120	12-OCT-21
WG3635380-1 MB Mercury (Hg)			<0.0050		mg/kg		0.005	12-OCT-21
MET-200.2-CCMS-WT	Soil							
Batch R5616337								
WG3634832-9 CRM		WT-SS-2	04.0		%		70.400	40.007.0
Antimony (Sb) Arsenic (As)			91.2 100.5		%		70-130	12-OCT-21
Barium (Ba)			100.5		%		70-130 70-130	12-OCT-21 12-OCT-21
Beryllium (Be)			93.9		%		70-130	12-OCT-21 12-OCT-21
Boron (B)			7.8		mg/kg		3.5-13.5	12-OCT-21
Cadmium (Cd)			94.8		%		70-130	12-OCT-21
Chromium (Cr)			101.0		%		70-130	12-OCT-21
Cobalt (Co)			97.8		%		70-130	12-OCT-21
Copper (Cu)			96.9		%		70-130	12-OCT-21
Lead (Pb)			90.0		%		70-130	12-OCT-21
Molybdenum (Mo)			93.3		%		70-130	12-OCT-21
Nickel (Ni)			97.6		%		70-130	12-OCT-21
Selenium (Se)			0.15		mg/kg		0-0.34	12-OCT-21
Silver (Ag)			86.0		%		70-130	12-OCT-21
Thallium (TI)			0.072		mg/kg		0.029-0.129	12-OCT-21
Uranium (U)			93.7		%		70-130	12-OCT-21
Vanadium (V)			97.5		%		70-130	12-OCT-21
Zinc (Zn)			92.9		%		70-130	12-OCT-21
WG3634832-13 DUP Antimony (Sb)		WG3634832-12 0.37	0.43		ug/g	15	30	12-OCT-21
Arsenic (As)		7.80	7.82		ug/g	0.3	30	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 6 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R561633	7							
WG3634832-13 DUP		WG3634832-						
Barium (Ba)		89.3	92.2		ug/g	3.2	40	12-OCT-21
Beryllium (Be)		0.55	0.59		ug/g	7.5	30	12-OCT-21
Boron (B)		11.0	12.1		ug/g	9.6	30	12-OCT-21
Cadmium (Cd)		0.234	0.244		ug/g	4.0	30	12-OCT-21
Chromium (Cr)		21.5	21.9		ug/g	1.7	30	12-OCT-21
Cobalt (Co)		9.23	9.50		ug/g	2.8	30	12-OCT-21
Copper (Cu)		17.3	17.5		ug/g	1.1	30	12-OCT-21
Lead (Pb)		10.1	11.0		ug/g	8.6	40	12-OCT-21
Molybdenum (Mo)		2.73	2.98		ug/g	8.6	40	12-OCT-21
Nickel (Ni)		24.2	24.4		ug/g	0.5	30	12-OCT-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	12-OCT-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	12-OCT-21
Thallium (TI)		0.223	0.237		ug/g	5.9	30	12-OCT-21
Uranium (U)		1.08	1.23		ug/g	14	30	12-OCT-21
Vanadium (V)		31.6	31.9		ug/g	1.0	30	12-OCT-21
Zinc (Zn)		49.6	50.1		ug/g	1.0	30	12-OCT-21
WG3634832-11 LCS Antimony (Sb)			90.7		%		80-120	12-OCT-21
Arsenic (As)			100.2		%		80-120	12-OCT-21
Barium (Ba)			99.8		%		80-120	12-OCT-21
Beryllium (Be)			89.9		%		80-120	12-OCT-21
Boron (B)			85.2		%		80-120	12-OCT-21
Cadmium (Cd)			92.8		%		80-120	12-OCT-21
Chromium (Cr)			96.4		%		80-120	12-OCT-21
Cobalt (Co)			97.1		%		80-120	12-OCT-21
Copper (Cu)			94.6		%		80-120	12-OCT-21
Lead (Pb)			88.3		%		80-120	12-OCT-21
Molybdenum (Mo)			92.6		%		80-120	12-OCT-21
Nickel (Ni)			95.2		%		80-120	12-OCT-21
Selenium (Se)			95.6		%		80-120	12-OCT-21
Silver (Ag)			81.7		%		80-120	12-OCT-21
Thallium (TI)			87.7		%		80-120	12-OCT-21
Uranium (U)			90.3		%		80-120	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 7 of 24

G2S ENVIRONMENTAL CONSULTING, INC. Client:

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5616337								
WG3634832-11 LCS Vanadium (V)			99.3		%		80-120	12-OCT-21
Zinc (Zn)			91.6		%		80-120	12-OCT-21
WG3634832-8 MB					0		0.4	
Antimony (Sb)			<0.10		mg/kg		0.1	12-OCT-21
Arsenic (As)			<0.10		mg/kg		0.1	12-OCT-21
Barium (Ba)			<0.50		mg/kg		0.5	12-OCT-21
Beryllium (Be)			<0.10		mg/kg		0.1	12-OCT-21
Boron (B)			<5.0		mg/kg		5	12-OCT-21
Cadmium (Cd)			<0.020		mg/kg		0.02	12-OCT-21
Chromium (Cr)			<0.50		mg/kg		0.5	12-OCT-21
Cobalt (Co)			<0.10		mg/kg		0.1	12-OCT-21
Copper (Cu)			<0.50		mg/kg		0.5	12-OCT-21
Lead (Pb)			<0.50		mg/kg		0.5	12-OCT-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	12-OCT-21
Nickel (Ni)			<0.50		mg/kg		0.5	12-OCT-21
Selenium (Se)			<0.20		mg/kg		0.2	12-OCT-21
Silver (Ag)			<0.10		mg/kg		0.1	12-OCT-21
Thallium (TI)			<0.050		mg/kg		0.05	12-OCT-21
Uranium (U)			< 0.050		mg/kg		0.05	12-OCT-21
Vanadium (V)			<0.20		mg/kg		0.2	12-OCT-21
Zinc (Zn)			<2.0		mg/kg		2	12-OCT-21
Batch R5616343								
WG3635380-2 CRM Antimony (Sb)		WT-SS-2	81.8		%		70.400	40 OOT 04
Arsenic (As)			100.7		%		70-130	12-OCT-21
Barium (Ba)			110.8		%		70-130	12-OCT-21
Beryllium (Be)					%		70-130	12-OCT-21
, , ,			88.4				70-130	12-OCT-21
Boron (B)			7.2		mg/kg		3.5-13.5	12-OCT-21
Cadmium (Cd)			92.1		%		70-130	12-OCT-21
Chromium (Cr)			98.3		%		70-130	12-OCT-21
Cobalt (Co)			97.3		%		70-130	12-OCT-21
Copper (Cu)			97.3		%		70-130	12-OCT-21
Lead (Pb)			87.7		%		70-130	12-OCT-21
Molybdenum (Mo)			93.0		%		70-130	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 8 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R561634	13							
WG3635380-2 CRI	И	WT-SS-2	00.0		0/			
Nickel (Ni)			99.9		% ma/ka		70-130	12-OCT-21
Selenium (Se)			0.13		mg/kg %		0-0.34	12-OCT-21
Silver (Ag) Thallium (TI)			101.4				70-130	12-OCT-21
Uranium (TI)			0.073		mg/kg %			29 12-OCT-21
Vanadium (V)			90.1 98.2		%		70-130	12-OCT-21
Zinc (Zn)			96.2		%		70-130	12-OCT-21
		WOOGSESSO			76		70-130	12-OCT-21
WG3635380-6 DUF Antimony (Sb)	_	WG3635380- <0.10	o <0.10	RPD-NA	ug/g	N/A	30	12-OCT-21
Arsenic (As)		4.59	4.63		ug/g	1.0	30	12-OCT-21
Barium (Ba)		60.9	63.7		ug/g	4.4	40	12-OCT-21
Beryllium (Be)		0.52	0.50		ug/g	4.9	30	12-OCT-21
Boron (B)		13.9	13.5		ug/g	2.9	30	12-OCT-21
Cadmium (Cd)		0.052	0.048		ug/g	6.4	30	12-OCT-21
Chromium (Cr)		20.4	21.0		ug/g	2.9	30	12-OCT-21
Cobalt (Co)		9.84	10.1		ug/g	2.3	30	12-OCT-21
Copper (Cu)		17.6	18.1		ug/g	2.9	30	12-OCT-21
Lead (Pb)		6.05	5.90		ug/g	2.5	40	12-OCT-21
Molybdenum (Mo)		0.29	0.30		ug/g	3.6	40	12-OCT-21
Nickel (Ni)		20.9	21.4		ug/g	2.6	30	12-OCT-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	12-OCT-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	12-OCT-21
Thallium (TI)		0.107	0.105		ug/g	1.6	30	12-OCT-21
Uranium (U)		0.519	0.501		ug/g	3.7	30	12-OCT-21
Vanadium (V)		28.8	29.3		ug/g	1.7	30	12-OCT-21
Zinc (Zn)		39.6	40.1		ug/g	1.2	30	12-OCT-21
WG3635380-4 LCS	;							
Antimony (Sb)			105.8		%		80-120	12-OCT-21
Arsenic (As)			102.6		%		80-120	12-OCT-21
Barium (Ba)			104.6		%		80-120	12-OCT-21
Beryllium (Be)			100.6		%		80-120	12-OCT-21
Boron (B)			97.5		%		80-120	12-OCT-21
Cadmium (Cd)			99.2		%		80-120	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 9 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5616343								
WG3635380-4 LCS								
Chromium (Cr)			99.3		%		80-120	12-OCT-21
Cobalt (Co)			99.3		%		80-120	12-OCT-21
Copper (Cu)			97.4		%		80-120	12-OCT-21
Lead (Pb)			102.8		%		80-120	12-OCT-21
Molybdenum (Mo)			110.3		%		80-120	12-OCT-21
Nickel (Ni)			98.5		%		80-120	12-OCT-21
Selenium (Se)			98.6		%		80-120	12-OCT-21
Silver (Ag)			96.0		%		80-120	12-OCT-21
Thallium (TI)			101.8		%		80-120	12-OCT-21
Uranium (U)			100.9		%		80-120	12-OCT-21
Vanadium (V)			102.2		%		80-120	12-OCT-21
Zinc (Zn)			94.2		%		80-120	12-OCT-21
WG3635380-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	12-OCT-21
Arsenic (As)			<0.10		mg/kg		0.1	12-OCT-21
Barium (Ba)			<0.50		mg/kg		0.5	12-OCT-21
Beryllium (Be)			<0.10		mg/kg		0.1	12-OCT-21
Boron (B)			<5.0		mg/kg		5	12-OCT-21
Cadmium (Cd)			<0.020		mg/kg		0.02	12-OCT-21
Chromium (Cr)			<0.50		mg/kg		0.5	12-OCT-21
Cobalt (Co)			<0.10		mg/kg		0.1	12-OCT-21
Copper (Cu)			<0.50		mg/kg		0.5	12-OCT-21
Lead (Pb)			<0.50		mg/kg		0.5	12-OCT-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	12-OCT-21
Nickel (Ni)			<0.50		mg/kg		0.5	12-OCT-21
Selenium (Se)			<0.20		mg/kg		0.2	12-OCT-21
Silver (Ag)			<0.10		mg/kg		0.1	12-OCT-21
Thallium (TI)			<0.050		mg/kg		0.05	12-OCT-21
Uranium (U)			<0.050		mg/kg		0.05	12-OCT-21
Vanadium (V)			<0.20		mg/kg		0.2	12-OCT-21
Zinc (Zn)			<2.0		mg/kg		2	12-OCT-21
MOISTURE WT	Sail.							

MOISTURE-WT Soil

Workorder: L2648566 Report Date: 12-NOV-21 Page 10 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT	Soil							
Batch R5614778 WG3634294-3 DUP % Moisture		L2648566-2 16.7	16.6		%	0.7	20	00 007 04
		10.7	10.0		76	0.7	20	09-OCT-21
WG3634294-2 LCS % Moisture			100.1		%		90-110	09-OCT-21
WG3634294-1 MB % Moisture			<0.25		%		0.25	09-OCT-21
PAH-511-WT	Soil							
Batch R5617366								
WG3636070-3 DUP		WG3636070-5	-0.020	DDD MA		N1/A	40	44.007.04
1-Methylnaphthalene		<0.030	<0.030 <0.030	RPD-NA	ug/g	N/A	40	14-OCT-21
2-Methylnaphthalene		<0.030 <0.050		RPD-NA	ug/g	N/A	40	14-OCT-21
Acenaphthene			<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	14-OCT-21
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Benzo(b&j)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Dibenz(a,h)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Fluoranthene		<0.050	0.051	RPD-NA	ug/g	N/A	40	14-OCT-21
Fluorene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Indeno(1,2,3-cd)pyrene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	14-OCT-21
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	14-OCT-21
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-OCT-21
WG3636070-2 LCS 1-Methylnaphthalene			104.8		%		50-140	14-OCT-21
2-Methylnaphthalene			101.9		%		50-140	14-OCT-21
Acenaphthene			101.9		%		50-140	14-OCT-21
Acenaphthylene			106.4		%		50-140	14-OCT-21 14-OCT-21
Anthracene			96.9		%		50-140	14-OCT-21
Benzo(a)anthracene			115.6		%		50-140	14-OCT-21
Benzo(a)pyrene			91.3		%		50-140	14-OCT-21 14-OCT-21
ουτεο _(α) ργιστίο			31.0		7.5		30-140	14-001-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 11 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix Refere	nce Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil						
Batch R5617366							
WG3636070-2 LCS Benzo(b&j)fluoranthene		96.5		%		50.440	44.007.04
Benzo(g,h,i)perylene		96.5 95.2		%		50-140	14-OCT-21
		95.2		%		50-140	14-OCT-21
Benzo(k)fluoranthene						50-140	14-OCT-21
Chrysene		106.9		%		50-140	14-OCT-21
Dibenz(a,h)anthracene Fluoranthene		101.4		%		50-140	14-OCT-21
		107.8		%		50-140	14-OCT-21
Fluorene		102.4		%		50-140	14-OCT-21
Indeno(1,2,3-cd)pyrene		104.6		%		50-140	14-OCT-21
Naphthalene		97.6		%		50-140	14-OCT-21
Phenanthrene		100.1		%		50-140	14-OCT-21
Pyrene		105.9		%		50-140	14-OCT-21
WG3636070-1 MB 1-Methylnaphthalene		<0.030		ug/g		0.03	14-OCT-21
2-Methylnaphthalene		<0.030		ug/g		0.03	14-OCT-21
Acenaphthene		<0.050		ug/g		0.05	14-OCT-21
Acenaphthylene		<0.050		ug/g		0.05	14-OCT-21
Anthracene		<0.050		ug/g		0.05	14-OCT-21
Benzo(a)anthracene		<0.050		ug/g		0.05	14-OCT-21
Benzo(a)pyrene		<0.050		ug/g		0.05	14-OCT-21
Benzo(b&j)fluoranthene		<0.050		ug/g		0.05	14-OCT-21
Benzo(g,h,i)perylene		< 0.050		ug/g		0.05	14-OCT-21
Benzo(k)fluoranthene		<0.050		ug/g		0.05	14-OCT-21
Chrysene		< 0.050		ug/g		0.05	14-OCT-21
Dibenz(a,h)anthracene		<0.050		ug/g		0.05	14-OCT-21
Fluoranthene		<0.050		ug/g		0.05	14-OCT-21
Fluorene		< 0.050		ug/g		0.05	14-OCT-21
Indeno(1,2,3-cd)pyrene		< 0.050		ug/g		0.05	14-OCT-21
Naphthalene		< 0.013		ug/g		0.013	14-OCT-21
Phenanthrene		<0.046		ug/g		0.046	14-OCT-21
Pyrene		<0.050		ug/g		0.05	14-OCT-21
Surrogate: 2-Fluorobiphe	enyl	89.0		%		50-140	14-OCT-21
Surrogate: d14-Terpheny	/I	96.0		%		50-140	14-OCT-21
WG3636070-4 MS 1-Methylnaphthalene	WG36	36070-5 104.7		%		50-140	14-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 12 of 24

G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5617366								
WG3636070-4 MS		WG3636070-5						
2-Methylnaphthalene			102.1		%		50-140	14-OCT-21
Acenaphthene			102.5		%		50-140	14-OCT-21
Acenaphthylene			105.6		%		50-140	14-OCT-21
Anthracene			98.3		%		50-140	14-OCT-21
Benzo(a)anthracene			122.9		%		50-140	14-OCT-21
Benzo(a)pyrene			94.0		%		50-140	14-OCT-21
Benzo(b&j)fluoranthene			100.3		%		50-140	14-OCT-21
Benzo(g,h,i)perylene			95.9		%		50-140	14-OCT-21
Benzo(k)fluoranthene			93.8		%		50-140	14-OCT-21
Chrysene			108.3		%		50-140	14-OCT-21
Dibenz(a,h)anthracene			104.6		%		50-140	14-OCT-21
Fluoranthene			110.5		%		50-140	14-OCT-21
Fluorene			105.2		%		50-140	14-OCT-21
Indeno(1,2,3-cd)pyrene			112.9		%		50-140	14-OCT-21
Naphthalene			95.8		%		50-140	14-OCT-21
Phenanthrene			101.3		%		50-140	14-OCT-21
Pyrene			108.0		%		50-140	14-OCT-21
PH-WT	Soil							
Batch R5617515								
WG3635476-1 DUP		L2648567-2	7 70		-11			
рН		7.80	7.78	J	pH units	0.02	0.3	14-OCT-21
WG3637773-1 LCS pH			6.96		pH units		6.9-7.1	14-OCT-21
SAR-R511-WT	Soil							
Batch R5615850								
WG3635410-4 DUP		WG3635410-3						
Calcium (Ca)		17.2	16.3		mg/L	5.4	30	12-OCT-21
Sodium (Na)		68.8	67.2		mg/L	2.4	30	12-OCT-21
Magnesium (Mg)		11.4	10.8		mg/L	5.4	30	12-OCT-21
WG3635410-2 IRM Calcium (Ca)		WT SAR4	108.2		%		70-130	12-OCT-21
Sodium (Na)			91.3		%		70-130	12-OCT-21
Magnesium (Mg)			106.0		%		70-130	12-OCT-21
WG3635410-5 LCS							70 100	12 001 21
WG3033410-3 LC3								

Workorder: L2648566 Report Date: 12-NOV-21 Page 13 of 24

G2S ENVIRONMENTAL CONSULTING, INC. Client:

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SAR-R511-WT	Soil							
Batch R5615850								
WG3635410-5 LCS Calcium (Ca)			104.0		%		80-120	12-OCT-21
Sodium (Na)			102.8		%		80-120	12-OCT-21
Magnesium (Mg)			102.6		%		80-120	12-OCT-21
WG3635410-1 MB Calcium (Ca)			<0.50		mg/L		0.5	12-OCT-21
Sodium (Na)			<0.50		mg/L		0.5	12-OCT-21
Magnesium (Mg)			<0.50		mg/L		0.5	12-OCT-21
Batch R5615983								
WG3634889-4 DUP		WG3634889-3						
Calcium (Ca)		9.09	9.28		mg/L	2.1	30	12-OCT-21
Sodium (Na)		1.11	1.15		mg/L	3.5	30	12-OCT-21
Magnesium (Mg)		2.30	2.39		mg/L	3.8	30	12-OCT-21
WG3634889-2 IRM Calcium (Ca)		WT SAR4	104.7		%		70-130	12-OCT-21
Sodium (Na)			95.7		%		70-130	12-OCT-21
Magnesium (Mg)			109.4		%		70-130	12-OCT-21
WG3634889-5 LCS								
Calcium (Ca)			105.3		%		80-120	12-OCT-21
Sodium (Na)			103.6		%		80-120	12-OCT-21
Magnesium (Mg)			103.8		%		80-120	12-OCT-21
WG3634889-1 MB Calcium (Ca)			<0.50		mg/L		0.5	12-OCT-21
Sodium (Na)			<0.50		mg/L		0.5	12-OCT-21
Magnesium (Mg)			<0.50		mg/L		0.5	12-OCT-21
VOC-511-HS-WT	Soil				-			
Batch R5615811								
WG3634824-4 DUP		WG3634824-3						
1,1,1,2-Tetrachloroethar		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,1,2,2-Tetrachloroethar	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 14 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5615811								
WG3634824-4 DUP		WG3634824-			,			
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	12-OCT-21
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	12-OCT-21
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	12-OCT-21
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	12-OCT-21
Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
cis-1,2-Dichloroethylene)	<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
cis-1,3-Dichloropropene)	<0.030	<0.030	RPD-NA	ug/g	N/A	40	12-OCT-21
Dibromochloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Dichlorodifluoromethane	Э	<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	12-OCT-21
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Methylene Chloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	12-OCT-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	12-OCT-21
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	12-OCT-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	12-OCT-21
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Tetrachloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	12-OCT-21
trans-1,2-Dichloroethyle	ene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
trans-1,3-Dichloroprope	ne	<0.030	<0.030	RPD-NA	ug/g	N/A	40	12-OCT-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	12-OCT-21
Trichlorofluoromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	12-OCT-21
Vinyl chloride		<0.020	<0.020		ug/g			12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 15 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

No. Soil Batch R561811 WG3634824-3 Vinyl chloride <0.020 <0.020 RPD-NA Ug/g N/A 40 12-OCT-21 WG3634824-4 DUP Ug/g N/A 40 12-OCT-21 WG3634824-4 DUP Ug/g N/A 40 12-OCT-21 1.1.1.2-Techaloricethane 90.9 % 60-130 12-OCT-21 1.1.1.2-Techaloricethane 92.3 % 60-130 12-OCT-21 1.1.1.7-Trichlorocethane 92.3 % 60-130 12-OCT-21 1.1.1.7-Trichlorocethane 92.9 % 60-130 12-OCT-21 1.1.1.1-Dichlorocethane 92.9 % 60-130 12-OCT-21 1.1.1-Dichlorocethane 92.9 % 60-130 12-OCT-21 1.1-Dichlorocethane 92.9 % 60-130 12-OCT-21 1.1-Dichlorocethane 93.3 % 60-130 12-OCT-21 1.2-Dichlorocethane 90.1 % 70-130 12-OCT-21 1.2-Dichlorocethane 90.1 % 70-130 12-OCT-21 1.2-Dichlorocethane 90.2 % 60-130 12-OCT-21 1.2-Dichlorocethane 90.2 % 60-130 12-OCT-21 1.2-Dichlorocethane 90.2 % 70-130 12-OCT-21 1.2-Dichlorocethane 90.2 % 70-130 12-OCT-21 1.2-Dichlorocethane 90.5 % 70-130 12-OCT-21 1.2-Dichlorocethane 91.5 % 70-130 12-OCT-21 1.2-Dichlorocethane 91.5 % 70-130 12-OCT-21 1.2-Dichlorocethane 91.2 % 60-140 12-OCT-21 1.2-Dichlorocethane 91.2 % 60-140 12-OCT-21 1.2-Dichlorocethane 90.6 % 70-130 12-OCT-21 1.2-Dichlorocethane 99.8 % 50-140 12-OCT-21 1.2-Dichlorocethane 99.8 % 50-140 12-OCT-21 1.2-Dichlorocethane 90.0 % 50-140 12-OCT-21 1.2-Dichlorocethane 90.0 % 50-140 12-OCT-21 1.2-Dichlorocethane 81.9 % 70-130 12-OCT-21 12-Dichlorocethylene 70.2 % 70-130 12-OCT-21 12-Dichlo	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
W36334824-4 bUP Vinyl chloride W63834824-2 bus Vinyl chloride RPD-NA ug/g N/A 40 12-OCT-21 W36334824-2 bus Um3634824-2 bus Vinyl chloride 90.9 % 60-130 12-OCT-21 1.1,1.2-Tetrachloroethane 86.5 % 60-130 12-OCT-21 1.1,1.2-Trichloroethane 92.3 % 60-130 12-OCT-21 1.1,1.2-Trichloroethane 92.9 % 60-130 12-OCT-21 1.1-Dichloroethane 92.9 % 60-130 12-OCT-21 1.1-Dichloroethane 86.9 % 60-130 12-OCT-21 1.2-Dichloroethane 86.9 % 70-130 12-OCT-21 1.2-Dichloroethane 86.9 % 70-130 12-OCT-21 1.2-Dichloroethane 90.1 % 70-130 12-OCT-21 1.2-Dichloroethane 90.2 % 60-130 12-OCT-21 1.2-Dichloroethane 91.2 % 60-140 12-OCT-21 1.2-Dichloroethane 91.5 % 70-130 12-OCT-21 <t< td=""><td>VOC-511-HS-WT</td><td>Soil</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	VOC-511-HS-WT	Soil							
Wind chloride <0.020	Batch R56158	11							
1.1,1,2-Tetrachloroethane 90.9 % 60-130 12-OCT-21 1.1,2,2-Tetrachloroethane 88.5 % 60-130 12-OCT-21 1.1,1-Trichloroethane 92.3 % 60-130 12-OCT-21 1.1,1-Trichloroethane 88.6 % 60-130 12-OCT-21 1,1-Dichloroethylene 83.3 % 60-130 12-OCT-21 1,2-Dichloroethylene 86.9 % 70-130 12-OCT-21 1,2-Dichloroethane 90.1 % 70-130 12-OCT-21 1,2-Dichloroethane 90.2 % 60-130 12-OCT-21 1,2-Dichloropropane 87.4 % 70-130 12-OCT-21 1,2-Dichloropropane 87.4 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 80.0 % 70-130		P			RPD-NA	ug/g	N/A	40	12-OCT-21
1.1,2,2-Tetrachloroethane 92.3 % 60.130 12-OCT-21 1.1,1-Trichloroethane 92.3 % 60.130 12-OCT-21 1.1,1-Trichloroethane 92.3 % 60.130 12-OCT-21 1.1,1-Dichloroethane 92.9 % 60.130 12-OCT-21 1.1,1-Dichloroethane 92.9 % 60.130 12-OCT-21 1.1,1-Dichloroethane 92.9 % 60.130 12-OCT-21 1.1,1-Dichloroethane 83.3 % 60.130 12-OCT-21 1.2-Dibromoethane 86.9 % 70.130 12-OCT-21 1.2-Dichloroethane 86.9 % 70.130 12-OCT-21 1.2-Dichloroethane 90.1 % 70.130 12-OCT-21 1.2-Dichloroethane 90.2 % 60.130 12-OCT-21 1.2-Dichloroethane 90.2 % 70.130 12-OCT-21 1.3-Dichloroethane 91.5 % 70.130 12-OCT-21 1.3-Dichloroethane 91.5 % 70.130 12-OCT-21 1.3-Dichloroethane 91.5 % 70.130 12-OCT-21 1.3-Dichloroethane 91.2 % 70.130 12-OCT-21 1.3-Dichloroethylene 91.3-Dichloroethylene 91.2 % 70.130 12-OCT-21 1.3-Dichloroethylene 91.2 % 70.130 12-O									
1,1,1-Trichloroethane 92.3 % 60-130 12-OCT-21 1,1,1-Dichloroethane 88.6 % 60-130 12-OCT-21 1,1,1-Dichloroethane 92.9 % 60-130 12-OCT-21 1,1-Dichloroethane 92.9 % 60-130 12-OCT-21 1,1-Dichloroethylene 83.3 % 60-130 12-OCT-21 1,1-Dichloroethylene 86.9 % 70-130 12-OCT-21 1,2-Dichloroethane 90.1 % 70-130 12-OCT-21 1,2-Dichloroethane 90.2 % 60-130 12-OCT-21 1,2-Dichloroethane 90.2 % 60-130 12-OCT-21 1,2-Dichloroethane 91.5 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,3-Dichlorobenzene 93.1 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 1,4-Dichlorobenzene 99.8 % 70-130 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromodichloromethane 99.8 % 70-130 12-OCT-21 Bromodichloromethane 80.0 % 70-130 12-OCT-21 Bromodethane 80.0 % 70-130 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chlorobenzene 94.7 % 70-130 12-OCT-21 Chlorobenzene 94.7 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloroethylene 79.2 % 70-130 12-OCT-21 Dichloroethylene 94.7 % 70-130 12-OCT-21 Dichloroethylene 95.5 % 70-130 12-OCT-21 Ethylbenzene 92.5 % 70-130 12-OCT-21 Ethylbenzene 92.5 % 70-130 12-OCT-21 Ethylbenzene 95.5 % 70-130 12-OCT-21 Ethylbenzene 95.5 % 70-130 12-OCT-21 Methyle Chloride 95.5 % 70-130 12-OCT-21 Methylee Chloride 95.5 % 70-130 12-OCT-21 Methylee Chloride 95.5 % 70-130 12-OCT-21 Methylees 83.1 % 70-130 12-OCT-21 Methylees 83.3 % 60-140 12-OCT-21 Methylesbudyl Ketone 83.3 % 60-140 12-OCT-21 Methylesbudyl Ketone 74.3 % 60-140 12-OCT-21								60-130	12-OCT-21
1.1,2-Trichloroethane 88.6 % 60-130 12-OCT-21 1,1-Dichloroethane 92.9 % 60-130 12-OCT-21 1,1-Dichloroethylene 83.3 % 60-130 12-OCT-21 1,2-Dibromoethane 86.9 % 70-130 12-OCT-21 1,2-Dichloroethane 90.1 % 70-130 12-OCT-21 1,2-Dichloropropane 87.4 % 70-130 12-OCT-21 1,2-Dichloropropane 87.4 % 70-130 12-OCT-21 1,2-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 91.2 % 60-140 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>60-130</td><td>12-OCT-21</td></t<>								60-130	12-OCT-21
1,1-Dichloroethane 92.9 % 60-130 12-OCT-21 1,1-Dichloroethylene 83.3 % 60-130 12-OCT-21 1,2-Dibromoethane 86.9 % 70-130 12-OCT-21 1,2-Dichlorobenzene 90.1 % 70-130 12-OCT-21 1,2-Dichlorobenzene 90.1 % 70-130 12-OCT-21 1,2-Dichloropthane 90.2 % 60-130 12-OCT-21 1,2-Dichloropthane 90.2 % 70-130 12-OCT-21 1,2-Dichloropthane 91.5 % 70-130 12-OCT-21 1,2-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 91.2 % 60-140 12-OCT-21 1,4-Dichlorobenzene 90.6 % 70-130 12-OCT-21 1,4-Dichlorobenzene 90.6 % 70-130 12-OCT-21 1,4-Dichloropthane 85.0 % 70-130 12-OCT-21 1,4-Dichloropthane 85.0 % 70-130 12-OCT-21 1,4-Dichloropthane 85.0 % 70-130 12-OCT-21 1,4-Dichloropthane 90.6 % 70-130 12-OCT-21 1,4-Dichloropthane 90.0 % 70-130 12-OCT-21 1,4-Dichloropt								60-130	12-OCT-21
1,1-Dichloroethylene 83.3 % 60-130 12-OCT-21 1,2-Dibromoethane 86.9 % 70-130 12-OCT-21 1,2-Dichlorobenzene 90.1 % 70-130 12-OCT-21 1,2-Dichloroethane 90.2 % 60-130 12-OCT-21 1,2-Dichloroethane 90.2 % 70-130 12-OCT-21 1,2-Dichloropenzene 87.4 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 1,4-Dichlorobenzene 99.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 Chloroform 94.7 % 70-130 12-OCT-21 Cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 Cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dichloromethane 93.0 % 60-130 12-OCT-21 Dichloroformethane 93.0 % 70-130 12-OCT-21 Cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dichloroformethane 95.5 % 70-130 12-OCT-21 Dichlorodifluoromethane 95.5 % 70-130 12-OCT-21 Dichlorodifluoromethane 95.5 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 Methylene Methylene Chloride 95.5 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 Methylene Methylene Chloride 95.5 % 70-130 12-OCT-21 Methylene Methylene Chloride 95.5 % 70-130 12-OCT-21 Methylene Methylene 74.3 % 60-140 12-OCT-21 Methylene 74.3 % 60-140 12-OCT-21 Methylene 74.3 % 60-140 12-OCT-21)						60-130	12-OCT-21
1,2-Dibromoethane 86.9 % 70-130 12-CCT-21 1,2-Dichlorobenzene 90.1 % 70-130 12-CCT-21 1,2-Dichloroethane 90.2 % 60-130 12-CCT-21 1,2-Dichloropropane 87.4 % 70-130 12-CCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-CCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-CCT-21 Acetone 91.2 % 60-140 12-CCT-21 Benzene 90.6 % 70-130 12-CCT-21 Bromodichloromethane 99.8 % 50-140 12-CCT-21 Bromoform 85.0 % 70-130 12-CCT-21 Bromomethane 80.0 % 50-140 12-CCT-21 Carbon tetrachloride 86.3 % 70-130 12-CCT-21 Chlorobenzene 81.9 % 70-130 12-CCT-21 Chloroform 92.8 % 70-130 12-CCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-CCT-21 <	1,1-Dichloroethane			92.9				60-130	12-OCT-21
1,2-Dichlorobenzene 90.1 % 70-130 12-OCT-21 1,2-Dichloroethane 90.2 % 60-130 12-OCT-21 1,2-Dichloroptopane 87.4 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 70-130 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 Chloroforhylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21	1,1-Dichloroethylene			83.3		%		60-130	12-OCT-21
1,2-Dichloroethane 90.2 % 60-130 12-OCT-21 1,2-Dichloropropane 87.4 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21	1,2-Dibromoethane			86.9		%		70-130	12-OCT-21
1,2-Dichloropropane 87.4 % 70-130 12-OCT-21 1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 95.6 % 70-130 12-OCT-21	1,2-Dichlorobenzene			90.1		%		70-130	12-OCT-21
1,3-Dichlorobenzene 91.5 % 70-130 12-OCT-21 1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibriomochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21	1,2-Dichloroethane			90.2		%		60-130	12-OCT-21
1,4-Dichlorobenzene 93.1 % 70-130 12-OCT-21 Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichlorotethylene 79.2 % 70-130 12-OCT-21 cis-1,2-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dibrlorodifluoromethane 93.0 % 60-130 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Me	1,2-Dichloropropane			87.4		%		70-130	12-OCT-21
Acetone 91.2 % 60-140 12-OCT-21 Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 Methyl E	1,3-Dichlorobenzene			91.5		%		70-130	12-OCT-21
Benzene 90.6 % 70-130 12-OCT-21 Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 <t< td=""><td>1,4-Dichlorobenzene</td><td></td><td></td><td>93.1</td><td></td><td>%</td><td></td><td>70-130</td><td>12-OCT-21</td></t<>	1,4-Dichlorobenzene			93.1		%		70-130	12-OCT-21
Bromodichloromethane 99.8 % 50-140 12-OCT-21 Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 M	Acetone			91.2		%		60-140	12-OCT-21
Bromoform 85.0 % 70-130 12-OCT-21 Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Me	Benzene			90.6		%		70-130	12-OCT-21
Bromomethane 80.0 % 50-140 12-OCT-21 Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Bromodichlorometha	ne		99.8		%		50-140	12-OCT-21
Carbon tetrachloride 86.3 % 70-130 12-OCT-21 Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Bromoform			85.0		%		70-130	12-OCT-21
Chlorobenzene 81.9 % 70-130 12-OCT-21 Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Bromomethane			80.0		%		50-140	12-OCT-21
Chloroform 92.8 % 70-130 12-OCT-21 cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Carbon tetrachloride			86.3		%		70-130	12-OCT-21
cis-1,2-Dichloroethylene 79.2 % 70-130 12-OCT-21 cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 Methyl Selbyl Ketone 83.1 % 70-130 12-OCT-21 Methyl Isobutyl Ketone 83.3 % 60-140 12-OCT-21	Chlorobenzene			81.9		%		70-130	12-OCT-21
cis-1,3-Dichloropropene 94.7 % 70-130 12-OCT-21 Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Chloroform			92.8		%		70-130	12-OCT-21
Dibromochloromethane 93.0 % 60-130 12-OCT-21 Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	cis-1,2-Dichloroethyle	ene		79.2		%		70-130	12-OCT-21
Dichlorodifluoromethane 56.4 % 50-140 12-OCT-21 Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	cis-1,3-Dichloroprope	ene		94.7		%		70-130	12-OCT-21
Ethylbenzene 82.5 % 70-130 12-OCT-21 n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Dibromochlorometha	ne		93.0		%		60-130	12-OCT-21
n-Hexane 79.2 % 70-130 12-OCT-21 Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Dichlorodifluorometha	ane		56.4		%		50-140	12-OCT-21
Methylene Chloride 95.5 % 70-130 12-OCT-21 MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Ethylbenzene			82.5		%		70-130	12-OCT-21
MTBE 87.4 % 70-130 12-OCT-21 m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	n-Hexane			79.2		%		70-130	12-OCT-21
m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Methylene Chloride			95.5		%		70-130	12-OCT-21
m+p-Xylenes 83.1 % 70-130 12-OCT-21 Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	MTBE			87.4		%		70-130	12-OCT-21
Methyl Ethyl Ketone 83.3 % 60-140 12-OCT-21 Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	m+p-Xylenes			83.1		%		70-130	
Methyl Isobutyl Ketone 74.3 % 60-140 12-OCT-21	Methyl Ethyl Ketone			83.3		%			
	Methyl Isobutyl Keton	ie		74.3		%			
						%		70-130	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 16 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

No. Solidaria	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3534824-2 LCS Styrene 88.9 % 70.130 12.OCT.21 Tetrachtrorethylene 88.9 % 60.130 12.OCT.21 Toluene 81.8 % 70.130 12.OCT.21 Toluene 81.8 % 70.130 12.OCT.21 trans-1,2-Dichloroethylene 94.4 % 60.130 12.OCT.21 trans-1,3-Dichloroethylene 91.0 % 60.130 12.OCT.21 Trichtorethylene 91.0 % 60.130 12.OCT.21 Trichtorethylene 91.0 % 60.130 12.OCT.21 Trichtorothylene 78.8 % 50.140 12.OCT.21 Trichtorothylene 61.7 % 60.140 12.OCT.21 WG354824-1 MB	VOC-511-HS-WT	Soil							
Slyree 80.5 % 70-130 12-OCT-21 Tetrachloroethylene 88.9 % 60-130 12-OCT-21 trans-1,2-Dichloroethylene 81.8 % 60-130 12-OCT-21 trans-1,2-Dichloroprepene 88.6 % 70-130 12-OCT-21 Trichloroethylene 91.0 % 60-130 12-OCT-21 Trichloroethylene 91.0 % 60-140 12-OCT-21 Trichloroethylene 61.7 % 60-140 12-OCT-21 Vinyl chloride 61.7 % 60-140 12-OCT-21 Vinyl chloride 61.7 % 60-140 12-OCT-21 1,1,2-Erterachloroethane <0.050	Batch R5615811								
Tetrachloroethylene 88.9 % 60-130 12-OCT-21 Toluene 81.8 % 70-130 12-OCT-21 trans-1,2-Dichloroethylene 94.4 % 60-130 12-OCT-21 trans-1,3-Dichloropropene 88.6 % 70-130 12-OCT-21 Trichloroethylene 91.0 % 60-130 12-OCT-21 Trichloroethylene 91.0 % 60-140 12-OCT-21 Trichloroethylene 78.8 % 50-140 12-OCT-21 Vinyl chloride 61.7 % 60-130 12-OCT-21 Vinyl chloride 61.7 % 60-140 12-OCT-21 Vinyl chloride 61.7 % 0.05 12-OCT-21 Vinyl chloride 60.50 ug/g 0.05 12-OCT-21 1,1,2-Trichloroethane <0.050				80.5		%		70 120	12 OCT 21
Toluene 81.8 % 70.130 12.0CT-21 trans-1,2-Dichloroethylene 94.4 % 60-130 12.0CT-21 trans-1,2-Dichloroptopene 89.6 % 70-130 12.0CT-21 trans-1,3-Dichloroptopene 99.0 % 70-130 12.0CT-21 trans-1,3-Dichloroptopene 99.0 % 70-130 12.0CT-21 Trichloroethylene 91.0 % 60-130 12.0CT-21 Trichloroethylene 91.0 % 60-140 12.0CT-21 Viryl chloride 61.7 % 61.7	·								
trans-1,2-Dichloroethylene 94.4 % 60-130 12-OCT-21 trans-1,3-Dichloropropene 89.6 % 70-130 12-OCT-21 Trichloroethylene 91.0 % 60-130 12-OCT-21 Trichloroftburomethane 78.8 % 50-140 12-OCT-21 Vinyl chloride 61.7 % 60-140 12-OCT-21 WG3634824-1 MB 1.1,1.2-Tertachloroethane <0.050	-								
trans-1,3-Dichloropropene 89.6 % 70-130 12-OCT-21 Trichloroethylene 91.0 % 60-130 12-OCT-21 Trichloroethylene 78.8 % 50-140 12-OCT-21 Winyl chloride 61.7 % 60-140 12-OCT-21 WG3634824-1 MB		ne							
Trichloroethylene 91.0 % 80-130 12-OCT-21 Trichlorofluoromethane 78.8 % 50-140 12-OCT-21 Vinyl chloride 61.7 % 60-140 12-OCT-21 WG3634824-1 MB 11,1,2-Teirachloroethane <0.050	•								
Trichlorofluoromethane 78.8 % 50.140 12-OCT-21 Vinyl chloride 61.7 % 60.140 12-OCT-21 WG3634824-1 MB 1.1,1,2-Tertachloroethane <0.050		16							
Vinyl chloride 61.7 % 60-140 12-OCT-21 WG3634824-1 MB 1.1,1,2-Tetrachloroethane <0.050 ug/g 0.05 12-OCT-21 1.1,2-Tetrachloroethane <0.050 ug/g 0.05 12-OCT-21 1.1,1-Trichloroethane <0.050 ug/g 0.05 12-OCT-21 1.1,1-Trichloroethane <0.050 ug/g 0.05 12-OCT-21 1.1,1-Dichloroethane <0.050 ug/g 0.05 12-OCT-21 1.1-Dichloroethane <0.050 ug/g 0.05 12-OCT-21 1.1-Dichloroethane <0.050 ug/g 0.05 12-OCT-21 1.2-Dichloroethane <0.050 ug/g 0.05 12-OCT-21 1.2-Dichloroethyene	-								
WG3634824-1 MB 1,1,1,2-Tetrachloroethane <0.050 ug/g 0.05 12-OCT-21 1,1,1,2-Tetrachloroethane <0.050									
1,1,1,2-Tetrachloroethane <0.050	·			01.7		70		60-140	12-001-21
1.1,1-Trichloroethane <0.050		ne		< 0.050		ug/g		0.05	12-OCT-21
1,1,1-Trichloroethane <0.050	1,1,2,2-Tetrachloroethar	ne		< 0.050				0.05	
1,1,2-Trichloroethane <0.050	1,1,1-Trichloroethane			<0.050		ug/g		0.05	12-OCT-21
1,1-Dichloroethylene <0.050	1,1,2-Trichloroethane			< 0.050		ug/g		0.05	12-OCT-21
1,2-Dibromoethane <0.050	1,1-Dichloroethane			<0.050		ug/g		0.05	12-OCT-21
1,2-Dichlorobenzene <0.050	1,1-Dichloroethylene			< 0.050		ug/g		0.05	12-OCT-21
1,2-Dichloroethane <0.050	1,2-Dibromoethane			< 0.050		ug/g		0.05	12-OCT-21
1,2-Dichloropropane <0.050	1,2-Dichlorobenzene			< 0.050		ug/g		0.05	12-OCT-21
1,3-Dichlorobenzene <0.050	1,2-Dichloroethane			< 0.050		ug/g		0.05	12-OCT-21
1,4-Dichlorobenzene <0.050	1,2-Dichloropropane			<0.050		ug/g		0.05	12-OCT-21
Acetone <0.50	1,3-Dichlorobenzene			<0.050		ug/g		0.05	12-OCT-21
Benzene <0.0068 ug/g 0.0068 12-OCT-21 Bromodichloromethane <0.050	1,4-Dichlorobenzene			<0.050		ug/g		0.05	12-OCT-21
Bromodichloromethane <0.050 ug/g 0.05 12-OCT-21 Bromoform <0.050	Acetone			<0.50		ug/g		0.5	12-OCT-21
Bromoform <0.050 ug/g 0.05 12-OCT-21 Bromomethane <0.050	Benzene			<0.0068		ug/g		0.0068	12-OCT-21
Bromomethane <0.050 ug/g 0.05 12-OCT-21 Carbon tetrachloride <0.050	Bromodichloromethane			<0.050		ug/g		0.05	12-OCT-21
Carbon tetrachloride <0.050	Bromoform			<0.050		ug/g		0.05	12-OCT-21
Chlorobenzene <0.050	Bromomethane			<0.050		ug/g		0.05	12-OCT-21
Chloroform <0.050 ug/g 0.05 12-OCT-21 cis-1,2-Dichloroethylene <0.050	Carbon tetrachloride			<0.050		ug/g		0.05	12-OCT-21
cis-1,2-Dichloroethylene <0.050	Chlorobenzene			< 0.050		ug/g		0.05	12-OCT-21
cis-1,3-Dichloropropene <0.030	Chloroform			<0.050		ug/g		0.05	12-OCT-21
Dibromochloromethane <0.050 ug/g 0.05 12-OCT-21 Dichlorodifluoromethane <0.050	cis-1,2-Dichloroethylene			<0.050		ug/g		0.05	12-OCT-21
Dichlorodifluoromethane <0.050 ug/g 0.05 12-OCT-21	cis-1,3-Dichloropropene			<0.030		ug/g		0.03	12-OCT-21
00	Dibromochloromethane			<0.050		ug/g		0.05	12-OCT-21
Ethylbenzene <0.018 ug/g 0.018 12-OCT-21	Dichlorodifluoromethane	•		<0.050		ug/g		0.05	12-OCT-21
	Ethylbenzene			<0.018		ug/g		0.018	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 17 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5615811								
WG3634824-1 MB n-Hexane			-0.0E0		110/0		0.05	40.007.04
			<0.050 <0.050		ug/g		0.05	12-OCT-21
Methylene Chloride MTBE					ug/g			12-OCT-21
			<0.050		ug/g		0.05	12-OCT-21
m+p-Xylenes Methyl Ethyl Ketone			<0.030		ug/g		0.03	12-OCT-21
			<0.50		ug/g		0.5	12-OCT-21
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	12-OCT-21
o-Xylene			<0.020		ug/g ,		0.02	12-OCT-21
Styrene			<0.050		ug/g		0.05	12-OCT-21
Tetrachloroethylene			<0.050		ug/g		0.05	12-OCT-21
Toluene			<0.080		ug/g		0.08	12-OCT-21
trans-1,2-Dichloroethyle			<0.050		ug/g		0.05	12-OCT-21
trans-1,3-Dichloroprope	ne		<0.030		ug/g		0.03	12-OCT-21
Trichloroethylene			<0.010		ug/g		0.01	12-OCT-21
Trichlorofluoromethane			<0.050		ug/g		0.05	12-OCT-21
Vinyl chloride			<0.020		ug/g		0.02	12-OCT-21
Surrogate: 1,4-Difluorob			86.4		%		50-140	12-OCT-21
Surrogate: 4-Bromofluo	robenzene		76.8		%		50-140	12-OCT-21
WG3634824-5 MS 1,1,1,2-Tetrachloroetha	no	WG3634824-3	113.6		%		50.440	10 007 01
1,1,2,2-Tetrachloroetha			110.9		%		50-140	12-OCT-21
1,1,1-Trichloroethane	i i c		119.9		%		50-140	12-OCT-21
1,1,2-Trichloroethane			110.8		%		50-140	12-OCT-21
1,1-Dichloroethane			117.6		%		50-140	12-OCT-21
1,1-Dichloroethylene			112.7		%		50-140	12-OCT-21
1,2-Dibromoethane			106.3		%		50-140	12-OCT-21
1,2-Dichlorobenzene			112.5		%		50-140	12-OCT-21
1,2-Dichloroethane							50-140	12-OCT-21
1,2-Dichloroethane			114.2 112.0		%		50-140	12-OCT-21
							50-140	12-OCT-21
1,3-Dichlorobenzene			114.0		%		50-140	12-OCT-21
1,4-Dichlorobenzene			115.7		%		50-140	12-OCT-21
Acetone			118.8		%		50-140	12-OCT-21
Benzene			116.4		%		50-140	12-OCT-21
Bromodichloromethane			127.1		%		50-140	12-OCT-21
Bromoform			107.1		%		50-140	12-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 18 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5615811								
WG3634824-5 MS		WG3634824-						
Bromomethane			107.1		%		50-140	12-OCT-21
Carbon tetrachloride			111.5		%		50-140	12-OCT-21
Chlorobenzene			103.8		%		50-140	12-OCT-21
Chloroform			119.0		%		50-140	12-OCT-21
cis-1,2-Dichloroethylene			101.7		%		50-140	12-OCT-21
cis-1,3-Dichloropropene	•		117.2		%		50-140	12-OCT-21
Dibromochloromethane			115.3		%		50-140	12-OCT-21
Dichlorodifluoromethane	Э		95.2		%		50-140	12-OCT-21
Ethylbenzene			107.2		%		50-140	12-OCT-21
n-Hexane			112.8		%		50-140	12-OCT-21
Methylene Chloride			125.1		%		50-140	12-OCT-21
MTBE			109.6		%		50-140	12-OCT-21
m+p-Xylenes			107.5		%		50-140	12-OCT-21
Methyl Ethyl Ketone			107.2		%		50-140	12-OCT-21
Methyl Isobutyl Ketone			95.8		%		50-140	12-OCT-21
o-Xylene			108.0		%		50-140	12-OCT-21
Styrene			103.8		%		50-140	12-OCT-21
Tetrachloroethylene			112.5		%		50-140	12-OCT-21
Toluene			105.9		%		50-140	12-OCT-21
trans-1,2-Dichloroethyle	ne		126.9		%		50-140	12-OCT-21
trans-1,3-Dichloroprope	ne		109.4		%		50-140	12-OCT-21
Trichloroethylene			115.0		%		50-140	12-OCT-21
Trichlorofluoromethane			109.4		%		50-140	12-OCT-21
Vinyl chloride			89.5		%		50-140	12-OCT-21
Batch R5616586								
WG3634868-4 DUP		WG3634868-	3					
1,1,1,2-Tetrachloroetha	ne	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,1,2,2-Tetrachloroetha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,1-Dichloroethylene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 19 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5616586								
WG3634868-4 DUP		WG3634868-			,			
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	13-OCT-21
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	13-OCT-21
Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
cis-1,2-Dichloroethylene)	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
cis-1,3-Dichloropropene)	<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-OCT-21
Dibromochloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Dichlorodifluoromethane	е	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	13-OCT-21
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Methylene Chloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
MTBE		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-OCT-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	13-OCT-21
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	13-OCT-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-OCT-21
Styrene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Tetrachloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	13-OCT-21
trans-1,2-Dichloroethyle	ene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
trans-1,3-Dichloroprope	ne	<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-OCT-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	13-OCT-21
Trichlorofluoromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-OCT-21
Vinyl chloride		<0.020	<0.020		ug/g			13-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 20 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5616586								
WG3634868-4 DUP Vinyl chloride		WG3634868-3 <0.020	<0.020	RPD-NA	ug/g	N/A	40	13-OCT-21
WG3634868-2 LCS 1,1,1,2-Tetrachloroethan	ne		92.5		%		60-130	13-OCT-21
1,1,2,2-Tetrachloroethan	ie		91.0		%		60-130	13-OCT-21
1,1,1-Trichloroethane			93.4		%		60-130	13-OCT-21
1,1,2-Trichloroethane			92.5		%		60-130	13-OCT-21
1,1-Dichloroethane			93.6		%		60-130	13-OCT-21
1,1-Dichloroethylene			97.9		%		60-130	13-OCT-21
1,2-Dibromoethane			87.6		%		70-130	13-OCT-21
1,2-Dichlorobenzene			96.0		%		70-130	13-OCT-21
1,2-Dichloroethane			100.2		%		60-130	13-OCT-21
1,2-Dichloropropane			97.4		%		70-130	13-OCT-21
1,3-Dichlorobenzene			97.6		%		70-130	13-OCT-21
1,4-Dichlorobenzene			97.1		%		70-130	13-OCT-21
Acetone			108.4		%		60-140	13-OCT-21
Benzene			94.0		%		70-130	13-OCT-21
Bromodichloromethane			101.0		%		50-140	13-OCT-21
Bromoform			88.1		%		70-130	13-OCT-21
Bromomethane			86.8		%		50-140	13-OCT-21
Carbon tetrachloride			92.8		%		70-130	13-OCT-21
Chlorobenzene			95.5		%		70-130	13-OCT-21
Chloroform			95.7		%		70-130	13-OCT-21
cis-1,2-Dichloroethylene			89.1		%		70-130	13-OCT-21
cis-1,3-Dichloropropene			91.6		%		70-130	13-OCT-21
Dibromochloromethane			93.2		%		60-130	13-OCT-21
Dichlorodifluoromethane			70.0		%		50-140	13-OCT-21
Ethylbenzene			91.9		%		70-130	13-OCT-21
n-Hexane			94.7		%		70-130	13-OCT-21
Methylene Chloride			89.9		%		70-130	13-OCT-21
MTBE			93.4		%		70-130	13-OCT-21
m+p-Xylenes			96.3		%		70-130	13-OCT-21
Methyl Ethyl Ketone			91.9		%		60-140	13-OCT-21
Methyl Isobutyl Ketone			88.9		%		60-140	13-OCT-21
o-Xylene			91.6		%		70-130	13-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 21 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

No.	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3634868-2 LCS Styrene 92.0 % 60-130 13-0CT-21 Tetrachitorethylene 91.0 % 60-130 13-0CT-21 Tolluene 92.5 % 70-130 13-0CT-21 trans-1,2-Dichloroethylene 100.3 % 60-130 13-0CT-21 trans-1,3-Dichloroppene 88.4 % 70-130 13-0CT-21 trans-1,3-Dichloroppene 88.3 % 60-130 13-0CT-21 Trichloroethylene 88.3 % 60-130 13-0CT-21 Trichloroethylene 88.3 % 60-130 13-0CT-21 Trichlorofluoromethane 89.1 % 50-140 13-0CT-21 WG3634868-1 MB	VOC-511-HS-WT	Soil							
Styrene	Batch R5616	5586							
Tetrachloroethylene 91.0 % 60-130 13-OCT-21 Toluene 92.5 % 70-130 13-OCT-21 trans-1,2-Dichloroethylene 100.3 % 60-130 13-OCT-21 trans-1,3-Dichloropropene 88.4 % 70-130 13-OCT-21 Trichloroethylene 88.3 % 60-130 13-OCT-21 Trichlorofluoromethane 89.1 % 50-140 13-OCT-21 WG3634868-1 MB 1 % 60-130 13-OCT-21 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 13-OCT-21 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 13-OCT-21 1,1,1-Trichloroethane <0.050 ug/g 0.05 13-OCT-21 1,1-Dichloroethane <0.050 ug/g 0.05 13-OCT-21 1,1-Dichloroethane <0.050 ug/g 0.05 13-OCT-21 1,2-Dichloroethane <0.050 ug/g 0.05 13-OCT-21 1,2-Dichloroethane <0.050 ug		cs		00.0		0/			
Toluene 92.5 % 70-130 13-0CT-21 trans-1,2-Dichloroethylene 100.3 % 60-130 13-0CT-21 trans-1,2-Dichloroptopene 88.4 % 70-130 13-0CT-21 trans-1,3-Dichloroptopene 88.4 % 70-130 13-0CT-21 Trichloroethylene 88.3 % 60-130 13-0CT-21 Trichlorothylene 88.3 % 50-140 13-0CT-21 Vinyl chloride 83.4 % 50-140 13-0CT-21 Vinyl chloride 83.4 % 60-130 13-0CT-21 Vinyl chloride 83.4 % 60-140 13-0CT-21 1,1.2-Tetrachloroethane 80.50 ug/g 0.05 13-0CT-21 1,1.2-Tetrachloroethane 80.50 ug/g 0.05 13-0CT-21 1,1.2-Trichloroethane 80.050 ug/g 0.05 13-0CT-21 1,1.2-Trichloroethane 80.050 ug/g 0.05 13-0CT-21 1,1.2-Dichloroethane 80.050 ug/g 0.05 13-0CT-21 1,2-Dichloroethane 80.050 ug/g 0.05 13-0CT-21 1,3-Dichloroethane 80.050 ug/g 0.05 13-0CT-21 Rename 80.050 ug/g 0.05 13-0CT-21 Renam	•	_							
trans-1,2-Dichloroethylene 100.3 % 60-130 13-OCT-21 trans-1,3-Dichloropropene 88.4 % 70-130 13-OCT-21 Trichloroethylene 88.3 % 60-130 13-OCT-21 Trichlorofluromethane 89.1 % 50-140 13-OCT-21 Vinyl chloride 83.4 % 60-140 13-OCT-21 WG3634868-1 MB 1,1,12-Tetrachloroethane <0.050	-	Э							
trans-1,3-Dichloropropene 88.4 % 70-130 13-OCT-21 Trichloroethylene 88.3 % 60-130 13-OCT-21 Trichlorofluoromethane 89.1 % 50-140 13-OCT-21 Viryl chloride 83.4 % 60-140 13-OCT-21 WG3634868-1 MB *** *** 50-140 13-OCT-21 1,1,2-Tetrachloroethane <0.050		the days							
Trichloroethylene 88.3 % 60-130 13-OCT-21 Trichlorofluoromethane 89.1 % 50-140 13-OCT-21 Vinyl chloride 83.4 % 60-140 13-OCT-21 WG3634868-1 MB 1.1,1,2-Tetrachloroethane <0.050		-							
Trichlorofluoromethane 88.1 % 50-140 13-OCT-21 Vinyl chloride 83.4 % 60-140 13-OCT-21 WG3634868-1 MB *** *** *** 1,1,2-Tertachloroethane <0.050		ropene							
Vinyl chloride 83.4 % 60-140 13-OCT-21 WG3634868-1 MB 1.1,1,2-Tetrachloroethane <0.050 ug/g 0.05 13-OCT-21 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 13-OCT-21 1,1,1-Trichloroethane <0.050 ug/g 0.05 13-OCT-21 1,1,1-Trichloroethane <0.050 ug/g 0.05 13-OCT-21 1,1-Dichloroethylene <0.050 ug/g 0.05 13-OCT-21 1,1-Dichloroethylene <0.050 ug/g 0.05 13-OCT-21 1,2-Dibromoethane <0.050 ug/g 0.05 13-OCT-21 1,2-Dibrloroethane <0.050 ug/g 0.05 13-OCT-21 1,2-Dichloroethane <0.050 ug/g 0.05 13-OCT-21 1,2-Dichloroethane <0.050 ug/g 0.05 13-OCT-21 1,2-Dichloroppane <0.050 ug/g 0.05 13-OCT-21 1,3-Dichloroethane <0.050 ug/g 0.05 13-OCT-21 1,4-Dichloroppane	-								
WG3634868-1 MB MB 1,1,1,2-Tetrachloroethane <0.050		nane							
1,1,1,2-Tetrachloroethane <0.050	-			83.4		%		60-140	13-OCT-21
1,1,2,2-Tetrachloroethane <0.050				<0.050		ua/a		0.05	13-OCT-21
1,1,1-Trichloroethane <0.050									
1,1,2-Trichloroethane <0.050									
1,1-Dichloroethane <0.050									
1,1-Dichloroethylene <0.050	1,1-Dichloroethane			<0.050				0.05	
1,2-Dibromoethane <0.050	•							0.05	
1,2-Dichlorobenzene <0.050	-			<0.050				0.05	
1,2-Dichloroethane <0.050	1,2-Dichlorobenzer	ne		< 0.050					
1,2-Dichloropropane <0.050	1,2-Dichloroethane			< 0.050				0.05	
1,3-Dichlorobenzene <0.050	1,2-Dichloropropan	e		< 0.050				0.05	
1,4-Dichlorobenzene <0.050				<0.050				0.05	
Acetone <0.50	1,4-Dichlorobenzer	ne		< 0.050				0.05	
Bromodichloromethane <0.050 ug/g 0.05 13-OCT-21 Bromoform <0.050	Acetone			<0.50		ug/g		0.5	13-OCT-21
Bromoform <0.050 ug/g 0.05 13-OCT-21 Bromomethane <0.050	Benzene			<0.0068		ug/g		0.0068	13-OCT-21
Bromoform <0.050 ug/g 0.05 13-OCT-21 Bromomethane <0.050	Bromodichlorometh	nane		<0.050		ug/g		0.05	13-OCT-21
Bromomethane <0.050	Bromoform			<0.050				0.05	
Carbon tetrachloride <0.050	Bromomethane			<0.050				0.05	
Chlorobenzene <0.050	Carbon tetrachlorid	le		<0.050				0.05	
Chloroform <0.050 ug/g 0.05 13-OCT-21 cis-1,2-Dichloroethylene <0.050	Chlorobenzene			< 0.050				0.05	
cis-1,2-Dichloroethylene <0.050	Chloroform			< 0.050				0.05	
cis-1,3-Dichloropropene <0.030	cis-1,2-Dichloroeth	ylene		<0.050				0.05	
Dibromochloromethane <0.050 ug/g 0.05 13-OCT-21	cis-1,3-Dichloropro	pene		<0.030				0.03	
				<0.050				0.05	
	Dichlorodifluorome	thane		<0.050		ug/g		0.05	13-OCT-21
Ethylbenzene <0.018 ug/g 0.018 13-OCT-21	Ethylbenzene			<0.018				0.018	

Workorder: L2648566 Report Date: 12-NOV-21 Page 22 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5616586	6							
WG3634868-1 MB			0.050				0.05	
n-Hexane			<0.050		ug/g		0.05	13-OCT-21
Methylene Chloride			<0.050		ug/g		0.05	13-OCT-21
MTBE			<0.050		ug/g		0.05	13-OCT-21
m+p-Xylenes Methyl Ethyl Ketone			<0.030		ug/g		0.03	13-OCT-21
			<0.50		ug/g		0.5 0.5	13-OCT-21
Methyl Isobutyl Ketone			<0.50		ug/g		0.02	13-OCT-21
o-Xylene			<0.020		ug/g			13-OCT-21
Styrene			<0.050		ug/g		0.05	13-OCT-21
Tetrachloroethylene Toluene			<0.050		ug/g		0.05	13-OCT-21
	000		<0.080		ug/g		0.08 0.05	13-OCT-21
trans-1,2-Dichloroethyl			<0.050		ug/g		0.03	13-OCT-21
Trichloroethylene	CIIC		<0.030 <0.010		ug/g		0.03	13-OCT-21
Trichlorofluoromethane	`		<0.010		ug/g		0.01	13-OCT-21
Vinyl chloride	7		<0.020		ug/g		0.03	13-OCT-21
Surrogate: 1,4-Difluoro	hanzana		90.1		ug/g %		50-140	13-OCT-21
Surrogate: 4-Bromofluc			83.6		%		50-140	13-OCT-21
WG3634868-5 MS	oroberizerie	WG3634868-3	03.0		70		30-140	13-OCT-21
1,1,1,2-Tetrachloroetha	ane	WG3034000-3	110.1		%		50-140	14-OCT-21
1,1,2,2-Tetrachloroetha	ane		125.3		%		50-140	14-OCT-21
1,1,1-Trichloroethane			122.9		%		50-140	14-OCT-21
1,1,2-Trichloroethane			116.8		%		50-140	14-OCT-21
1,1-Dichloroethane			112.8		%		50-140	14-OCT-21
1,1-Dichloroethylene			128.7		%		50-140	14-OCT-21
1,2-Dibromoethane			106.9		%		50-140	14-OCT-21
1,2-Dichlorobenzene			113.3		%		50-140	14-OCT-21
1,2-Dichloroethane			130.7		%		50-140	14-OCT-21
1,2-Dichloropropane			111.1		%		50-140	14-OCT-21
1,3-Dichlorobenzene			113.7		%		50-140	14-OCT-21
1,4-Dichlorobenzene			113.7		%		50-140	14-OCT-21
Acetone			141.5	MES	%		50-140	14-OCT-21
Benzene			119.1		%		50-140	14-OCT-21
Bromodichloromethane	Э		129.5		%		50-140	14-OCT-21
Bromoform			130.7		%		50-140	14-OCT-21

Workorder: L2648566 Report Date: 12-NOV-21 Page 23 of 24

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R561658	36							
WG3634868-5 MS		WG3634868-			0/			
Bromomethane			118.2		%		50-140	14-OCT-21
Carbon tetrachloride			112.7		%		50-140	14-OCT-21
Chlorobenzene			115.6		%		50-140	14-OCT-21
Chloroform			118.9		%		50-140	14-OCT-21
cis-1,2-Dichloroethyle			104.7		%		50-140	14-OCT-21
cis-1,3-Dichloroprope			122.1		%		50-140	14-OCT-21
Dibromochloromethar	ne		118.6		%		50-140	14-OCT-21
Dichlorodifluorometha	ane		157.0	RRQC	%		50-140	14-OCT-21
Ethylbenzene			127.0		%		50-140	14-OCT-21
n-Hexane			113.5		%		50-140	14-OCT-21
Methylene Chloride			103.2		%		50-140	14-OCT-21
MTBE			122.1		%		50-140	14-OCT-21
m+p-Xylenes			136.4		%		50-140	14-OCT-21
Methyl Ethyl Ketone			126.6		%		50-140	14-OCT-21
Methyl Isobutyl Keton	е		122.3		%		50-140	14-OCT-21
o-Xylene			128.3		%		50-140	14-OCT-21
Styrene			117.9		%		50-140	14-OCT-21
Tetrachloroethylene			112.8		%		50-140	14-OCT-21
Toluene			120.0		%		50-140	14-OCT-21
trans-1,2-Dichloroethy	ylene		114.0		%		50-140	14-OCT-21
trans-1,3-Dichloropro	pene		135.0		%		50-140	14-OCT-21
Trichloroethylene			96.2		%		50-140	14-OCT-21
Trichlorofluoromethar	ne		128.1		%		50-140	14-OCT-21
Vinyl chloride			106.3		%		50-140	14-OCT-21
-								

COMMENTS: Matrix spike recovery was above ALS DQO. Non-detect sample results are considered reliable. Other results, if reported, have been qualified.

Workorder: L2648566 Report Date: 12-NOV-21

Client: G2S ENVIRONMENTAL CONSULTING, INC. Page 24 of 24

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Legend:

CVS

LCSD

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample SRM Standard Reference Material MS Matrix Spike **MSD** Matrix Spike Duplicate Average Desorption Efficiency ADE Method Blank MB IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification

Sample Parameter Qualifier Definitions:

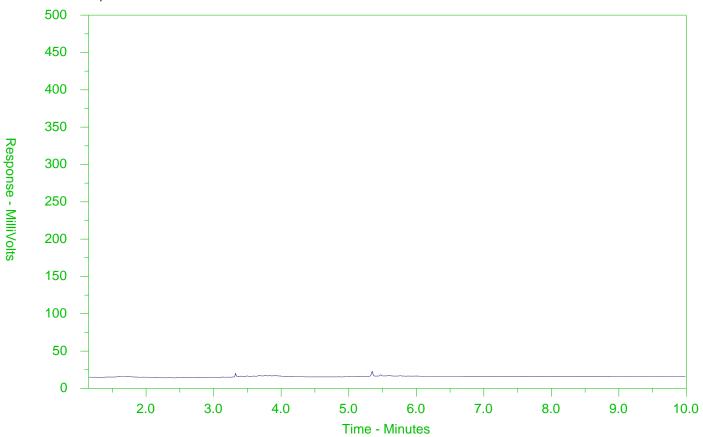
Calibration Verification Standard

Laboratory Control Sample Duplicate

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

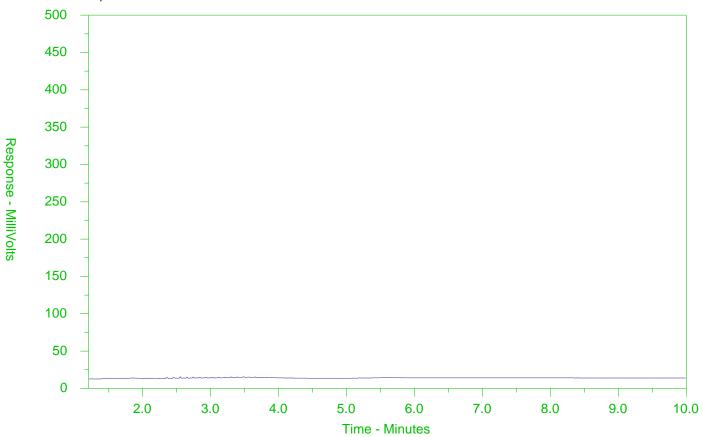

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Sample ID: L2648566-1 Client Sample ID: BH105 SS1

← -F2-	→←	—F3—→ ← —F4—	>
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067⁰F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease
←	-Diesel/Je	t Fuels→	

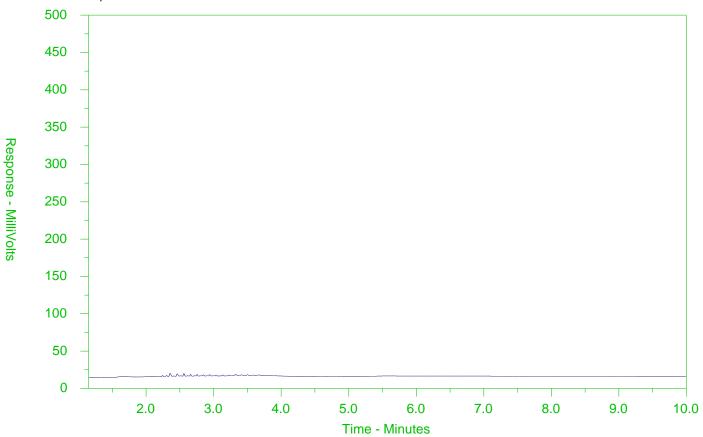

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2648566-2 Client Sample ID: BH110 SS4

← -F2-	→←	—F3—→ ← —F4—	>
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067⁰F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease
←	-Diesel/Je	t Fuels→	

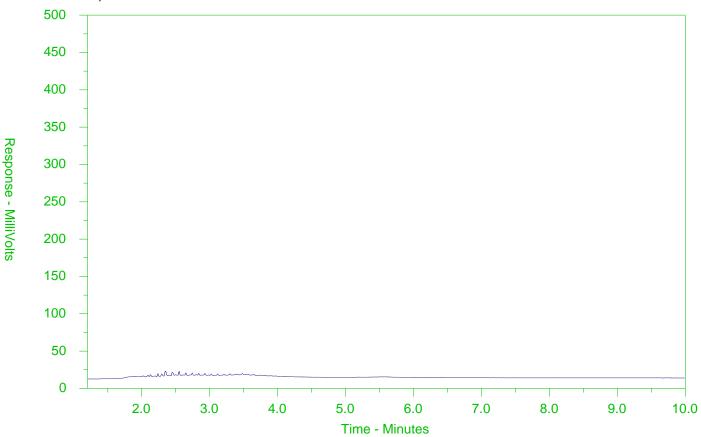

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2648566-3 Client Sample ID: BH112 SS4

← -F2-	→-	—F3—→←—F4—	>
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease-
←	-Diesel/Je	et Fuels→	


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2648566-4 Client Sample ID: BH122 SS5

← -F2-	→←	—F3—→ ← —F4—	>
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067⁰F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease
←	-Diesel/Je	t Fuels→	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

(lab use only)

COC Number: 14 -

Page ___1 of ___1

	www.aisglobai.com								COL A COL									
Report To				Report Forma	t / Distribution		T	Sel	ect Ser	vice Lev	el Belov	v (Rush	Turnarou	und Time	(TAT) is not	available	for all te	sts)
Company:	G2S Environmental		Select Report Fo	rmat: PD	F Z EXCEL	✓ EDD (DIGITAL)	R	✓ Re	gular (S	tandard ⁻	TAT if re	ceived by	3 pm -	business	days)			
Contact:	Dana Haslett		Quality Control (QC) Report with F	Report	▼ Yes	No	Pric	ority (2-	4 bus. da	ays if rec	eived by	3pm) 5	0% surcha	arge - conta	t ALS to	confirm 7	AT .
Address:	4361 Harvester Road		✓ Criteria on Repo	t - provide details be	ow if box checked		E	Em	ergency	/ (1-2 bu:	s. days it	f received	l by 3pn	n) 100% s	surcharge - o	ontact AL	S to con	firm TAT
	Burlington, ON		Select Distributio	n: 🕡	EMAIL MAIL	FAX	E2	Sar	ne day	or weeke	end emer	gency - o	ontact /	ALS to cor	nfirm TAT ar	d surchar	ge	
Phone:	905-331-3735		Email 1 or Fax	lanah@g2sconsu	Iting.com		Spec	ify Dat	e Req	uired fo	r E2,E	or P:						
			Email 2		11/22							Ana	lysis	Reques	t			
nvoice To	Same as Report To	Yes _ No		Invoice D	stribution			Indi	cate Filt	ered (F),	, Presen	/ed (P) o	Filtere	d and Pre	served (F/P	below		
	Copy of Invoice with Report	Yes No	Select Invoice Di	stribution:	EMAIL MA	IL												
Company:			Email 1 or Fax				Ó	>										
Contact:			Email 2				Inara											SIS
	Project Information	1	Oil	and Gas Require	d Fields (client	use)	+											aine
ALS Quote #:	Standing Offer		Approver ID:		Cost Center:					100		ĺ						Cont
Job #:	G2S21366		GL Account:		Routing Code:		100											of C
PO / AFE:	Hurontario/Poplar	20	Activity Code:				もも											per
LSD:		M)	Location:			Att to be an about the said	Ž											Number of Containers
ALS Lab Wo	rk Order# (lab use only)		ALS Contact:	Mathy M	Sampler:	DB	1		BTEX									_
ALS Sample # (lab use only)		ication and/or Coordinates on will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	GP We	PAHs	PHCs +	VOCs								
	BH105 SS1			01-Oct	am	Soil	1	1	1									4
	BH110 SS4			01-Oct	am	soil	1/		/			\neg	-			†		4
	BH112 SS4			30-Sep	pm	soil	V	/	1				-	+		+		4
							1		/	/			-	+		+		4
	BH122 SS5			30-Sep	, bw	soil	-		-				_			-		
							1						-			+		
				1		 							-			+		
		direction of the second	46.73				ļ							_	-			
													HOLES TOWARD					
Drinking	Water (DW) Samples ¹ (client use	Special Ir	structions / Specif	y Criteria to add o	n report (client L	lse)	_		•	SAMPL	E COI				ΈD (lab ι			
	en from a Regulated DW System?	Table 2 SCS ICC					Froze			님				servatio			No	무기
	T Yes	Table 2 SCS ICC						acks ng Initi		ZI 	No	Пο	Sustod	y seal ir	ntact Ye	sЦ	No	
Are samples for	human drinking water use?						INII	TIAL CO	OLER	TEMPER	RATURE	s°C		FINAL	COOLER T	EMPERA	TURES	C
	☐ Yes ☐ No												13	-3				
	SHIPMENT RELEASE (client u	se)	INITIAL SH	IIPMENT RECEF		nly)				FIN	AL SH	IPMEN	TREC	EPTION	V (lab use	only)		
Released by:	Date: Oct 6,2	Time: Receiv	ed by	50 6	Date:	Time:	Rece	eived b	y: 1	ſ.			C	ate:	obh Tin		·\o`	
REEER TO BAC	K PAGE FOR ALS LOCATIONS AND S	AMPLING INFORMATION		\\/L	ITE - LABORATO	BY COPY YEL	LOW -	CLIEN	IT COE	OV.				NA-FM-C	0326e v09 Front/04			

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

G2S ENVIRONMENTAL CONSULTING, INC. Date Received: 25-OCT-21

ATTN: DANA HASLETT Report Date: 12-NOV-21 08:49 (MT)

4361 Harvester Road Version: FINAL REV. 2

Unit 12

BURLINGTON ON L7L 5M4 Client Phone: 905-331-3735

Certificate of Analysis

Lab Work Order #: L2655585

Project P.O. #: HURONTARIO/POPLAR

Job Reference: G2S21366

C of C Numbers: Legal Site Desc:

Mathy Mahadeya Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 2 of 15

12-NOV-21 08:49 (MT)

Summary of Guideline Exceedances

Guideline
ALS ID Client ID Grouping Analyte Result Guideline Limit Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Soil-Ind/Com/Commu Property Use (Fine)

(No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

(No parameter exceedances)

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 3 of 15

12-NOV-21 08:49 (MT)

Physical Tests - SOIL

			Lab ID	L2655585-1	L2655585-2	L2655585-3	L2655585-4	L2655585-5
		Sample	e Date	21-OCT-21	22-OCT-21	21-OCT-21	21-OCT-21	22-OCT-21
		Sam	ple ID	BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
Analyte	Unit	Guide #1	Limits #2					
7								
Conductivity	m C/am	4 4	0.7				0.470	
Conductivity	mS/cm	1.4	0.7	0.152	0.247	0.298	0.178	0.131
Conductivity % Moisture	mS/cm %	1.4	0.7	0.152 11.0	0.247 19.0	0.298 18.4	0.178 15.5	0.131 19.3

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 4 of 15

12-NOV-21 08:49 (MT)

Cyanides - SOIL

		Sample	Lab ID e Date ple ID	L2655585-1 21-OCT-21 BH102 SS2	L2655585-2 22-OCT-21 BH104 SS1	L2655585-3 21-OCT-21 BH108 SS1	L2655585-4 21-OCT-21 BH109 SS3	L2655585-5 22-OCT-21 BH117 SS2
Analyte	Unit	Guide #1	Limits #2					

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine) Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 5 of 15

12-NOV-21 08:49 (MT)

Saturated Paste Extractables - SOIL

			Lab ID	L2655585-1	L2655585-2	L2655585-3	L2655585-4	L2655585-5
		Sampl	e Date	21-OCT-21	22-OCT-21	21-OCT-21	21-OCT-21	22-OCT-21
		San	nple ID	BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
		Guide	Limits					
Analyte	Unit	#1	#2					
SAR	SAR	12	5	0.28	0.18	0.20	0.76	0.29
Calcium (Ca)	mg/L	-	-	14.2	29.4	30.8	16.6	19.0
Magnesium (Mg)	mg/L	-	-	2.07	2.31	2.64	4.48	2.34
Sodium (Na)	mg/L	-	-	4.20	3.70	4.21	13.6	5.03

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)

Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 6 of 15

12-NOV-21 08:49 (MT)

Metals - SOIL

			Lab ID	L2655585-1	L2655585-2	L2655585-3	L2655585-4	L2655585-5
			e Date	21-OCT-21	22-OCT-21	21-OCT-21	21-OCT-21	22-OCT-21
		Sam	ple ID	BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
Analyte	Unit	Guide #1	Limits #2					
Antimony (Sb)	ug/g	50	1.3	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	ug/g	18	18	7.7	4.2	2.7	4.5	5.3
Barium (Ba)	ug/g	670	220	33.0	56.3	38.9	54.1	58.7
Beryllium (Be)	ug/g	10	2.5	<0.50	0.57	<0.50	0.57	0.63
Boron (B)	ug/g	120	36	14.4	12.5	7.2	14.9	16.6
Boron (B), Hot Water Ext.	ug/g	2	1.5	<0.10	0.22	0.36	0.35	0.25
Cadmium (Cd)	ug/g	1.9	1.2	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	ug/g	160	70	13.7	21.0	15.5	19.9	23.0
Cobalt (Co)	ug/g	100	22	7.1	8.9	5.1	9.5	10.9
Copper (Cu)	ug/g	300	92	38.2	15.5	8.2	18.0	21.0
Lead (Pb)	ug/g	120	120	8.6	8.8	8.4	6.0	6.6
Mercury (Hg)	ug/g	20	0.27	0.0199	0.0327	0.0301	0.0094	0.0113
Molybdenum (Mo)	ug/g	40	2	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel (Ni)	ug/g	340	82	15.0	19.0	10.6	21.8	23.6
Selenium (Se)	ug/g	5.5	1.5	<1.0	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	50	0.5	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	ug/g	3.3	1	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	33	2.5	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	86	86	20.8	29.2	25.5	29.0	33.1
Zinc (Zn)	ug/g	340	290	27.9	47.7	29.1	37.5	42.4

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)

Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 7 of 15

12-NOV-21 08:49 (MT)

Speciated Metals - SOIL

-			Lab ID	L2655585-1	L2655585-2	L2655585-3	L2655585-4	L2655585-5
		Sample		21-OCT-21	22-OCT-21	21-OCT-21	21-OCT-21	22-OCT-21
			ple ID	BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
		Guide	Limits					
Analyte	Unit	#1	#2					

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine) Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 8 of 15

12-NOV-21 08:49 (MT)

Volatile Organic Compounds - SOIL

			Lab ID	L2655585-1	L2655585-2 22-OCT-21	L2655585-3 21-OCT-21	L2655585-4 21-OCT-21	L2655585-5 22-OCT-21
		Sample	ple ID	21-OCT-21 BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
		Oum	pio ib	511102 002	511101 001	211100 001	D11100 CC0	B11117 002
		0						
Analyte	Unit	Guide #1	#2					
Acetone	ug/g	28	0.5				<0.50	-
Benzene	ug/g	0.4	0.02	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Bromodichloromethane	ug/g	1.9	0.05				< 0.050	
Bromoform	ug/g	1.7	0.05				< 0.050	
Bromomethane	ug/g	0.05	0.05				< 0.050	
Carbon tetrachloride	ug/g	0.71	0.05				< 0.050	
Chlorobenzene	ug/g	2.7	0.05				< 0.050	
Dibromochloromethane	ug/g	2.9	0.05				< 0.050	
Chloroform	ug/g	0.18	0.05				< 0.050	
1,2-Dibromoethane	ug/g	0.05	0.05				< 0.050	
1,2-Dichlorobenzene	ug/g	1.7	0.05				< 0.050	
1,3-Dichlorobenzene	ug/g	12	0.05				< 0.050	
1,4-Dichlorobenzene	ug/g	0.57	0.05				< 0.050	
Dichlorodifluoromethane	ug/g	25	0.05				< 0.050	
1,1-Dichloroethane	ug/g	0.6	0.05				< 0.050	
1,2-Dichloroethane	ug/g	0.05	0.05				<0.050	
1,1-Dichloroethylene	ug/g	0.48	0.05				< 0.050	
cis-1,2-Dichloroethylene	ug/g	2.5	0.05				< 0.050	
trans-1,2-Dichloroethylene	ug/g	2.5	0.05				<0.050	
Methylene Chloride	ug/g	2	0.05				<0.050	
1,2-Dichloropropane	ug/g	0.68	0.05				< 0.050	
cis-1,3-Dichloropropene	ug/g	-	-				< 0.030	
trans-1,3-Dichloropropene	ug/g	-	-				< 0.030	
1,3-Dichloropropene (cis & trans)	ug/g	0.081	0.05				<0.042	
Ethylbenzene	ug/g	1.6	0.05	<0.018	<0.018	<0.018	<0.018	<0.018
n-Hexane	ug/g	88	0.05				<0.050	
Methyl Ethyl Ketone	ug/g	88	0.5				<0.50	
Methyl Isobutyl Ketone	ug/g	210	0.5				<0.50	
MTBE	ug/g	2.3	0.05				<0.050	
Styrene	ug/g	43	0.05				< 0.050	

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 9 of 15

12-NOV-21 08:49 (MT)

Volatile Organic Compounds - SOIL

Volatile Organic Compounds								
			ab ID	L2655585-1	L2655585-2	L2655585-3	L2655585-4	L2655585-5
		Sample		21-OCT-21	22-OCT-21	21-OCT-21	21-OCT-21	22-OCT-21
		Sam	ple ID	BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
		Guide	Limits					
Analyte	Unit	#1	#2					
1,1,1,2-Tetrachloroethane	ug/g	0.11	0.05				<0.050	
1,1,2,2-Tetrachloroethane	ug/g	0.094	0.05				<0.050	
Tetrachloroethylene	ug/g	2.5	0.05				<0.050	
Toluene	ug/g	9	0.2	<0.080	<0.080	<0.080	<0.080	<0.080
1,1,1-Trichloroethane	ug/g	12	0.05				<0.050	
1,1,2-Trichloroethane	ug/g	0.11	0.05				<0.050	
Trichloroethylene	ug/g	0.61	0.05				<0.010	
Trichlorofluoromethane	ug/g	5.8	0.25				<0.050	
Vinyl chloride	ug/g	0.25	0.02				<0.020	
o-Xylene	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020
m+p-Xylenes	ug/g	-	-	<0.030	< 0.030	< 0.030	<0.030	< 0.030
Xylenes (Total)	ug/g	30	0.05	<0.050	< 0.050	<0.050	<0.050	<0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	101.7	92.4	93.4	81.8	102.0
Surrogate: 1,4-Difluorobenzene	%	-	-	112.4	99.5	104.4	94.9	102.9

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)

Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 10 of 15

12-NOV-21 08:49 (MT)

Hydrocarbons - SOIL

riyarooarbons ooiL								
		L	_ab ID	L2655585-1	L2655585-2	L2655585-3	L2655585-4	L2655585-5
		Sample	e Date	21-OCT-21	22-OCT-21	21-OCT-21	21-OCT-21	22-OCT-21
		Sam	ple ID	BH102 SS2	BH104 SS1	BH108 SS1	BH109 SS3	BH117 SS2
		Guide	Limits					
Analyte	Unit	#1	#2					
F1 (C6-C10)	ug/g	65	25	<5.0	<5.0	<5.0	<5.0	<5.0
F1-BTEX	ug/g	65	25	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10-C16)	ug/g	250	10	<10	<10	<10	<10	<10
F2-Naphth	ug/g	-	-	<10				<10
F3 (C16-C34)	ug/g	2500	240	<50	<50	<50	<50	<50
F3-PAH	ug/g	-	-	<50				<50
F4 (C34-C50)	ug/g	6600	120	<50	<50	<50	<50	<50
Total Hydrocarbons (C6-C50)	ug/g	-	-	<72	<72	<72	<72	<72
Chrom. to baseline at nC50	ppm	-	-	YES	YES	YES	YES	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	98.7	99.0	92.8	97.8	98.0
Surrogate: 3,4-Dichlorotoluene	%	-	-	106.8	86.4	103.3	83.8	88.7

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....

Job Reference: G2S21366

PAGE 11 of 15

12-NOV-21 08:49 (MT)

Polycyclic Aromatic Hydrocarbons - SOIL

Lab ID	L2655585-1	L2655585-5
Sample Date	21-OCT-21	22-OCT-21
Sample ID	BH102 SS2	BH117 SS2

		Guide			
Analyte	Unit	#1	#2		
Acenaphthene	ug/g	29	0.072	<0.050	<0.050
Acenaphthylene	ug/g	0.17	0.093	<0.050	<0.050
Anthracene	ug/g	0.74	0.22	<0.050	<0.050
Benzo(a)anthracene	ug/g	0.96	0.36	<0.050	<0.050
Benzo(a)pyrene	ug/g	0.3	0.3	<0.050	<0.050
Benzo(b&j)fluoranthene	ug/g	0.96	0.47	<0.050	<0.050
Benzo(g,h,i)perylene	ug/g	9.6	0.68	<0.050	<0.050
Benzo(k)fluoranthene	ug/g	0.96	0.48	<0.050	<0.050
Chrysene	ug/g	9.6	2.8	<0.050	<0.050
Dibenz(a,h)anthracene	ug/g	0.1	0.1	<0.050	<0.050
Fluoranthene	ug/g	9.6	0.69	<0.050	<0.050
Fluorene	ug/g	69	0.19	<0.050	<0.050
Indeno(1,2,3-cd)pyrene	ug/g	0.95	0.23	<0.050	<0.050
1+2-Methylnaphthalenes	ug/g	42	0.59	<0.042	<0.042
1-Methylnaphthalene	ug/g	42	0.59	<0.030	<0.030
2-Methylnaphthalene	ug/g	42	0.59	<0.030	<0.030
Naphthalene	ug/g	28	0.09	<0.013	<0.013
Phenanthrene	ug/g	16	0.69	<0.046	<0.046
Pyrene	ug/g	96	1	<0.050	< 0.050
Surrogate: 2-Fluorobiphenyl	%	-	-	80.5	83.2
Surrogate: d14-Terphenyl	%	-	-	91.3	91.7

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Fine)
Guide Limit #2: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2655585 CONT'D....
Job Reference: G2S21366
PAGE 12 of 15
12-NOV-21 08:49 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

BTX-511-HS-WT

Soil

BTEX-O.Reg 153/04 (July 2011)

SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CN-WAD-R511-WT

Soil

Cyanide (WAD)-O.Reg 153/04 (July

MOE 3015/APHA 4500CN I-WAD

2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-WT

Soil

Hexavalent Chromium in Soil

SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT

Soil

Conductivity (EC)

MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT

Soil

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

L2655585 CONT'D....
Job Reference: G2S21366
PAGE 13 of 15
12-NOV-21 08:49 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

L2655585 CONT'D....
Job Reference: G2S21366
PAGE 14 of 15
12-NOV-21 08:49 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil ABN-Calculated Parameters SW846 8270

MOISTURE-WT Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

PAH-511-WT Soil PAH-O.Reg 153/04 (July 2011) SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Soil
 VOC-O.Reg 153/04 (July 2011)
 SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

L2655585 CONT'D....
Job Reference: G2S21366
PAGE 15 of 15
12-NOV-21 08:49 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2655585 Report Date: 12-NOV-21 Page 1 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R5632610								
WG3648198-4 DUP Boron (B), Hot Water E	xt.	L2655050-2 0.15	0.15		ug/g	1.0	30	29-OCT-21
WG3648198-2 IRM Boron (B), Hot Water E	xt.	WT SAR4	106.5		%		70-130	29-OCT-21
WG3648198-3 LCS Boron (B), Hot Water E	xt.		106.0		%		70-130	29-OCT-21
WG3648198-1 MB Boron (B), Hot Water E	xt.		<0.10		ug/g		0.1	29-OCT-21
Batch R5632620								
WG3648208-4 DUP Boron (B), Hot Water E	xt.	L2655244-7 0.12	0.12		ug/g	5.3	30	29-OCT-21
WG3648208-2 IRM Boron (B), Hot Water E	xt.	WT SAR4	107.2		%		70-130	29-OCT-21
WG3648208-3 LCS Boron (B), Hot Water E	xt.		107.0		%		70-130	29-OCT-21
WG3648208-1 MB Boron (B), Hot Water E	xt.		<0.10		ug/g		0.1	29-OCT-21
BTX-511-HS-WT	Soil							
Batch R5630015								
WG3646316-4 DUP Benzene		WG3646316-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	28-OCT-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	28-OCT-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	28-OCT-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	28-OCT-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	28-OCT-21
WG3646316-2 LCS Benzene			97.6		%		70-130	28-OCT-21
Ethylbenzene			97.7		%		70-130	28-OCT-21
m+p-Xylenes			98.6		%		70-130	28-OCT-21
o-Xylene			121.0		%		70-130	28-OCT-21
Toluene			109.3		%		70-130	28-OCT-21
WG3646316-1 MB Benzene			<0.0068		ug/g		0.0068	28-OCT-21
Ethylbenzene			<0.018		ug/g		0.018	28-OCT-21
m+p-Xylenes			<0.030		ug/g		0.03	28-OCT-21
o-Xylene			<0.020		ug/g		0.02	28-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 2 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5630015 WG3646316-1 MB Toluene			<0.080		ug/g		0.08	28-OCT-21
Surrogate: 1,4-Difluorob	enzene		110.8		%		50-140	28-OCT-21
Surrogate: 4-Bromofluor	obenzene		102.0		%		50-140	28-OCT-21
WG3646316-5 MS		WG3646316-3						
Benzene			104.5		%		60-140	28-OCT-21
Ethylbenzene			98.8		%		60-140	28-OCT-21
m+p-Xylenes			100.5		%		60-140	28-OCT-21
o-Xylene			102.1		%		60-140	28-OCT-21
Toluene			104.1		%		60-140	28-OCT-21
CN-WAD-R511-WT	Soil							
Batch R5629606								
WG3646271-3 DUP Cyanide, Weak Acid Dis	s	L2655244-25 <0.50	<0.50	RPD-NA	ug/g	N/A	35	28-OCT-21
WG3646271-2 LCS Cyanide, Weak Acid Dis	s		99.7		%		80-120	27-OCT-21
WG3646271-1 MB Cyanide, Weak Acid Dis	s		<0.050		ug/g		0.05	27-OCT-21
WG3646271-4 MS Cyanide, Weak Acid Dis	s	L2655244-25	104.5		%		70-130	28-OCT-21
CR-CR6-IC-WT	Soil							
Batch R5633776								
WG3646278-4 CRM Chromium, Hexavalent		WT-SQC012	86.8		%		70-130	01-NOV-21
WG3646278-3 DUP Chromium, Hexavalent		L2655244-1 0.40	0.41		ug/g	1.8	35	01-NOV-21
WG3646278-2 LCS Chromium, Hexavalent			92.2		%		80-120	01-NOV-21
WG3646278-1 MB Chromium, Hexavalent			<0.20		ug/g		0.2	01-NOV-21
EC-WT	Soil							
Batch R5634003								
WG3648199-4 DUP Conductivity		WG3648199-3 0.250	0.251		mS/cm	0.4	20	01-NOV-21
WG3648199-2 IRM Conductivity		WT SAR4	110.3		%		70-130	01-NOV-21
WG3650057-1 LCS								

Workorder: L2655585 Report Date: 12-NOV-21 Page 3 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Soil							
Batch R	634003								
WG3650057-1 Conductivity	LCS			97.0		%		90-110	01-NOV-21
WG3648199-1 Conductivity	MB			<0.0040		mS/cm		0.004	01-NOV-21
Batch R	634303								
WG3648212-5 Conductivity	DUP		WG3648212-4 0.134	0.145		mS/cm	7.9	20	02-NOV-21
WG3648212-2 Conductivity	IRM		WT SAR4	107.0		%		70-130	02-NOV-21
WG3650461-1 Conductivity	LCS			99.2		%		90-110	02-NOV-21
WG3648212-1 Conductivity	МВ			<0.0040		mS/cm		0.004	02-NOV-21
F1-HS-511-WT		Soil							
Batch R	630015								
WG3646316-4 F1 (C6-C10)	DUP		WG3646316-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	28-OCT-21
WG3646316-2 F1 (C6-C10)	LCS			104.4		%		80-120	28-OCT-21
WG3646316-5 F1 (C6-C10)	MS		WG3646316-3	102.1		%		60-140	28-OCT-21
	632698			-				00 110	20 001 21
WG3647312-4	DUP		WG3647312-3						
F1 (C6-C10)			<5.0	<5.0	RPD-NA	ug/g	N/A	30	29-OCT-21
WG3647312-2 F1 (C6-C10)	LCS			97.8		%		80-120	29-OCT-21
WG3647312-1 F1 (C6-C10)	МВ			<5.0		ug/g		5	29-OCT-21
Surrogate: 3,4-	Dichloroto	oluene		83.3		%		60-140	29-OCT-21
WG3647312-5 F1 (C6-C10)			WG3647312-3	106.8		%		60-140	29-OCT-21
F2-F4-511-WT		Soil		-				00 170	
	631284								
WG3646254-3	DUP		WG3646254-5						
F2 (C10-C16)			<10	<10	RPD-NA	ug/g	N/A	30	28-OCT-21
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	28-OCT-21
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	28-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 4 of 19

G2S ENVIRONMENTAL CONSULTING, INC. Client:

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT		Soil							
Batch R5	631284								
WG3646254-2 F2 (C10-C16)	LCS			105.0		%		80-120	28-OCT-21
F3 (C16-C34)				105.2		%		80-120	28-OCT-21
F4 (C34-C50)				94.6		%		80-120	28-OCT-21
WG3646254-1 F2 (C10-C16)	МВ			<10		ug/g		10	28-OCT-21
F3 (C16-C34)				<50		ug/g		50	28-OCT-21
F4 (C34-C50)				<50		ug/g		50	28-OCT-21
Surrogate: 2-Bro	omobenz	otrifluoride		102.3		%		60-140	28-OCT-21
WG3646254-4	MS		WG3646254-5						
F2 (C10-C16)				90.2		%		60-140	28-OCT-21
F3 (C16-C34)				91.4		%		60-140	28-OCT-21
F4 (C34-C50)				85.9		%		60-140	28-OCT-21
HG-200.2-CVAA-W	Т	Soil							
Batch R5	632511								
WG3648193-2 Mercury (Hg)	CRM		WT-SS-2	110.0		%		70-130	29-OCT-21
WG3648193-6 Mercury (Hg)	DUP		WG3648193-5 0.0176	0.0150		ug/g	16	40	29-OCT-21
WG3648193-3 Mercury (Hg)	LCS			111.0		%		80-120	29-OCT-21
WG3648193-1 Mercury (Hg)	МВ			<0.0050		mg/kg		0.005	29-OCT-21
	632513								
WG3648213-2 Mercury (Hg)	CRM		WT-SS-2	104.9		%		70-130	29-OCT-21
WG3648213-7 Mercury (Hg)	DUP		WG3648213-6 0.0113	0.0103		ug/g	9.0	40	29-OCT-21
WG3648213-3 Mercury (Hg)	LCS			111.0		%		80-120	29-OCT-21
WG3648213-1 Mercury (Hg)	МВ			<0.0050		mg/kg		0.005	29-OCT-21
MET-200.2-CCMS-\	WT	Soil							
Batch R5 WG3648193-2 Antimony (Sb)	633958 CRM		WT-SS-2	87.6		%		70-130	01-NOV-21
Arsenic (As)				99.8		%		70-130	01-NOV-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 5 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5633958								
WG3648193-2 CRM		WT-SS-2			0/			
Barium (Ba)			101.1		%		70-130	01-NOV-21
Beryllium (Be)			96.4		%		70-130	01-NOV-21
Boron (B)			7.7		mg/kg		3.5-13.5	01-NOV-21
Cadmium (Cd)			99.9		%		70-130	01-NOV-21
Chromium (Cr)			95.3		%		70-130	01-NOV-21
Cobalt (Co)			97.8		%		70-130	01-NOV-21
Copper (Cu)			101.9 96.2		%		70-130	01-NOV-21
Lead (Pb) Molybdenum (Mo)			96.2 96.4		% %		70-130	01-NOV-21
Nickel (Ni)			98.6		%		70-130	01-NOV-21
Selenium (Se)							70-130	01-NOV-21
Silver (Ag)			0.12 78.8		mg/kg %		0-0.34	01-NOV-21
Thallium (TI)			0.069		mg/kg		70-130	01-NOV-21
Uranium (U)			93.9		//////////////////////////////////////			9 01-NOV-21
Vanadium (V)			95.9 95.8		%		70-130	01-NOV-21
Zinc (Zn)			93.8		%		70-130 70-130	01-NOV-21
WG3648193-6 DUP		WG3648193-			70		70-130	01-NOV-21
Antimony (Sb)		<0.10	<0.10	RPD-NA	ug/g	N/A	30	01-NOV-21
Arsenic (As)		2.83	3.04		ug/g	7.0	30	01-NOV-21
Barium (Ba)		92.4	105		ug/g	13	40	01-NOV-21
Beryllium (Be)		0.54	0.51		ug/g	4.1	30	01-NOV-21
Boron (B)		16.5	15.1		ug/g	9.4	30	01-NOV-21
Cadmium (Cd)		0.058	0.062		ug/g	7.7	30	01-NOV-21
Chromium (Cr)		23.7	25.4		ug/g	6.5	30	01-NOV-21
Cobalt (Co)		7.75	8.36		ug/g	7.5	30	01-NOV-21
Copper (Cu)		18.3	19.7		ug/g	7.6	30	01-NOV-21
Lead (Pb)		6.33	6.19		ug/g	2.3	40	01-NOV-21
Molybdenum (Mo)		0.50	0.49		ug/g	2.2	40	01-NOV-21
Nickel (Ni)		17.8	19.1		ug/g	7.0	30	01-NOV-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	01-NOV-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	01-NOV-21
Thallium (TI)		0.128	0.127		ug/g	1.3	30	01-NOV-21
Uranium (U)		0.771	0.749		ug/g	2.8	30	01-NOV-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 6 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5633958								
WG3648193-6 DUP		WG3648193-5						
Vanadium (V)		31.5	33.2		ug/g	5.4	30	01-NOV-21
Zinc (Zn)		31.4	33.5		ug/g	6.6	30	01-NOV-21
WG3648193-4 LCS			105.5		0/			
Antimony (Sb)			105.5		%		80-120	01-NOV-21
Arsenic (As)			106.9		%		80-120	01-NOV-21
Barium (Ba)			113.2		%		80-120	01-NOV-21
Beryllium (Be)			104.2		%		80-120	01-NOV-21
Boron (B)			100.6		%		80-120	01-NOV-21
Cadmium (Cd)			102.0		%		80-120	01-NOV-21
Chromium (Cr)			104.3		%		80-120	01-NOV-21
Cobalt (Co)			104.9		%		80-120	01-NOV-21
Copper (Cu)			103.6		%		80-120	01-NOV-21
Lead (Pb)			104.3		%		80-120	01-NOV-21
Molybdenum (Mo)			106.1		%		80-120	01-NOV-21
Nickel (Ni)			103.2		%		80-120	01-NOV-21
Selenium (Se)			103.4		%		80-120	01-NOV-21
Silver (Ag)			101.5		%		80-120	01-NOV-21
Thallium (TI)			103.5		%		80-120	01-NOV-21
Uranium (U)			101.3		%		80-120	01-NOV-21
Vanadium (V)			106.3		%		80-120	01-NOV-21
Zinc (Zn)			96.6		%		80-120	01-NOV-21
WG3648193-1 MB					,,		0.4	
Antimony (Sb)			<0.10		mg/kg		0.1	01-NOV-21
Arsenic (As)			<0.10		mg/kg		0.1	01-NOV-21
Barium (Ba)			<0.50		mg/kg		0.5	01-NOV-21
Beryllium (Be)			<0.10		mg/kg		0.1	01-NOV-21
Boron (B)			<5.0		mg/kg		5	01-NOV-21
Cadmium (Cd)			<0.020		mg/kg		0.02	01-NOV-21
Chromium (Cr)			<0.50		mg/kg		0.5	01-NOV-21
Cobalt (Co)			<0.10		mg/kg		0.1	01-NOV-21
Copper (Cu)			<0.50		mg/kg		0.5	01-NOV-21
Lead (Pb)			<0.50		mg/kg		0.5	01-NOV-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	01-NOV-21
Nickel (Ni)			<0.50		mg/kg		0.5	01-NOV-21
i								

Workorder: L2655585 Report Date: 12-NOV-21 Page 7 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS	-WT	Soil							
Batch R	5633958								
WG3648193-1 Selenium (Se)	MB			<0.20		mg/kg		0.2	01-NOV-21
Silver (Ag)				<0.10		mg/kg		0.1	01-NOV-21
Thallium (TI)				<0.050		mg/kg		0.05	01-NOV-21
Uranium (U)				<0.050		mg/kg		0.05	01-NOV-21
Vanadium (V)				<0.20		mg/kg		0.2	01-NOV-21
Zinc (Zn)				<2.0		mg/kg		2	01-NOV-21
Batch R	5633975								
WG3648213-2	CRM		WT-SS-2						
Antimony (Sb)				105.9		%		70-130	01-NOV-21
Arsenic (As)				113.6		%		70-130	01-NOV-21
Barium (Ba)				123.2		%		70-130	01-NOV-21
Beryllium (Be)				106.5		%		70-130	01-NOV-21
Boron (B)				9.0		mg/kg		3.5-13.5	01-NOV-21
Cadmium (Cd)				119.3		%		70-130	01-NOV-21
Chromium (Cr)			112.2		%		70-130	01-NOV-21
Cobalt (Co)				115.8		%		70-130	01-NOV-21
Copper (Cu)				117.2		%		70-130	01-NOV-21
Lead (Pb)	N4=)			122.3		%		70-130	01-NOV-21
Molybdenum (IVIO)			110.9		%		70-130	01-NOV-21
Nickel (Ni)				116.2		%		70-130	01-NOV-21
Selenium (Se)				0.15 103.5		mg/kg		0-0.34	01-NOV-21
Silver (Ag) Thallium (TI)				0.085		%		70-130	01-NOV-21
Uranium (U)				103.6		mg/kg %		0.029-0.129	
Vanadium (V)				116.4		%		70-130 70-130	01-NOV-21
Zinc (Zn)				111.0		%		70-130	01-NOV-21 01-NOV-21
WG3648213-7	DUP		WG3648213-6	111.0		70		70-130	01-NOV-21
Antimony (Sb)			0.13	0.12		ug/g	7.4	30	01-NOV-21
Arsenic (As)			5.27	5.29		ug/g	0.3	30	01-NOV-21
Barium (Ba)			58.7	60.4		ug/g	2.8	40	01-NOV-21
Beryllium (Be)			0.63	0.63		ug/g	0.7	30	01-NOV-21
Boron (B)			16.6	17.7		ug/g	6.7	30	01-NOV-21
Cadmium (Cd))		0.083	0.071		ug/g	15	30	01-NOV-21
Chromium (Cr)		23.0	22.7		ug/g	1.7	30	01-NOV-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 8 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5633975								
WG3648213-7 DUP		WG3648213-6			,			
Cobalt (Co)		10.9	10.8		ug/g	1.0	30	01-NOV-21
Copper (Cu)		21.0	21.6		ug/g	2.7	30	01-NOV-21
Lead (Pb)		6.63	6.64		ug/g	0.2	40	01-NOV-21
Molybdenum (Mo)		0.36	0.35		ug/g	1.0	40	01-NOV-21
Nickel (Ni)		23.6	23.2		ug/g	1.6	30	01-NOV-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	01-NOV-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	01-NOV-21
Thallium (TI)		0.117	0.117		ug/g	0.1	30	01-NOV-21
Uranium (U)		0.609	0.596		ug/g	2.2	30	01-NOV-21
Vanadium (V)		33.1	33.5		ug/g	1.3	30	01-NOV-21
Zinc (Zn)		42.4	42.2		ug/g	0.5	30	01-NOV-21
WG3648213-4 LCS Antimony (Sb)			111.5		%		80-120	01-NOV-21
Arsenic (As)			112.7		%		80-120	01-NOV-21
Barium (Ba)			109.9		%		80-120	01-NOV-21
Beryllium (Be)			93.6		%		80-120	01-NOV-21
Boron (B)			92.3		%		80-120	01-NOV-21
Cadmium (Cd)			103.2		%		80-120	01-NOV-21
Chromium (Cr)			108.6		%		80-120	01-NOV-21
Cobalt (Co)			108.5		%		80-120	01-NOV-21
Copper (Cu)			105.4		%		80-120	01-NOV-21
Lead (Pb)			106.1		%		80-120	01-NOV-21
Molybdenum (Mo)			106.9		%		80-120	01-NOV-21
Nickel (Ni)			106.8		%		80-120	01-NOV-21
Selenium (Se)			108.1		%		80-120	01-NOV-21
Silver (Ag)			100.4		%		80-120	01-NOV-21
Thallium (TI)			108.0		%		80-120	01-NOV-21
Uranium (U)			105.9		%		80-120	01-NOV-21
Vanadium (V)			112.4		%		80-120	01-NOV-21
Zinc (Zn)			110.6		%		80-120	01-NOV-21
WG3648213-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	01-NOV-21
Arsenic (As)			<0.10		mg/kg		0.1	01-NOV-21
Barium (Ba)			<0.50		mg/kg		0.5	

Workorder: L2655585 Report Date: 12-NOV-21 Page 9 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5633975								
WG3648213-1 MB Barium (Ba)			<0.50		mg/kg		0.5	01-NOV-21
Beryllium (Be)			<0.10		mg/kg		0.1	01-NOV-21
Boron (B)			<5.0		mg/kg		5	01-NOV-21
Cadmium (Cd)			<0.020		mg/kg		0.02	01-NOV-21
Chromium (Cr)			<0.50		mg/kg		0.5	01-NOV-21
Cobalt (Co)			<0.10		mg/kg		0.1	01-NOV-21
Copper (Cu)			<0.50		mg/kg		0.5	01-NOV-21
Lead (Pb)			<0.50		mg/kg		0.5	01-NOV-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	01-NOV-21
Nickel (Ni)			< 0.50		mg/kg		0.5	01-NOV-21
Selenium (Se)			<0.20		mg/kg		0.2	01-NOV-21
Silver (Ag)			<0.10		mg/kg		0.1	01-NOV-21
Thallium (TI)			< 0.050		mg/kg		0.05	01-NOV-21
Uranium (U)			< 0.050		mg/kg		0.05	01-NOV-21
Vanadium (V)			<0.20		mg/kg		0.2	01-NOV-21
Zinc (Zn)			<2.0		mg/kg		2	01-NOV-21
MOISTURE-WT	Soil							
Batch R5629179								
WG3646281-3 DUP % Moisture		L2649331-1 4.34	4.09		%	5.9	20	28-OCT-21
WG3646281-2 LCS			100.1		0/			
% Moisture			100.1		%		90-110	28-OCT-21
WG3646281-1 MB % Moisture			<0.25		%		0.25	28-OCT-21
PAH-511-WT	Soil							
Batch R5631070								
WG3646365-3 DUP 1-Methylnaphthalene		WG3646365-5 < 0.030	3 <0.030	RPD-NA	ug/g	N/A	40	28-OCT-21
2-Methylnaphthalene		<0.030	< 0.030	RPD-NA	ug/g	N/A	40	28-OCT-21
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
= 5=5(\$/\$).55		10.000	10.000	IN DINA	~ a' a	11/7	40	20-001-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 10 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5631070								
WG3646365-3 DUP		WG3646365-5						
Benzo(b&j)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	28-OCT-21
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Dibenz(a,h)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Fluorene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	28-OCT-21
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	28-OCT-21
Pyrene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	28-OCT-21
WG3646365-2 LCS 1-Methylnaphthalene			94.2		%		50-140	28-OCT-21
2-Methylnaphthalene			91.9		%		50-140	28-OCT-21
Acenaphthene			91.4		%		50-140	28-OCT-21
Acenaphthylene			89.1		%		50-140	28-OCT-21
Anthracene			80.8		%		50-140	28-OCT-21
Benzo(a)anthracene			98.6		%		50-140	28-OCT-21
Benzo(a)pyrene			81.0		%		50-140	28-OCT-21
Benzo(b&j)fluoranthene			84.0		%		50-140	28-OCT-21
Benzo(g,h,i)perylene			90.8		%		50-140	28-OCT-21
Benzo(k)fluoranthene			90.7		%		50-140	28-OCT-21
Chrysene			97.1		%		50-140	28-OCT-21
Dibenz(a,h)anthracene			93.0		%		50-140	28-OCT-21
Fluoranthene			93.2		%		50-140	28-OCT-21
Fluorene			87.8		%		50-140	28-OCT-21
Indeno(1,2,3-cd)pyrene			86.6		%		50-140	28-OCT-21
Naphthalene			89.2		%		50-140	28-OCT-21
Phenanthrene			91.1		%		50-140	28-OCT-21
Pyrene			90.8		%		50-140	28-OCT-21
WG3646365-1 MB								
1-Methylnaphthalene			<0.030		ug/g		0.03	28-OCT-21
2-Methylnaphthalene			<0.030		ug/g		0.03	28-OCT-21
Acenaphthene			<0.050		ug/g		0.05	

Workorder: L2655585 Report Date: 12-NOV-21 Page 11 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R563107	70							
WG3646365-1 MB			<0.050				0.05	
Acenaphthene Acenaphthylene			<0.050		ug/g		0.05	28-OCT-21
Anthracene			<0.050		ug/g		0.05	28-OCT-21
			<0.050		ug/g		0.05	28-OCT-21
Benzo(a)anthracene					ug/g		0.05	28-OCT-21
Benzo(a)pyrene Benzo(b&j)fluoranthe	20		<0.050		ug/g		0.05	28-OCT-21
, ,,	ne		<0.050		ug/g			28-OCT-21
Benzo(g,h,i)perylene			<0.050		ug/g		0.05	28-OCT-21
Benzo(k)fluoranthene	•		<0.050		ug/g		0.05	28-OCT-21
Chrysene			<0.050		ug/g		0.05	28-OCT-21
Dibenz(a,h)anthracer	ie		<0.050		ug/g		0.05	28-OCT-21
Fluoranthene			<0.050		ug/g		0.05	28-OCT-21
Fluorene			<0.050		ug/g		0.05	28-OCT-21
Indeno(1,2,3-cd)pyrei	ne		<0.050		ug/g		0.05	28-OCT-21
Naphthalene			<0.013		ug/g		0.013	28-OCT-21
Phenanthrene			<0.046		ug/g		0.046	28-OCT-21
Pyrene			<0.050		ug/g		0.05	28-OCT-21
Surrogate: 2-Fluorobi			82.7		%		50-140	28-OCT-21
Surrogate: d14-Terph	ienyl		90.6		%		50-140	28-OCT-21
WG3646365-4 MS 1-Methylnaphthalene		WG3646365-5	94.1		%		50-140	28-OCT-21
2-Methylnaphthalene			90.9		%		50-140	28-OCT-21
Acenaphthene			91.9		%		50-140	28-OCT-21
Acenaphthylene			89.7		%		50-140	28-OCT-21
Anthracene			81.8		%		50-140	28-OCT-21
Benzo(a)anthracene			101.3		%		50-140	28-OCT-21
Benzo(a)pyrene			79.0		%		50-140	28-OCT-21
Benzo(b&j)fluoranthe	ne		84.2		%		50-140	28-OCT-21
Benzo(g,h,i)perylene			83.5		%		50-140	28-OCT-21
Benzo(k)fluoranthene	.		88.3		%		50-140	28-OCT-21
Chrysene			94.1		%		50-140	28-OCT-21
Dibenz(a,h)anthracer	ne		89.2		%		50-140	28-OCT-21
Fluoranthene	: -		94.5		%		50-140	28-OCT-21
Fluorene			89.8		%		50-140	28-OCT-21
Indeno(1,2,3-cd)pyrei	ne		88.1		%		50-140	28-OCT-21
11140110(1,2,0-04)py161			50.1		70		30-140	20-001-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 12 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5631070								
WG3646365-4 MS Naphthalene		WG3646365-5	86.7		%		50-140	28-OCT-21
Phenanthrene			89.0		%		50-140	28-OCT-21 28-OCT-21
Pyrene			90.8		%		50-140	28-OCT-21
-	Soil						00 140	20 001 21
PH-WT Batch R5629467	3011							
WG3646272-1 DUP		L2651876-7						
рН		7.97	7.97	J	pH units	0.00	0.3	27-OCT-21
WG3646502-1 LCS								
рН			7.07		pH units		6.9-7.1	27-OCT-21
SAR-R511-WT	Soil							
Batch R5632671								
WG3648212-5 DUP Calcium (Ca)		WG3648212-4 19.2	20.8		mg/L	8.0	30	29-OCT-21
Sodium (Na)		2.62	2.76		mg/L	5.2	30	29-OCT-21
Magnesium (Mg)		1.69	1.78		mg/L	5.2	30	29-OCT-21
WG3648212-2 IRM		WT SAR4						
Calcium (Ca)			99.3		%		70-130	29-OCT-21
Sodium (Na)			85.2		%		70-130	29-OCT-21
Magnesium (Mg)			97.4		%		70-130	29-OCT-21
WG3648212-3 LCS Calcium (Ca)			107.0		%		80-120	20 OCT 24
Sodium (Na)			107.0		%		80-120	29-OCT-21 29-OCT-21
Magnesium (Mg)			104.8		%		80-120	29-OCT-21
WG3648212-1 MB			- -				50 120	
Calcium (Ca)			<0.50		mg/L		0.5	29-OCT-21
Sodium (Na)			<0.50		mg/L		0.5	29-OCT-21
Magnesium (Mg)			<0.50		mg/L		0.5	29-OCT-21
Batch R5632939								
WG3648199-4 DUP		WG3648199-3	11 5		ma/l	0.0	20	00 OOT 64
Calcium (Ca) Sodium (Na)		11.2 28.2	11.5 28.3		mg/L mg/L	2.6	30	29-OCT-21
Magnesium (Mg)		6.36	6.36		mg/L	0.4	30	29-OCT-21
		WT SAR4	0.30		mg/L	0.0	30	29-OCT-21
WG3648199-2 IRM Calcium (Ca)		WI SAR4	96.5		%		70-130	29-OCT-21
Sodium (Na)			93.3		%		70-130	29-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 13 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

SAR-REST-WT Soil Section RS53299 WT SAR4 Magnesium (Mg) 99.1 % 70.130 28-OCT-21 RS53299 RS5326199-2 IRM Magnesium (Mg) 99.1 % 70.130 28-OCT-21 RS5326199-5 LCS RS5326199-5 LCS RS5326199-5 LCS RS5326199-1 MB RS532619-1 MB	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Magnasium (Mg) MT SAR4	SAR-R511-WT	Soil							
MG3648199-5 LCS	WG3648199-2 IRM		WT SAR4	99.1		%		70-130	29-OCT-21
Calcium (Ca)	WG3648199-5 LCS								
Magnesium (Mg) 103.6 % 80-120 29-OCT-21 WG3648199-1 MB Calcium (Ca) 0.5 29-OCT-21 Sodium (Na) -0.50 mg/L 0.5 29-OCT-21 Magnesium (Mg) -0.50 mg/L 0.5 29-OCT-21 VOC-511-HS-WT Soil Batch R5632698 WG3647312-4 DUP WG3647312-3 VOC-511-41 Magnesium (Mg) VOC-501-41 1,1,1,2-Titrachloroethane <0.050				106.3		%		80-120	29-OCT-21
WG3648199-1 MB Calcium (Ca) < 0.50	Sodium (Na)			104.4		%		80-120	29-OCT-21
Calcium (Ca) <0.50 mg/L 0.5 29-OCT-21 Sodium (Na) <0.50	Magnesium (Mg)			103.6		%		80-120	29-OCT-21
Sodium (Na)				<0.50		mg/L		0.5	29-OCT-21
Magnesium (Mg) <0.50 mg/L 0.5 29-OCT-21 VOC-511-HS-WT Soil Batch R5632698 WG3647312-4 DUP WG3647312-3 VOC-511-HS-WT Soil VOC-511-HS-WT Soil VOC-511-HS-WT Soil VOC-511-HS-WT Soil VOC-512-HS-WT Soil VOC-512-HS-WT Soil VOC-511-HS-WT Soil VOC-512-HS-WT Soil						mg/L		0.5	
Noc-511-HS-WT Soil	Magnesium (Mg)					mg/L		0.5	
Batch R5632698 WG3647312-4 DUP WG3647312-3 1.1.1,1.2-Tetrachloroethane <0.050	VOC-511-HS-WT	Soil				-			
NG3647312-4 DUP									
1,1,2,2-Tetrachloroethane <0.050			WG3647312-	3					
1,1,1-Trichloroethane <0.050	1,1,1,2-Tetrachloroetha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,1,2-Trichloroethane <0.050	1,1,2,2-Tetrachloroetha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,1-Dichloroethane <0.050	1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,1-Dichloroethylene <0.050	1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,2-Dibromoethane <0.050	1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,2-Dichlorobenzene <0.050	1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,2-Dichloroethane <0.050	1,2-Dibromoethane		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,2-Dichloropropane <0.050	1,2-Dichlorobenzene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,3-Dichlorobenzene <0.050	1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
1,4-Dichlorobenzene <0.050	1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Acetone <0.50 <0.50 RPD-NA ug/g N/A 40 29-OCT-21 Benzene <0.0068	1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Benzene <0.0068 <0.0068 RPD-NA ug/g N/A 40 29-OCT-21 Bromodichloromethane <0.050	1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Bromodichloromethane <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21 Bromoform <0.050	Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	29-OCT-21
Bromoform <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21 Bromomethane <0.050	Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	29-OCT-21
Bromomethane <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21 Carbon tetrachloride <0.050	Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Carbon tetrachloride <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21 Chlorobenzene <0.050	Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Chlorobenzene <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21 Chloroform <0.050	Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Chloroform <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21	Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
	Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
cis-1,2-Dichloroethylene <0.050 <0.050 RPD-NA ug/g N/A 40 29-OCT-21	Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
	cis-1,2-Dichloroethylene	Э	<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 14 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5632698	3							
WG3647312-4 DUP cis-1,3-Dichloropropen	e	WG3647312- <0.030	3 <0.030	RPD-NA	ug/g	N/A	40	29-OCT-21
Dibromochloromethane	Э	<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Dichlorodifluoromethar	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	29-OCT-21
n-Hexane		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Methylene Chloride		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	29-OCT-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	29-OCT-21
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	29-OCT-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	29-OCT-21
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Tetrachloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	29-OCT-21
trans-1,2-Dichloroethyl	ene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
trans-1,3-Dichloroprope	ene	<0.030	< 0.030	RPD-NA	ug/g	N/A	40	29-OCT-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	29-OCT-21
Trichlorofluoromethane	e	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	29-OCT-21
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	29-OCT-21
WG3647312-2 LCS			00.0		0/			
1,1,1,2-Tetrachloroetha			92.2		%		60-130	29-OCT-21
1,1,2,2-Tetrachloroetha	ane		92.5 90.9		%		60-130	29-OCT-21
1,1,1-Trichloroethane			90.9		%		60-130	29-OCT-21
1,1,2-Trichloroethane 1,1-Dichloroethane			97.0 81.9		% %		60-130	29-OCT-21
1,1-Dichloroethylene			81.0		%		60-130	29-OCT-21 29-OCT-21
1,2-Dibromoethane			96.0		%		60-130 70-130	29-OCT-21
1,2-Dichlorobenzene			94.5		%		70-130	29-OCT-21
1,2-Dichloroethane			87.5		%		60-130	29-OCT-21
1,2-Dichloropropane			88.3		%		70-130	29-OCT-21 29-OCT-21
1,3-Dichlorobenzene			93.1		%		70-130	29-OCT-21
1,4-Dichlorobenzene			92.0		%		70-130	29-OCT-21
Acetone			95.2		%		60-140	29-OCT-21
							00-140	20 001 21

Workorder: L2655585 Report Date: 12-NOV-21 Page 15 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5632698								
WG3647312-2 LCS			00.7		0/			
Benzene			89.7		%		70-130	29-OCT-21
Bromodichloromethane			94.8		%		50-140	29-OCT-21
Bromoform			91.8		%		70-130	29-OCT-21
Bromomethane			83.2		%		50-140	29-OCT-21
Carbon tetrachloride			87.1		%		70-130	29-OCT-21
Chlorobenzene			92.6		%		70-130	29-OCT-21
Chloroform			89.7		%		70-130	29-OCT-21
cis-1,2-Dichloroethylene			93.0		%		70-130	29-OCT-21
cis-1,3-Dichloropropene			83.5		%		70-130	29-OCT-21
Dibromochloromethane			95.8		%		60-130	29-OCT-21
Dichlorodifluoromethane)		54.6		%		50-140	29-OCT-21
Ethylbenzene			91.2		%		70-130	29-OCT-21
n-Hexane			78.0		%		70-130	29-OCT-21
Methylene Chloride			86.6		%		70-130	29-OCT-21
MTBE			90.9		%		70-130	29-OCT-21
m+p-Xylenes			89.2		%		70-130	29-OCT-21
Methyl Ethyl Ketone			93.5		%		60-140	29-OCT-21
Methyl Isobutyl Ketone			90.4		%		60-140	29-OCT-21
o-Xylene			90.0		%		70-130	29-OCT-21
Styrene			92.3		%		70-130	29-OCT-21
Tetrachloroethylene			92.0		%		60-130	29-OCT-21
Toluene			91.4		%		70-130	29-OCT-21
trans-1,2-Dichloroethyler	ne		80.7		%		60-130	29-OCT-21
trans-1,3-Dichloroproper	ne		79.2		%		70-130	29-OCT-21
Trichloroethylene			91.4		%		60-130	29-OCT-21
Trichlorofluoromethane			82.9		%		50-140	29-OCT-21
Vinyl chloride			66.6		%		60-140	29-OCT-21
WG3647312-1 MB								
1,1,1,2-Tetrachloroethan			<0.050		ug/g		0.05	29-OCT-21
1,1,2,2-Tetrachloroethan	ne		<0.050		ug/g		0.05	29-OCT-21
1,1,1-Trichloroethane			<0.050		ug/g		0.05	29-OCT-21
1,1,2-Trichloroethane			<0.050		ug/g		0.05	29-OCT-21
1,1-Dichloroethane			<0.050		ug/g		0.05	29-OCT-21
1,1-Dichloroethylene			<0.050		ug/g		0.05	29-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 16 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5632698								
WG3647312-1 MB			0.050				0.05	
1,2-Dibromoethane			<0.050		ug/g		0.05	29-OCT-21
1,2-Dichlorobenzene			<0.050		ug/g		0.05	29-OCT-21
1,2-Dichloroethane			<0.050		ug/g		0.05	29-OCT-21
1,2-Dichloropropane			<0.050		ug/g		0.05	29-OCT-21
1,3-Dichlorobenzene			<0.050		ug/g		0.05	29-OCT-21
1,4-Dichlorobenzene			<0.050		ug/g		0.05	29-OCT-21
Acetone			<0.50		ug/g		0.5	29-OCT-21
Benzene			<0.0068		ug/g		0.0068	29-OCT-21
Bromodichloromethane			<0.050		ug/g		0.05	29-OCT-21
Bromoform			<0.050		ug/g		0.05	29-OCT-21
Bromomethane			< 0.050		ug/g		0.05	29-OCT-21
Carbon tetrachloride			< 0.050		ug/g		0.05	29-OCT-21
Chlorobenzene			< 0.050		ug/g		0.05	29-OCT-21
Chloroform			< 0.050		ug/g		0.05	29-OCT-21
cis-1,2-Dichloroethylene			< 0.050		ug/g		0.05	29-OCT-21
cis-1,3-Dichloropropene			< 0.030		ug/g		0.03	29-OCT-21
Dibromochloromethane			< 0.050		ug/g		0.05	29-OCT-21
Dichlorodifluoromethane			< 0.050		ug/g		0.05	29-OCT-21
Ethylbenzene			<0.018		ug/g		0.018	29-OCT-21
n-Hexane			< 0.050		ug/g		0.05	29-OCT-21
Methylene Chloride			< 0.050		ug/g		0.05	29-OCT-21
MTBE			< 0.050		ug/g		0.05	29-OCT-21
m+p-Xylenes			< 0.030		ug/g		0.03	29-OCT-21
Methyl Ethyl Ketone			< 0.50		ug/g		0.5	29-OCT-21
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	29-OCT-21
o-Xylene			<0.020		ug/g		0.02	29-OCT-21
Styrene			< 0.050		ug/g		0.05	29-OCT-21
Tetrachloroethylene			< 0.050		ug/g		0.05	29-OCT-21
Toluene			<0.080		ug/g		0.08	29-OCT-21
trans-1,2-Dichloroethylen	ie		<0.050		ug/g		0.05	29-OCT-21
trans-1,3-Dichloropropen			<0.030		ug/g		0.03	29-OCT-21
Trichloroethylene			<0.010		ug/g		0.01	29-OCT-21
Trichlorofluoromethane			<0.050		ug/g		0.05	29-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 17 of 19

Client: G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5632	698							
WG3647312-1 M Vinyl chloride	В		0.000		/~		0.02	
•	orobonzono		<0.020		ug/g %		0.02 50-140	29-OCT-21
Surrogate: 1,4-Diflu			100.9					29-OCT-21
Surrogate: 4-Bromo		W00047040	86.0		%		50-140	29-OCT-21
WG3647312-5 M: 1,1,1,2-Tetrachloro		WG3647312-3	3 100.5		%		50-140	29-OCT-21
1,1,2,2-Tetrachloro	ethane		103.9		%		50-140	29-OCT-21
1,1,1-Trichloroethar			99.3		%		50-140	29-OCT-21
1,1,2-Trichloroethar			107.6		%		50-140	29-OCT-21
1,1-Dichloroethane			90.8		%		50-140	29-OCT-21
1,1-Dichloroethylen	e		92.7		%		50-140	29-OCT-21
1,2-Dibromoethane			107.5		%		50-140	29-OCT-21
1,2-Dichlorobenzen	e		101.1		%		50-140	29-OCT-21
1,2-Dichloroethane			98.1		%		50-140	29-OCT-21
1,2-Dichloropropan	е		97.1		%		50-140	29-OCT-21
1,3-Dichlorobenzen	е		98.0		%		50-140	29-OCT-21
1,4-Dichlorobenzen	e		97.1		%		50-140	29-OCT-21
Acetone			109.7		%		50-140	29-OCT-21
Benzene			98.7		%		50-140	29-OCT-21
Bromodichlorometh	ane		104.1		%		50-140	29-OCT-21
Bromoform			102.1		%		50-140	29-OCT-21
Bromomethane			99.9		%		50-140	29-OCT-21
Carbon tetrachloride	е		94.7		%		50-140	29-OCT-21
Chlorobenzene			99.7		%		50-140	29-OCT-21
Chloroform			98.5		%		50-140	29-OCT-21
cis-1,2-Dichloroethy	vlene		102.3		%		50-140	29-OCT-21
cis-1,3-Dichloroprop	oene		87.7		%		50-140	29-OCT-21
Dibromochlorometh	ane		106.2		%		50-140	29-OCT-21
Dichlorodifluoromet	hane		96.4		%		50-140	29-OCT-21
Ethylbenzene			97.2		%		50-140	29-OCT-21
n-Hexane			91.4		%		50-140	29-OCT-21
Methylene Chloride			96.4		%		50-140	29-OCT-21
MTBE			101.0		%		50-140	29-OCT-21
m+p-Xylenes			95.0		%		50-140	29-OCT-21
Methyl Ethyl Ketone)		109.1		%		50-140	29-OCT-21

Workorder: L2655585 Report Date: 12-NOV-21 Page 18 of 19

G2S ENVIRONMENTAL CONSULTING, INC.

4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5632698 WG3647312-5 MS		WG3647312-3						
Methyl Isobutyl Ketone			103.1		%		50-140	29-OCT-21
o-Xylene			96.3		%		50-140	29-OCT-21
Styrene			99.6		%		50-140	29-OCT-21
Tetrachloroethylene			97.7		%		50-140	29-OCT-21
Toluene			98.4		%		50-140	29-OCT-21
trans-1,2-Dichloroethyler	ne		88.5		%		50-140	29-OCT-21
trans-1,3-Dichloroproper	ne		83.3		%		50-140	29-OCT-21
Trichloroethylene			98.3		%		50-140	29-OCT-21
Trichlorofluoromethane			98.9		%		50-140	29-OCT-21
Vinyl chloride			86.5		%		50-140	29-OCT-21

Report Date: 12-NOV-21 Workorder: L2655585

G2S ENVIRONMENTAL CONSULTING, INC. Client:

> 4361 Harvester Road Unit 12 BURLINGTON ON L7L 5M4

Contact: DANA HASLETT

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample SRM Standard Reference Material MS Matrix Spike **MSD** Matrix Spike Duplicate Average Desorption Efficiency ADE Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

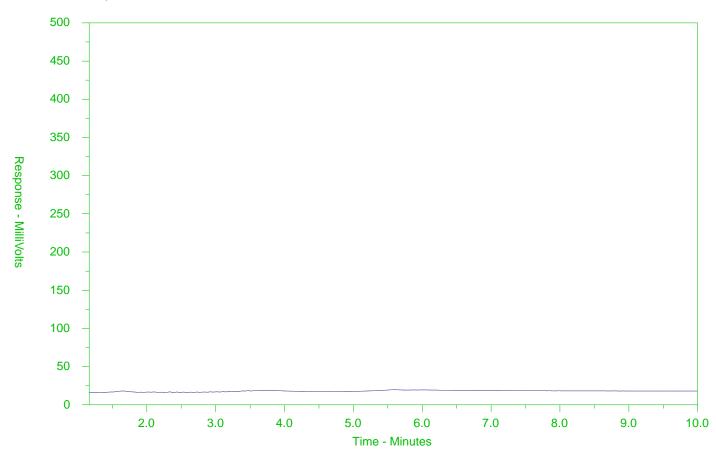
Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

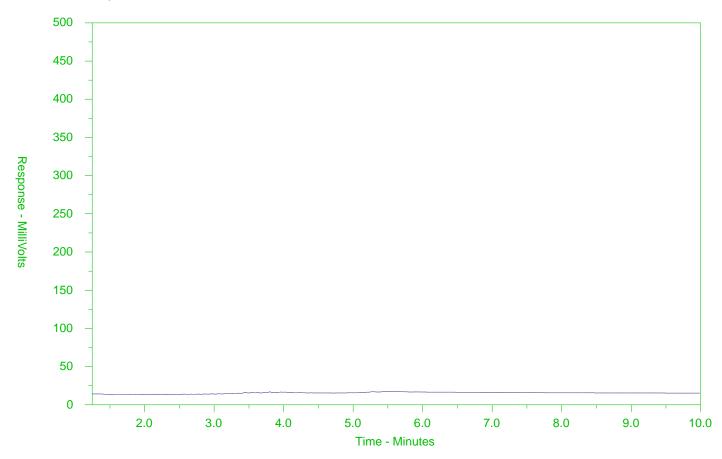
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 19 of 19

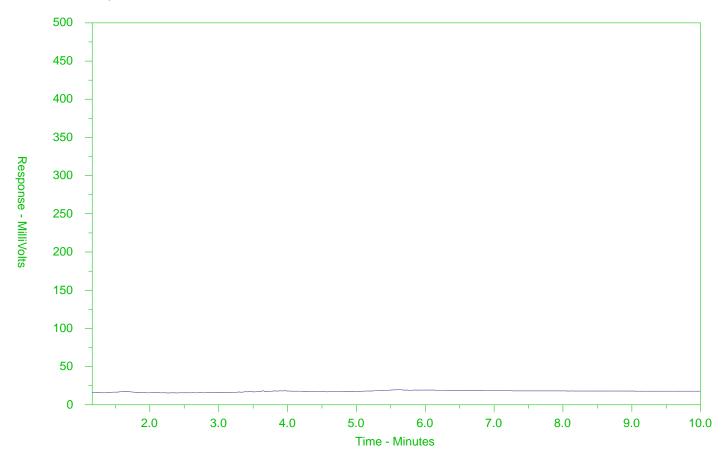
ALS Sample ID: L2655585-1 Client Sample ID: BH102 SS2


← F2-	→←	—F3—→ ← —F4—	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mo			otor Oils/Lube Oils/Grease————	-
←	– Diesel/Je	t Fuels→		

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

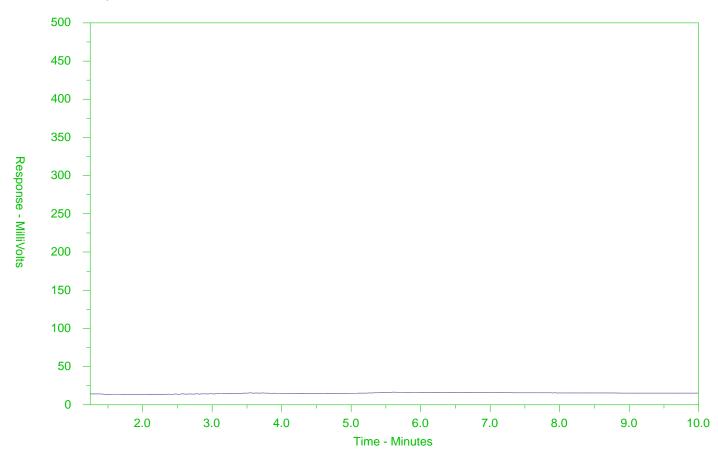
ALS Sample ID: L2655585-2 Client Sample ID: BH104 SS1


← F2-	→←	—F3—→ ← —F4—	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mo			otor Oils/Lube Oils/Grease————	-
←	– Diesel/Je	t Fuels→		

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

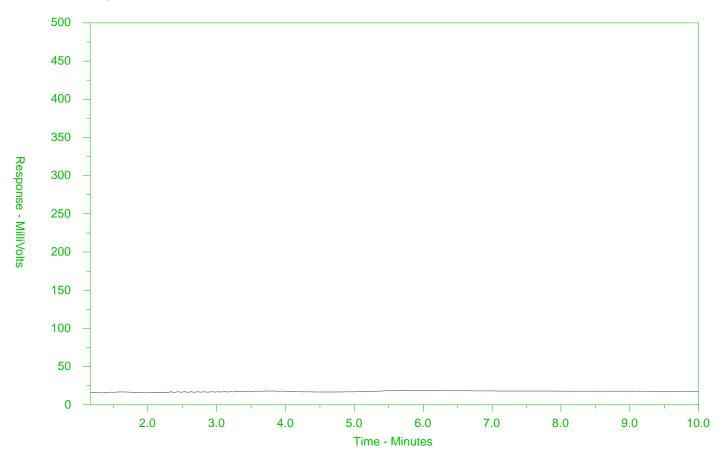
ALS Sample ID: L2655585-3 Client Sample ID: BH108 SS1


← F2-	→←	—F3—→ ← —F4—	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mo			otor Oils/Lube Oils/Grease————	-
←	– Diesel/Je	t Fuels→		

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2655585-4 Client Sample ID: BH109 SS3


← F2-	→-	—F3—→ ← —F4—	→
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasoline → ← Mo			or Oils/Lube Oils/Grease
•	-Diesel/Je	et Fuels→	

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2655585-5 Client Sample ID: BH117 SS2

← F2-	→-	—F3—→ ← —F4—	→
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasoline → ← Mo			or Oils/Lube Oils/Grease
•	-Diesel/Je	et Fuels→	

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Page ___1 of ___1

	www.aisgiopai.com											_							
Report To				Report Forma	t / Dist							₂sh ˈ	Turnarour	d Time ((TAT) is	not ava	ailable f	or all tes	ts)
Company:	G2S Environmental		Select Report F	ormat: 🕡 _{PD}	F Z EXCEL	EDD (DIGITAL)	R	✓ Req	gular (S	andard	TAT if re	ceived by	y 3 pm - b	usiness	days)				
Contact:	Dana Haslett		Quality Control	(QC) Report with R	Report !	▼ Yes 「	No	Pric	ority (2-	4 bus. d	ays if rec	eived by	3pm) 50 ^c	% surcha	arge - c	ontact A	ALS to c	onfirm T.	AT
Address:	4361 Harvester Road		☑ Criteria on Rep	ort - provide details bel	ow if box checked		E Emergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT											irm TAT	
	Burlington, ON		Select Distributi	on: 🕡 🛭	EMAIL MAIL	☐ FAX	E2	Sar	ne day	or week	end eme	rgency -	contact Al	S to cor	nfirm TA	T and s	surcharg	je	
Phone:	905-331-3735		Email 1 or Fax	danah@g2sconsu	lting.com		Specify Date Required for E2,E or P:												
			Email 2				Analysis Request												
Invoice To	Same as Report To Yes	No		Invoice Di	stribution		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below												
	Copy of Invoice with Report	I No	Select Invoice D	Distribution:	EMAIL MA	IL FAX	İ												
Company:	· · · · · · · · · · · · · · · · · · ·		Email 1 or Fax				5												
Contact:			Email 2] 2						İ		1				Ø
	Project Information		Oil	and Gas Require	d Fields (client	use)	7 ₹	{					ŀ				- 1		iner
ALS Quote #:	Standing Offer		Approver ID:		Cost Center:		1 8	b											unta
Job #:	G2S21366		GL Account:		Routing Code:		1 \	1						1					္ဌိ
PO / AFE:	Hurontario/Poplar		Activity Code:		\ <u></u>		1001 add 165	1											e o
LSD:			Location:	· ·				1											Number of Containers
ALS Lab Work Order # (lab use only) L2655585RD			ALS Contact:	Mathy M	Sampler:	DB	ls sls		втех										ž
ALS Sample #	Y	n and/or Coordinates		Date	Time	01 =	ICP Metals	<u>s</u>	+	S								-	
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	₽	PAHs	PHCs	VOCs									
	BH102 SS2			21-Oct	am	Soil	1/	1	1										4
	BH104 SS1	-		22-Oct	am	soil	J		1										4
	BH108 SS1			21-Oct	pm	soil	/		/										4
	BH109 SS3			21-Oct	am	soil	1			1									4
	BH117 SS2			22-Oct	am	soil	/	./	1										4
														1					
	-		***************************************															-	
			"																•
		Considing		6.0		1>	1			SAMP	LE CO	NDITIO	N AS R	ECEIV	ED (la	b use	only)		
Drinking	Water (DW) Samples ¹ (client use)	Special ins	structions / Speci	ify Criteria to add o	n report (client t	Jse) 	Froze	en				,	SIF Obs	ervatio	ns	Yes		No	DV.
Are samples take	en from a Regulated DW System?	Table 2 SCS ICC Use sample dates from (200				lce pa	acks	Yes		No		Custody	seal in	tact	Yes		No	
	「 Yes	JOC	all sam	NPC		Cooli	ng Initi	ated	\square										
Are samples for	human drinking water use?	Limited san	ulhe vox	an Jan	LIC >				OLER	ГЕМРЕГ	RATURE	s °C		FINAL	COOL	R TEM	PERAT	URES º	С
	T Yes T No		•				7	0-C					9,)					
	SHIPMENT RELEASE (client use)		INITIAL S	HIPMENT RECEP						FIN	AL SH	IPMEN	TRECE		l (lab	use on	ıly)		
Released by:	Date: 0c+ 25/71	Time: Receive	d by:	21	Date: 25-0c+-2	Time: 15	Rece	eived b	у: [er			Da	18/2	(Di	Time.	17-0)	
REFER TO BACK	Date: Time: Received by: Control		-L-, '	ITE - LABORATO	FILOW, CLIENT COPY NA FIANTISE OF FRONTA Insuran 2011														