

Hydrogeological Investigation

839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad Collingwood, Ontario G2S21366D

Charis Developments Ltd. 186 Hurontario Street, Suite 204 Collingwood, Ontario L9Y 4T4

Executive Summary

G2S Consulting Inc. (G2S) was retained by Charis Developments Ltd. (the Client) to complete a Hydrogeological Investigation for the properties located at 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad in Collingwood, Ontario, Ontario. Authorization to proceed with the Hydrogeological Investigation was provided by Mr. Steve Assaff of Charis Developments Ltd.

The near-rectangular shaped Site is located on the northeast corner of the intersection of Hurontario Street and Poplar Sideroad. Pretty River tributary is located approximately 10 m north, Pretty River is located approximately 830 m east, and Nottawasaga Bay is located approximately 2.7 km north of the Site. The Site is in an area consisting of residential, commercial, and vacant or agricultural land use. The Site location is illustrated on Drawing 1 in Appendix A.

The Site is occupied by a single-story residential dwelling in the northwest portion and a former stormwater management pond is located south of the dwelling. A gravel fill pad is in the centre portion of the Site and was constructed of imported fill in December 2007/January 2008, the remainder is vacant, undeveloped land. The Site is approximately 3.9 hectares (9.6 acres) in size, and entrance to the Site is via Poplar Sideroad.

It is understood that current plans for the Site include three phases, as follows:

Phase 1 – Construction of one slab on grade retail building (929 m²), two slab on grade restaurant buildings (226 m² and 411 m²), and one slab on grade restaurant/commercial building (1,338 m²), with associated asphalt parking lot in the west-central portion of the Site.

Phase 2 – Construction of a slab on grade grocery store building (2,880 m²) and a slab on grade retail building (1,851 m²) with associated parking lot in the east portion of the Site.

Phase 3 – Construction of a 12 storey mixed residential and commercial use building (1,469 m²) with two levels of underground parking, and a 3 storey slab on grade retail/office building (600 m²) with associated parking in the north portion of the Site.

The development plans are shown on a drawing provided by the Client and prepared by Richard Ziegler Architect Inc. (Drawing Number A101-A, 'The Gateway Centre, Charis Developments, Highway 124 & Poplar Sideroad, Collingwood, Ontario, Leasing Site Plan – Option C4B, dated May 9, 2025). Refer to Appendix A for a copy of the proposed development plan.

The purpose of this assignment was to prepare a hydrogeological investigation report for the proposed development at the Site, assess the stratigraphic and hydrogeological conditions for the purpose of evaluating short-term (temporary) dewatering requirements during Site development and long-term dewatering requirements after the Site has been developed, , and to identify water wells within the dewatering zone of influence and assess the potential for impacts to these wells during construction dewatering. This report was prepared to present the study findings for supporting an application for a Permit to Take Water (PTTW) or Environmental Activity and Sector Registry (EASR). The report was also prepared to address the general requirements of the document titled "Hydrogeological Assessment Submissions, Conservation Authority Guidelines for Development Applications", June 2013.

This assignment was completed with a concurrent geotechnical investigation (issued under separate cover).

To meet the objectives of this assignment, the following tasks were undertaken:

- 1. Completion of groundwater level monitoring events on nine occasions from 2021 to 2025.
- 2. Completion of in-situ hydraulic conductivity testing in selected monitoring wells.
- 3. Collection of groundwater samples from one monitoring well and comparison of results to the criteria in the Town of Collingwood Sanitary and Storm Sewer Use By-Law.
- 4. Completion of a preliminary water balance analysis.
- 5. Completion of a water well search for properties located within 500 m of the Site.
- 6. Completion of a targeted house to house well survey to document the existing water well usage within a 500 m radius to the Site, consisting of interviews with local landowners concerning the presence, condition and pertinent details of their wells.
- 7. Completion of a hydrogeologic analysis, including review of grain size analyses data.
- 8. Estimation of construction dewatering flow rates (short-term) and estimate postconstruction dewatering flow rates (long-term) and assessment of the potential impacts to water wells during construction dewatering within the dewatering zone of influence.
- 9. Prepare a hydrogeological investigation report to summarize the background review information, field work and laboratory results, subsurface conditions, construction dewatering needs and assessment of the potential impacts of the dewatering, including conclusions and recommendations together with illustrative tables, figures, drawings, and back-up data in Appendices.

Based on the proposed development features and our findings of the Site setting, subsurface conditions, results of field work and laboratory analyses, the hydrogeological site assessment salient points for the construction dewatering needs are summarized in the following paragraphs.

Phase 1 and Phase 2

- The approximate finished floor elevations are 196 m ASL and the lowest elevation for the bulk excavation of the Site (Phase 1 and Phase 2) is taken as 193 m ASL (allowance for removal of fill to competent subgrade, ~ 3 m).
- Groundwater levels ranged from a depth of 0 to 1.3 m bgs, during the most recent round of groundwater level measurements (May 16, 2025). Refer to Drawing 3 in Appendix A for the Groundwater Elevation Contours.
- The water-bearing units that will be exposed in the excavations during construction include fill materials (clayey silt, sand, gravel) and native soil (silt, clayey silt, and sandy silt to silty sand till) with K values ranging from 1.4 x 10⁻⁷ m/s to 9.5 x 10⁻⁸ m/s.
- The required groundwater lowering (drawdown) is recommended 1 m below the base of the excavation to maintain dry working conditions.

• For the purposes of this report, it is presumed that all structures below the water table will be waterproofed and designed to withstand the hydrostatic pressures/hydrostatic uplift.

Phase 3

- The approximate finished floor elevations are 196 m ASL and the lowest elevation for the bulk excavation for two levels of underground parking is taken as elevation 187.7 m ASL (7 to 7.5 m bgs); and 193 m ASL (3 m bgs) for the slab on grade building.
- Groundwater levels ranged from a depth of 0.3 to 0.7 m bgs, during the most recent round of groundwater level measurements (May 16, 2025) in the north part of the Site. Refer to Drawing 3 in Appendix A for the Groundwater Elevation Contours.
- The water-bearing units that will be exposed in the excavations during construction include fill materials (clayey silt) and native soil (clayey silt, sandy silt till). A 0.6 to 0.8 m thick gravel layer was contacted at approximate elevation 188.4 to 188.9 m ASL. K values ranged from 1.8 x 10⁻⁸ m/s to 2.9 x 10⁻⁵ m/s.
- The required groundwater lowering (drawdown) is recommended 1 m below the base of the excavation to maintain dry working conditions.
- For the purposes of this report, it is presumed that all structures below the water table will be waterproofed and designed to withstand the hydrostatic pressures/hydrostatic uplift.

The discharge rates are summarized in the following table:

Calculated Maximum Total Dewatering Rate Including Factors of Safety

Excavation	Steady State Dewatering (L/day)	Initial Drawdown Surcharge (L/day)	Maximum Total Dewatering Requirement (L/day)
Phase 1 and Phase 2	20,162	10,081	345,926
Phase 3 – mixed use building with 2 levels of underground parking	1,028,353	514,177	2,371,620
Phase 3 – slab on grade retail/office building	6,253	3,126	37,694

- No long-term (permanent) dewatering requirement is expected at this time based on preliminary design.
- Phase 1 and Phase 2 construction dewatering will require maximum daily dewatering rates below 400,000 L/day but more than 50,000 L/day; therefore, an EASR would be required for the proposed temporary construction dewatering.
- Phase 3 construction dewatering will require maximum daily dewatering rates of more than 400,000 L/day based on current design details; therefore, a Category 3 PTTW would be required for the proposed temporary construction dewatering.

- Based on the groundwater chemical test results, it was found that, for discharge to Town of Collingwood storm and sanitary sewers, the groundwater quality in the unfiltered sample analyzed exhibited elevated total suspended solids (TSS). The results for a filtered sample indicated the TSS value met the criteria. Removal of suspended solids prior to discharge will be a key component of dewatering mitigation. Additional confirmatory sampling and analyses are to be undertaken to confirm compliance with the regulatory criteria of the receiving system to be used. The construction dewatering discharge receptor was not known at the time of the issuance of this report (i.e. storm sewer, sanitary or combined sewer, surface water etc.). Once the dewatering discharge location is known, G2S should be contacted to confirm the scope of groundwater testing required, if any for a discharge permit from the municipality.
- The pre-development water balance reflects about 1% impervious surface area under existing conditions, as the Site is currently undeveloped and consists of a vacant lot with one residential dwelling. The precipitation falling on the Site would infiltrate the grass/vegetation or gravel covered Site, with a portion flowing to municipal storm sewers on Hurontario Street and Poplar Sideroad. Under pre-development conditions there is 10,296,916 m³/year of infiltration of precipitation.
- Under post-development conditions with no mitigation measures in place, redevelopment
 of the Site will result in approximately 78% impervious surface area. As a result, the postdevelopment infiltration rate (2,232,217 m³/year) is less than the pre-development
 infiltration rate (10,296,916 m³/year). In this regard, Low Impact Development (LID) or
 other strategies will be required to mitigate the reduction.
- During a house to house water well survey conducted by G2S, it was determined that up
 to ten wells may be located within the dewatering zone of influence (285 m), however only
 five could be confirmed. In this regard, pre-construction, in-construction, and post
 construction groundwater level monitoring and groundwater quality testing is
 recommended to establish and monitor baseline conditions. As well, a contingency plan
 should be developed to outline the actions that would be required should any unanticipated
 interference with local groundwater supplies occur.
- All monitoring wells and dewatering wells should be abandoned in accordance with the
 Ontario Regulation 903, as amended once no longer in use or being maintained for use.
 The Site owner is considered to be the well owner of the monitoring wells installed at the
 Site ("well owner" Section 1.0, Regulation 903). When the monitoring wells are no longer
 required, it is the owner's responsibility to arrange for abandonment in accordance with
 Ontario Water Resources Act–R.R.O. 1990, Regulation 903 Amended to O. Reg.
 128/03.

It is important to note that the design and installation of a construction dewatering system is the responsibility of the dewatering contractor. The contractor should verify the information presented in this report. This may be done by examining the hydrogeologic conditions in a test pit and a full-range pumping test by the dewatering subcontractor.

Construction dewatering discharges should follow best management practices, including sediment and erosion control measures, removal of suspended solids by decanting pond/tank or similar treatment system, as well as a water quality and quantity control monitoring programs.

A construction dewatering plan should be prepared by the contractor prior to commencement of construction and the construction dewatering activities. The extent and details of the dewatering scheme are left solely to the contractor's discretion to achieve the performance objectives for stable slopes and dry working conditions and will be based on his/her own interpretation and analysis of Site conditions, equipment, experience and plant efficiency.

Table of Contents

Executive Summary	i
1. Introduction	1
1.1 Site Description	1
1.2 Proposed Site Development	2
2. Terms of Reference	3
3. Scope of Work	4
4. Previous Reports	5
5. Site Setting and Water Well Survey	6
5.1 Site Topography and Drainage	6
5.2 Site Physiographic, Geologic and Hydrogeologic Setting	6
5.3 Surface Water Features	6
5.4 MECP Water Well Records and Site Observations	6
5.5 House to House Well Survey	7
6. Field Work and Laboratory Analysis	9
6.1 Borehole Drilling and Monitoring Well Installation	9
6.2 Groundwater Monitoring, Sampling and Borehole Permeability Testing	9
6.2.1 Groundwater Monitoring	9
6.2.2 Groundwater Sampling	9
6.2.3 Borehole Permeability Testing	10
6.3 Laboratory Testing	10
6.3.1 Water Sample Chemical Analysis	10
6.3.2 Soil Particle Size Distribution Analyses	11
7. Findings	12
7.1 Summarized Subsurface Conditions	12
7.1.1 Topsoil	12
7.1.2 Fill Materials	12
7.1.3 Silt/Clayey Silt	12
7.1.4 Silty Sand/Sandy Silt Till	12
7.1.5 Gravel	13
7.2 Groundwater Conditions	13
7.3 Estimated Hydraulic Conductivity	15
7.3.1 In-Situ Hydraulic Conductivity Testing	15
7.4 Groundwater Quality	16
7.5 Water Balance	16
8. Construction Dewatering Analysis	18
8.1 Excavation Requirements and Temporary Construction Dewatering Assumptions	18

8.1.1 Dewatering Assumptions	20
8.2 Dewatering Calculations	20
8.2.1 Calculated Dewatering Rates, With Factors of Safety	21
9. Permit Requirements and Dewatering Discharge	23
9.1 Dewatering Discharge	23
9.1.1 Town of Collingwood Sewer Use By-Law	23
9.2 Evaluation of Potential Impacts	24
9.2.1 Local Groundwater Sources	24
9.2.2 Baseflow Reduction in Waterbodies	25
9.2.3 Induced Movement of Contaminant Plumes	25
9.2.4 Confined Groundwater Conditions and Excavation Bottom Heave	25
9.2.5 Dewatering Discharge Quantity and Quality	25
10. Summary and Conclusions	27
11. Limitations	30
12. Closing Remarks	31

Appendices

Appendix A: Drawings

Appendix B: Summary of Water Well Records & House to House Well Survey

Appendix C: Borehole/Monitoring Well Logs

Appendix D: Hydraulic Testing
Appendix E: Grain Size Analysis
Appendix F: Certificates of Analysis
Appendix G: Water Balance Calculations

List of Tables

Table 1: General Site Details

Table 2: Samples Submitted for AnalysisTable 3: Summary of Groundwater Levels

Table 4: Hydraulic Conductivity Estimates – Slug Testing

Table 5: Summary of Results of Analytical Testing

Table 6: Preliminary Excavation Requirements – Phase 1 and Phase 2

Table 7: Preliminary Excavation Requirements – Phase 3

Table 8: Steady-State Dewatering Requirements

Table 9: Calculated Maximum Total Dewatering Rate, including Factors of Safety

Drawings (in Appendix A)

Drawing 1: MECP Water Well Record Location Plan Drawing 2: Borehole and Monitoring Well Location Plan Drawing 3: Groundwater Contours (May 16, 2025) Drawing 4: Cross Section A – A' (North to South)

1. Introduction

G2S Consulting Inc. (G2S) was retained by Charis Developments Ltd. (the Client) to complete a Hydrogeological Investigation for the properties located at 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad in Collingwood, Ontario, Ontario. Authorization to proceed with the Hydrogeological Investigation was provided by Mr. Steve Assaff of Charis Developments Ltd.

1.1 Site Description

Table 1: General Site Details

Municipal Address	839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario					
General Site Location	Northeast corner of the intersection of Hurontario Street and Poplar Sideroad. Pretty River tributary is located approximately 10 m north, Pretty River is located approximately 830 m east, and Nottawasaga Bay is located approximately 2.7 km north.					
Approximate Site Area	3.9 hectares (9.6 acres)					
Property Identification Number (PIN)	839 Hurontario Street: 58262-0078 (LT) 853 Hurontario Street: 58262-0076 (LT) 869 Hurontario Street: 58262-0787 (LT) 7564 Poplar Sideroad: 58262-0576 (LT)					
Legal Description	839 Hurontario Street: PT S1/2 LT 40 CON 8 NOTTAWASAGA AS IN RO515907 (SECONDLY); COLLINGWOOD					
	853 Hurontario Street: PT S1/2 LT 40 CON 8 NOTTAWASAGA AS IN RO706547; COLLINGWOOD					
	869 Hurontario Street: PT S1/2 LT 40 CON 8 NOTTAWASAGA BEING PTS 1 & 2 51R32487 EXCEPT PTS 1 & 2 51R37017; TOWN OF COLLINGWOOD					
	7564 Poplar Sideroad: PT S1/2 LT 40 CON 8 NOTTAWASAGA PT 1 51R3533 EXCEPT PT 1 51R4531 & EXCEPT PT 4 51R37017; COLLINGWOOD					
Current Site Owner	839 Hurontario Street: Assaff Investments Ltd. 853 Hurontario Street: Charis Developments Ltd. and Assaff Investments Ltd. 869 Hurontario Street and 7564 Poplar Sideroad: Charis Developments Ltd.					
	Developments Ltd. 7564 Poplar Sideroad: Charis Developments Ltd.					
Current Site Occupant	839 and 869 Hurontario Street and 7564 Poplar Sideroad: Vacant, undeveloped land. 839 and 869 Hurontario Street have never been developed, and 7564 Poplar Sideroad was historically developed with a residential home from approximately 1900-2007, when the building was demolished. 853 Hurontario Street: A single storey residential dwelling.					

The location of the Site is depicted the Drawings presented in Appendix A.

1.2 Proposed Site Development

It is understood that plans for the Site include three phases, as follows:

Phase 1 – Construction of one slab on grade retail building (929 m^2), two slab on grade restaurant buildings (226 m^2 and 411 m^2), and one slab on grade restaurant/commercial building (1,338 m^2), with associated asphalt parking lot in the west-central portion of the Site.

Phase 2 – Construction of a slab on grade grocery store building (2,880 m²) and a slab on grade retail building (1,851 m²) with associated parking lot in the east portion of the Site.

Phase 3 – Construction of a 12 storey mixed residential and commercial use building (1,469 m²) with two levels of underground parking, and a 3 storey slab on grade retail/office building (600 m²) with associated parking in the north portion of the Site.

The development plans are shown on a drawing provided by the Client and prepared by Richard Ziegler Architect Inc. (Drawing Number A101-A, 'The Gateway Centre, Charis Developments, Highway 124 & Poplar Sideroad, Collingwood, Ontario, Leasing Site Plan – Option C4B, dated May 9, 2025). Refer to Appendix A for a copy of the proposed development plan.

For the purpose of this report, the excavation area is assumed to be the building footprint and the approximate finished floor elevations are 196 m ASL. The lowest elevation for the bulk excavation of the Site (Phase 1 and Phase 2) is taken as 193 m ASL (allowance for removal of fill to competent subgrade, ~3 m).

For Phase 3, the lowest elevation for the bulk excavation for two levels of underground parking is taken as elevation 187.7 m ASL (7 to 7.5 m bgs), and 193 m ASL (3 m bgs) for the slab on grade building.

2. Terms of Reference

The purpose of this assignment was to prepare a hydrogeological investigation report for the proposed development at the Site, assess the stratigraphic and hydrogeological conditions for the purpose of evaluating short-term (temporary) dewatering requirements during Site development and long-term dewatering requirements after the Site has been developed, and to identify water wells within the dewatering zone of influence and assess the potential for impacts to these wells during construction dewatering. This report was prepared to present the study findings for supporting an application for a Permit to Take Water (PTTW) or Environmental Activity and Sector Registry (EASR). The report was also prepared to address the general requirements of the document titled "Hydrogeological Assessment Submissions, Conservation Authority Guidelines for Development Applications", June 2013.

3. Scope of Work

To meet the objectives of this assignment, the following tasks were undertaken:

- 1. Completion of groundwater level monitoring events on nine occasions from 2021 to 2025.
- 2. Completion of in-situ hydraulic conductivity testing in selected monitoring wells.
- 3. Collection of groundwater samples from one monitoring well and comparison of results to the criteria in the Town of Collingwood Sanitary and Storm Sewer Use By-Law.
- 4. Completion of a preliminary water balance analysis.
- 5. Completion of a water well search for properties located within 500 m of the Site.
- 6. Completion of a targeted house to house well survey to document the existing water well usage within a 500 m radius to the Site, consisting of interviews with local landowners concerning the condition and pertinent details of their wells.
- 7. Completion of a hydrogeologic analysis, including review of grain size analyses data.
- 8. Estimation of construction dewatering flow rates (short-term) and estimate postconstruction dewatering flow rates (long-term) and assessment of the potential impacts to water wells during construction dewatering within the dewatering zone of influence.
- 9. Prepare a hydrogeological investigation report to summarize the background review information, field work and laboratory results, subsurface conditions, construction dewatering needs and assessment of the potential impacts of the dewatering, including conclusions and recommendations together with illustrative tables, figures, drawings, and back-up data in Appendices.

4. Previous Reports

G2S previously completed the following reports for the Site.

- 1. Phase One Environmental Site Assessment Update, 839 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario, Reference G2S21366A, dated November 19, 2021.
- 2. Phase Two Environmental Site Assessment, 839 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario, Reference G2S21366B, dated November 19, 2021.
- 3. Geotechnical Investigation, Proposed Commercial Development, 839 and 869 Hurontario Street, Collingwood, Ontario, Reference G2S21366C, dated March 17, 2022.
- 4. Phase One Environmental Site Assessment Update, 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario, Reference G2S21366A, dated July 31, 2024.
- 5. Phase Two Environmental Site Assessment Update, 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario, Reference G2S21366B, dated July 31, 2024.
- 6. Geotechnical Investigation Addendum, Proposed Mixed Use Development, 839, 853 and 869 Hurontario Street & 7564 Poplar Sideroad, Collingwood, Ontario, Reference G2S21366C, dated September 2024.

As part of the above assignments, twenty-five boreholes were advanced on-Site. Nine of the boreholes were completed as groundwater monitoring wells, which were utilized for the Hydrogeological Investigation. As well, grain size distribution testing for ten soil samples across the Site were undertaken and are included in Appendix E.

5. Site Setting and Water Well Survey

5.1 Site Topography and Drainage

The Site is generally flat, sloping down to the north/northeast. A gravel fill pad is in the centre portion of the Site located at a higher grade than the remainder of the Site. The surface elevations measured on-Site range from 195.87 m in the south-central area of the Site to 194.39 m on the north side of the Site. A former stormwater retention pond is located near the northwest corner of the Site, south of the residential dwelling and a tributary to Pretty River is located approximately 10 m north of the Site. Surface water is inferred to infiltrate through the undeveloped Site and stormwater pond.

The nearest surface water bodies are Pretty River located approximately 830 m east, and Nottawasaga Bay located approximately 2.7 km north of the Site.

5.2 Site Physiographic, Geologic and Hydrogeologic Setting

Based on a review of geological mapping for the area, the near surface overburden soils at and in the vicinity of the Site are comprised of sandy loam underlain by grey shale with limestone interbeds of the Upper Ordovician, Georgian Bay (Carlsbad and Russell) Formation. Based on subsurface investigations completed at the Site, soil stratigraphy encountered generally consisted of fill materials overlying deposits of native silt/clayey silt and silty sand till/sandy silt till. A layer of gravel was contacted at depths of 6.1 and 6.9 m bgs in the north part of the Site, underlain by limestone bedrock at 6.9 to 7.5 m bgs.

Geodetic elevations at the Site range from approximately 195.87 m in the south-central area of the Site to 193.39 m on the north side of the Site. The hydrogeology of the Site is primarily controlled by topography, and the regional direction of shallow groundwater flow in the vicinity of the Site is likely north-northeast towards Nottawasaga Bay.

5.3 Surface Water Features

A former stormwater retention pond is located near the northwest corner of the Site, south of the residential dwelling with an elevation of 193.98 m ASL at the bottom of the pond. Nearby BH/MW101/A indicated a groundwater elevation of 193.8 m ASL during the most recent round of groundwater level readings collected on May 16, 2025.

The Site is located within a Nottawasaga Valley Conservation Authority (NVCA) regulated area due to the presence of a low-lying area/unevaluated wetland located in the northeast portion of the Site. It is understood the wetland feature is being addressed by others under separate assignment.

5.4 MECP Water Well Records and Site Observations

The Site and properties within an approximate 500 m radius of the Site were searched within the current MECP Water Well Information System (WWIS) database. Forty-seven water well records were located within the search radius. The locations of the water well records are shown on Drawing 1 in Appendix A and a copy of the well record summary is included in Appendix B.

Of the 47 wells records listed:

- 8 did not have any details of well use
- 10 were for monitoring (MT/MO) use
- 2 were listed as not in use (NU)
- 1 was for public (PS) use
- 1 was for domestic livestock (DO ST) use
- 25 were for domestic (DO) use

A targeted house to house survey was conducted by G2S to obtain further information regarding the public, domestic livestock, and domestic wells, as discussed in Section 5.5 below.

A reconnaissance of the Site was conducted during the field work to identify existing structures, land uses, and potential sources of groundwater contamination, if any, which may be located within the potential dewatering zone of influence (approximately 3 m for the slab on grade buildings and 285 m for the mixed use building with 2 levels of underground parking).

The major features within the Study Area included:

- a) Major arterial roads, including Poplar Sideroad and Hurontario Street.
- b) Properties comprise primarily residential and commercial use.
- c) Pretty River is located approximately 830 m east and Nottawasaga Bay is located approximately 2.7 km north of the Site.

Potentially Contaminating Activities (PCAs) identified during a Phase One ESA Update completed by G2S in November 2021 and July 2024 (reported under separate cover) were the unknown chemical quality of fill materials on-Site, and the current use of the property located approximately 30 m west as a gasoline service station. However, the results of a Phase Two ESA conducted for the Site by G2S did not indicate any soil or groundwater impacts.

It is noted that the use of de-icing salt on adjacent roadways may result in elevated chloride and sodium in groundwater (electrical conductivity (EC) and sodium adsorption ratio (SAR) in soil).

5.5 House to House Well Survey

Municipal water is available to area residents, and as such most or all local residents within the Study Area are presumed to rely on municipal water for their water supplies. Notwithstanding this, a targeted survey was carried out to document the existence and reported performance of 27 water wells (domestic, livestock, and/or public wells) across 23 municipal addresses found within about 500 m of the perimeter of the Site, based on water well information obtained from the MECP website. The water well records were located along portions of Hurontario Street, Poplar Sideroad, Simcoe County Road 124, County Road 32, Tracey Lane, Stanley Street, and Findlay Drive.

On May 16, 2025, G2S completed a house to house survey to deliver well survey questionnaires and to interview the occupants of the 23 municipal addresses. The survey form requested information regarding well locations, depths, accessibility, water quality, quantity and other pertinent details.

Of the 23 municipal addresses that were visited, G2S interviewed and completed the questionnaire with 8 residents. No data/response was obtained from 9 residents who were not home, did not return the survey, and/or there was no occupant or house at the listed municipal address provided on the MECP website. No wells were found at the remaining 6 locations visited (including three on-Site wells that were not identified).

The information obtained from the 8 respondents revealed the following information with respect to well usage:

- Two residents indicated their wells are used for potable purposes, one of which indicated that their well is shared with their neighbour (not surveyed).
- One resident indicated that they did not use their well for drinking water, but did not provide any further information.
- One commercial property (Hamilton Construction Ltd.) indicated that their well is used for landscaping and in the washrooms on the property.
- One commercial property (Bloom 'n Nursery) indicated that their well is used for watering the trees and landscaping on the property. A second well was identified by G2S on this property during the survey; no further information for the second well was available.
- Two residents indicated that there were no wells located on their properties.
- One community property (New Life Church) indicated there were no wells on their property to their knowledge.

The locations of these wells were further evaluated with respect to the construction limits and potential dewatering zone of influence, found in Section 9.2 of this report.

A summary of the information obtained during the house to house survey is provided in Table 1 in Appendix B.

6. Field Work and Laboratory Analysis

6.1 Borehole Drilling and Monitoring Well Installation

As part of the Phase Two ESA and Geotechnical Investigation completed for the Site, each reported under separate cover, twenty-five boreholes were advanced on-Site in September/October 2021, January 2022 and June 2024. Nine of the boreholes were completed as groundwater monitoring wells, identified as BH/MW101A, BH/MW103A, BH/MW105, BH/MW106A, BH/MW110, BH/MW115A, BH/MW122, BH/MW201 and BH/MW202.

Field work for this assignment included groundwater sampling and borehole permeability testing. The borehole and monitoring well locations are shown on Drawing 2 included in Appendix A. Ground surface elevations and UTM co-ordinates at the borehole locations were determined by G2S. A topographic survey completed by J.D. Barnes Limited on September 9, 2021, was provided to G2S for reference. The ground surface elevations were inferred by G2S from the topographic survey.

The details of the monitoring well construction is shown on the Borehole Logs in Appendix C.

6.2 Groundwater Monitoring, Sampling and Borehole Permeability Testing

6.2.1 Groundwater Monitoring

Free water was encountered in the boreholes during drilling between depths of 0.3 and 4.4 m below ground surface (bgs). Groundwater levels were measured in three monitoring wells on October 13 and November 3, 2021, in seven monitoring wells on January 21 and April 5, 2022, and up to nine wells in June 2024, July 2024, and May 2025.

All readings were obtained using a SolinstTM groundwater level reader. The SolinstTM water level meter was cleaned between uses at each monitoring well location.

6.2.2 Groundwater Sampling

Development/purging of one monitoring well for sanitary and storm sewer analysis was completed on June 20, 2024 and involved removal of a minimum of three to five well volumes or until the well was dry, in accordance with fixed volume and well evacuation purging procedures as outlined in ASTM D6452-99 (2005).

In an effort to minimize potential cross-contamination, dedicated sampling equipment was used in the groundwater well. The equipment was used with new nitrile gloves.

Groundwater samples were collected from the monitoring well identified as MW201 (screened in sandy silt till/gravel), on June 20 and 26, 2024. The groundwater samples were field logged and placed in clean, laboratory provided bottles, stored in an insulated cooler on ice, and delivered directly to Paracel Laboratories Ltd. (Paracel). Particular attention was applied to visual and olfactory evidence of potential contamination such as odours and sheens during the course of the field work.

6.2.3 Borehole Permeability Testing

In situ borehole permeability was determined through rising head (slug) testing, performed in monitoring wells identified as BH/MW101A, BH/MW103A, BH/MW110, and BH/MW122 on January 21, 2022, and MW201 and MW202 on June 20, 2024. The rising head testing was completed according to ASTM procedure D4044 "Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers".

Groundwater levels were monitored before and during rising head testing using both manual readings with a SolinstTM groundwater level reader and automatic readings with a SolinstTM water level loggers.

6.3 Laboratory Testing

6.3.1 Water Sample Chemical Analysis

To address the potential in-construction groundwater dewatering discharge quality issues, groundwater samples (collected from BH/MW201) were submitted to Paracel for chemical analyses. Paracel is accredited by The Standards Council of Canada (SCC) and The Canadian Association for Laboratory Accreditation (CALA).

The groundwater samples collected from BH/MW201 were analyzed for the parameters contained within the Town of Collingwood Sanitary and Storm Sewer Discharge By-Law, which includes selected organic, inorganic, and microbiological parameters.

The following is a summary of the groundwater samples submitted for analysis.

Table 2: Samples Submitted for Analytical Testing

Sample Location	Sample I.D.	Description	Type of Chemical Analysis
BH/MW201	MW201-UF	Clear, no odour or sheen	Town of Collingwood Sanitary and Storm Sewer By-law No. 2009-18 Discharge parameters
BH/MW201	MW201-F	Clear, no odour or sheen	Filtered sample for Metals and Total Suspended Solids (TSS)

UF – unfiltered sample; F – filtered sample

6.3.2 Soil Particle Size Distribution Analyses

Seven representative soil samples obtained from the Site were submitted for particle size distribution analyses:

- BH102 SS5 (silt)
- BH103 SS4 (silt)
- BH105 SS4 (silt)
- BH109 SS3 (clayey silt)
- BH113 SS5 (clayey silt)
- BH122 SS6 (clayey silt)
- BH201 S3 (clayey silt)
- BH201 S5 clayey silt)
- BH202 S5 clayey silt)

7. Findings

7.1 Summarized Subsurface Conditions

Reference is made to Drawing 2 in Appendix A and the Borehole Logs in Appendix C for details of the field work including sampling locations, visual soil classification, standard penetration test N values (where applicable), inferred stratigraphy, groundwater observations, and monitoring well installation details.

The boundaries indicated on the borehole logs are intended to reflect transition zones for the purpose of hydrogeological assessment and should not be interpreted as exact planes of geological change.

The boreholes drilled by G2S generally consisted of fill materials (to depths of up to 1.6 m bgs) overlying deposits of native silt/clayey silt and silty sand till/sandy silt till. A description of the soil stratigraphy encountered on the Site, in order of depth, is summarized in the sections below. A cross-sectional drawing depicting the subsurface profile generally from north to south is included as Drawing 4 in Appendix A.

7.1.1 Topsoil

A surficial veneer of topsoil and organic material with thicknesses ranging between approximately 75 and 360 mm, was encountered in BH101, BH103 to BH106, BH113, BH118, BH121, BH122 and BH202.

7.1.2 Fill Materials

Fill material was encountered below the topsoil in BH101, BH103, BH104, BH106 to BH108, BH115, BH118 and BH122, and extended to depths ranging from approximately 0.8 and 1.2 m bgs. This layer of fill consisted generally of clayey silt and contained traces to interbedded layers of sand.

Granular fill material (sand and gravel) was contacted at the surface in BH102, BH109 to BH112, BH116, BH119, BH120, BH123 and BH201. The granular fill extended to depths ranged between 0.9 and 1.6 m bgs. The granular fill was generally brown in color and contained some cobble and boulder size particles. The lower portion of the granular fill was mixed with clayey silt in BH102 and BH109.

7.1.3 Silt/Clayey Silt

Native silt or clayey silt was encountered beneath the topsoil or fill materials in each of the boreholes to depths of up to 6.1 m bgs. The silt/clayey silt became grey and very moist to wet with depth.

7.1.4 Silty Sand/Sandy Silt Till

Native silty sand/sandy silt till was encountered in all boreholes except BH116 to BH121 and BH123, to the termination depth of 8.2 m bgs. The till was grey and wet.

7.1.5 Gravel

A gravel deposit was encountered beneath the sandy silt till in BH201 and BH202 and extended to the termination of auguring due to refusal on probable bedrock. The gravel layer extended to depths of 7.6 and 6.9 mbeg in BH201 and BH202, respectively. The gravel deposit was generally grey in color, containing some sand, and trace to some silt.

1.2 Limestone/Dolostone Bedrock/Possible Bedrock

Beneath the gravel in BH201 and BH202, Limestone/Dolostone bedrock was encountered at depths of approximately 7.6 and 6.9 mbeg, respectively. Bedrock was proven by coring in Borehole BH201 between 7.6 and 11.1 m bgs

7.2 Groundwater Conditions

Free water was encountered in the boreholes during drilling between depths of 1.2 and 4.4 m bgs. The measured hydrostatic groundwater levels in the monitoring wells varied from ground surface to 1.3 m bgs during the most recent round of groundwater level measurements on May 16, 2025 (elevation 194.9 to 193.4 m (geodetic)).

Groundwater levels are subject to seasonal fluctuations and variations in precipitation. A summary of groundwater data is included in the following table.

Table 3: Summary of Groundwater Levels

	Ground	Well Depth	Screened Interval	Groundwater Elevation and Depth (m bgs)								
Sample Location	Surface Elevation	from Ground Surface (m)	Elevation (m) and Depth (m bgs)	Oct. 13, 2021	Nov. 3, 2021	Jan. 21, 2022	Apr. 5, 2022	June 5, 2024	June 20, 2024	June 26, 2024	July 19, 2024	May 16, 2025
MW101A	194.77	4.8	191.4 - 189.9 (3.1 - 4.6)			193.4 (1.1)	193.4 (1.1)	193.4 (1.1)		193.3 (1.2)	193.4 (1.1)	193.8 (1.0)
MW103A	194.39	3.6	191.3 - 189.8 (3.1 – 4.6)			193.7 (0.7)	193.8 (0.6)	193.6 (0.8)		193.5 (0.9)	193.7 (0.7)	193.7 (0.7)
BH/MW105	194.63	4.7	191.0 - 190.0 (1.7 – 4.7)	194.7 (-0.1)	194.9 (-0.3)	Frozen	194.8 (-0.1)	194.6 (0)	194.2 (0.4)	194.5 (0.1)	194.6 (0)	194.7 (-0.1)
MW106A	194.54	4.6	191.5 - 190.0 (3.1 - 4.6)			Frozen	194.7 (-0.2)	194.5 (0)		194.4 (0.1)	194.4 (0.1)	194.6 (-0.01)
BH/MW110	195.87	5.3	190.6 – 193.6 (2.3 – 5.3)	193.9 (2.0)	195.0 (0.9)	194.4 (1.4)	194.5 (1.3)	194.6 (1.3)	194.4 (1.5)	194.6 (1.3)	194.6 (1.3)	194.6 (1.3)
MW115A	195.28	4.6	192.2 - 190.7 (3.1 - 4.6)			194.7 (0.6)	194.9 (0.4)			194.3 (1.0)		194.7 (0.6)
BH/MW122	195.09	4.8	190.3 – 193.3 (1.8 – 4.8)	194.7 (0.4)	195.0 (0.1)	195.5 (-0.47)	194.7 (0.4)	194.7 (0.4)	194.1 (1.0)	194.5 (0.6)	194.6 (0.5)	194.8 (0.3)
MW201	195.3	7.7	189.1 - 187.6 (4.7 - 7.7)						194. (1.1)	194.7 (0.6)	194.8 (0.5)	194.9 (0.4)
MW202	195.0	4.8	193.2 - 190.2 (1.8 - 4.8)						194.3 (0.7)	194.6 (0.4)	194.6 (0.4)	194.7 (0.3)

Bolded value indicates water level is above the ground surface and may be due to an unstable groundwater level and/or upward hydrogeologic gradient.

Groundwater level contours for selected monitoring wells on-Site for May 2025 are shown on Drawing 3 in Appendix A, which also shows the monitoring well locations and measured water levels.

Based on G2S' Site observations and short-term water level measurements, the groundwater table in the overburden aquifer underlying the Site has a horizontal gradient of about 0.006 (0.6%) toward the north.

7.3 Estimated Hydraulic Conductivity

7.3.1 In-Situ Hydraulic Conductivity Testing

Rising head tests were carried out in monitoring wells BH/MW101, BH/MW103, BH/MW110, BH/MW201 and BH/MW202 at the Site.

The hydraulic conductivity of the subsurface strata at the Site were determined based on the results of rising head testing carried out at selected monitoring well locations on January 21, 2022 and June 20, 2024. Prior to conducting the tests, the monitoring wells were developed to remove any fines introduced into the screen following construction. The wells were then left to recharge to static water level. The test was carried out by inserting a data logger into the bottom of the well, then purging the monitoring well with water until dry. The loggers were then used to record the change in head over time. Once the well had returned to 63% of its static water level or the logger had recorded a sufficient amount of data, the logger was removed. The results were then calculated using the Hvorslev Method. The results of the analyses are presented in Appendix D.

The hydraulic conductivities of the subsurface strata at the Site are as shown in the following table.

Table 4: Hydraulic Conductivity Estimates – Slug Testing

Monitoring Well I.D.	Ground Surface Elevation (mASL)	Elevation of Well Screen (mASL)	Stratum Captured by Well Screen	Hydraulic Conductivity (Rising Head Test, m/s)
BH/MW101/A	194.77	193.2 - 190.2	Silt/sandy silt till	<1 x 10 ⁻⁷ m/s
BH/MW103/A	194.39	192.8 - 189.8	Silt/sandy silt till	<1 x 10 ⁻⁷ m/s
BH/MW110	195.87	193.6 - 190.6	Clayey silt/silt	9.5 x 10 ⁻⁸ m/s
BH/MW122	195.09	193.2 - 190.2	Clayey silt/silt	1.4 x 10 ⁻⁷ m/s
BH/MW201	195.3	190.8 - 187.8	Sandy silt till/gravel	1.8 x 10 ⁻⁸ m/s
BH/MW202	195.0	191.1 - 188.1	Clayey silt/sandy silt till/gravel	2.9 x 10 ⁻⁵ m/s

Typical rates of hydraulic conductivity for the soils found at this Site during the investigation are as follows (Freeze and Cherry, 1979):

- Sandy silt till 10⁻¹² to 10⁻⁶
- Clayey Silt 10⁻⁷ m/s to 10⁻¹² m/s
- Silt 10⁻⁵ m/s to 10⁻⁹ m/s
- Gravel 10⁻⁵ m/s to 10⁻³ m/s

The grain size analysis curves confirming the soil classifications and hydraulic conductivity ranges are presented in Appendix E.

7.4 Groundwater Quality

The laboratory certificate of analysis, including chain-of-custody record, compared to the Town of Collingwood Sanitary and Storm Sewer By-Law 2009-118 discharge parameters criteria are included in Appendix F.

Based on the results of chemical analysis on samples tested, the quality of the groundwater samples complied with the applicable guidelines with the following exception below.

Table 5: Summary of Results of Analytical Testing

Sample	Town of Collingwood Sanitary/ Combined Parameter Sewer Discharge		Town of Collingwood Storm Sewer Discharge	Concentration (mg/L)
Location	Parameter	Criteria (mg/L)	Criteria (mg/L)	BH/MW201
BH/MW201 - UF	Total Suspended Solids	300	15	449
BH/MW201 - F	Total Suspended Solids	300	15	<2

Italics – Concentration exceeds Town of Collingwood Sanitary / Combined Sewer Discharge Criteria

Bold – Concentration exceeds Town of Collingwood Storm Sewer Discharge Criteria

UF – unfiltered sample; F – filtered sample

7.5 Water Balance

A Site water balance is an empirical calculation and accounting of water in the hydrologic cycle. Precipitation (P) falls as rain and snow. Precipitation can evapotranspire (ET) from the ground surface, impermeable surfaces (such and buildings, pavements and roads) and through vegetation; infiltrate (I) into the soil and percolate downwards towards the shallow groundwater table; or run-off (R) across the ground surface or impermeable surfaces towards surface water features, stormwater collection systems, and topographic low points. When assessed over a long-term period, there is minimal or no net change to groundwater storage (Δ S).

The water balance equation (Thornthwaite and Mather, 1957) can be written as:

$$P = ET + I + R + \Delta S$$

Pre-development and post-development annual water balance calculations have been prepared based on the Thornthwaite and Mather (1957). The water balance calculation spreadsheets are included in Appendix G for reference.

The Thornthwaite and Mather methodology assesses monthly averages of precipitation and temperature and uses this information in conjunction with Site soil data, and climatological and soils variables, to calculate a variety of parameters. This information is then assessed using methodology and variables from the MECP Stormwater Management Planning and Design Manual (2003) to calculate infiltration, evapotranspiration, and runoff rates and volumes from both pervious and impervious portions of the Site.

Pre-Development Water Balance

The pre-development water balance reflects about 1% impervious surface area under existing conditions, as the Site is currently undeveloped and consists of a vacant lot with one residential dwelling. The precipitation falling on the Site would infiltrate the grass/vegetation or gravel covered Site, with a portion flowing to municipal storm sewers on Hurontario Street and Poplar Sideroad. Therefore, under pre-development conditions there is 10,296,916 m³/year of infiltration of precipitation.

Post-Development Water Balance, no Mitigation

Under post-development conditions with no mitigation measures in place, redevelopment of the Site will result in approximately 78% impervious surface area. As a result, the post-development infiltration rate (2,232,217 m³/year) is less than the pre-development infiltration rate (10,296,916 m³/year). In this regard, Low Impact Development (LID) or other strategies will be required to mitigate the reduction.

8. Construction Dewatering Analysis

Based on excavation locations, dimensions, and depths provided for this report, the soil excavations and subsequent construction of the slab and grade buildings and 2 levels of underground parking structure will require dewatering to lower the groundwater table within the excavations to maintain a dry excavation base and sidewalls.

Temporary dewatering requirements are dependent on factors such as excavation parameters (excavation dimensions, infrastructure invert elevations, the number of concurrent excavations, etc.), hydrogeological conditions at the Site (groundwater levels, soil/bedrock hydrogeological parameters, etc.), construction and dewatering methodologies (open cuts, dewatering pits, sumps, wellpoints, etc.), and the amount of groundwater drawdown required to achieve and maintain dry working conditions and stable excavations.

Additionally, factors such as the use of shoring would be expected to influence the rate of groundwater inflow into the excavation. The calculations provided below assume open excavations as a conservative factor of safety.

It is important to note that the dewatering contractor retained to perform construction dewatering is solely responsible for achieving and maintaining dry working conditions at the Site at all times. The calculations and dewatering rates/volumes provided below are not directives for a dewatering contractor, and the dewatering contractor must review the information, calculations, and recommendations provided as part of their own assessment of dewatering requirements to determine appropriate methodologies and designs for their construction dewatering project.

8.1 Excavation Requirements and Temporary Construction Dewatering Assumptions

During the construction project dewatering, operations are expected to take place twenty-four hours per day to maintain a dry excavation. Dewatering calculations include a number of variables such as the static groundwater level, soil hydraulic conductivity, aquifer thickness, confined aquifer conditions, etc. that can be adjusted to provide conservative buffers to account for conditions beyond those encountered in the available monitoring wells.

Table 6 below summarizes the preliminary excavation requirements for the proposed bulk excavation of the buildings in Phase 1 and Phase 2. Additionally, the table below includes the following buffers as factors of safety:

- Simultaneous dewatering of the excavations to permit concurrent excavation work at multiple locations within the property area;
- A buffer of 1 m for the excavation elevation to ensure groundwater is drawn down 1 m below the base of the excavation to maintain a dry work surface. The excavation invert is taken as 192 m ASL or 4 m bgs, which is provided for removal of fill to expected competent subgrade.
- Groundwater elevation assumed to be 0.0 m bgs across the Site to account for seasonal fluctuations and variation in groundwater levels measured in the on-Site monitoring wells.

Table 6: Preliminary Excavation Requirements – Phase 1 and Phase 2

Excavation	Excavation Area	Excavation Depth	GW Depth
	(m²)	(m ASL / m bgs)	(m bgs)
	(includes 5%	(includes 1 m	(includes 0.5 m
	buffer)	buffer)	buffer)
Phase 1 and Phase 2 (6 buildings)	8,015	192 / 4.0	0.0

Table 7 below summarizes the preliminary excavation requirements for the proposed bulk excavation of the building with 2 levels of underground in Phase 3 and the slab on grade building in Phase 3. Additionally, the table below includes the following buffers as factors of safety:

- Simultaneous dewatering of the excavations to permit concurrent excavation work in Phase 3;
- A buffer of 1 m for the excavation elevation to ensure groundwater is drawn down 1 m below the base of the excavation to maintain a dry work surface. The excavation invert is taken as 192 m ASL or 4 m bgs for the slab on grade building; and 186.7 m ASL or 8 to 8.5 m bgs for the 2 levels of underground.
- Groundwater elevation assumed to be 0.0 m bgs across the Site to account for seasonal fluctuations and variation in groundwater levels measured in the on-Site monitoring wells.

Table 7: Preliminary Excavation Requirements – Phase 3

Excavation	Excavation Area (m²) (includes 5% buffer)	Excavation Depth (m ASL / m bgs) (includes 1 m buffer)	GW Depth (m bgs) (includes 0.5 m buffer)
Phase 3 – 2 levels of underground	1,542	186.7 / 8 to 8.5	0.0
Phase 3 – slab on grade retail/offices	630	192 / 4.0	0.0

It is very important to consider that all construction dewatering calculations provided in this report are based on the proposed Site Plan details (Drawing A101-A) Option C4B dated May 9, 2025. If design changes or other site plan modifications result in changes to the information listed above, the dewatering calculations below will need to be revised accordingly.

8.1.1 Dewatering Assumptions

Dewatering calculations have been prepared for the concurrent tasks noted above based on the following assumptions to account for variability in soil, bedrock, and groundwater conditions:

Slab on Grade Buildings

- Aquifer hydraulic conductivity of 1.1 x 10⁻⁷ m/sec (average estimated hydraulic conductivity from grain size analyses and slug test analyses completed by G2S;
- An initial saturated aquifer thickness of 8 m.
- An initial groundwater elevation corresponding to the highest measured groundwater level from the on-Site monitoring wells installed by G2S, assumed to be 0.0 m bgs across the Site to account for seasonal fluctuations and variation in groundwater levels measured in the on-Site monitoring wells.

2 Levels of Underground

- Aquifer hydraulic conductivity of 1.45 x 10⁻⁴ m/sec (average estimated hydraulic conductivity from grain size analyses and slug test analyses completed by G2S;
- An initial saturated aquifer thickness of 8.3 m.
- An initial groundwater elevation corresponding to the highest measured groundwater level from the on-Site monitoring wells installed by G2S, assumed to be 0.0 m bgs across the Site to account for seasonal fluctuations and variation in groundwater levels measured in the on-Site monitoring wells.

8.2 Dewatering Calculations

To estimate the steady-state dewatering flow rate needed to maintain dry conditions for the excavations at the Site, the following equation (for radial flow to an unconfined aquifer) from Powers (2007) was used:

$$Q = \frac{\pi K (H^2 - h_w^2)}{\ln \left(\frac{R_o}{r_e}\right)}$$

Where:

 $Q = Flow Rate (m^3/sec)$

H = Initial Saturated Thickness (Piezometric Head) of Aquifer (m)

 h_w = Dewatered Saturated Thickness (Piezometric Head) of Aquifer (m)

K = Soil Hydraulic Conductivity (m/sec)

 r_e = Effective radius, $r_e = \sqrt{(excavation area/\pi)}$ (m)

$$R_o$$
 = Radius of influence, R_o = 3000*(H-h_w)* \sqrt{K} (m)

For some of these dewatering calculations, R_o is very close to r_e ; therefore, to avoid $\ln\left(\frac{R_o}{r_e}\right)$ resulting in a very small or negative number, R_o is replaced with R_o + r_e in the formula above, which gives a reasonable estimate of the dewatering requirements.

Using the assumptions listed in Section 8.1 and its subsections, the steady-state inflow rates and radii of influence listed in the table below were estimated.

Excavation

Daily Dewatering Rate (L/day)

Radius of Influence (m)

Phase 1 and Phase 2

20,162

3 m

Phase 3 – mixed use building with 2 levels of underground parking

Phase 3 – slab on grade retail/office building

6,253

3.3 m

Table 8: Steady-State Dewatering Requirements

8.2.1 Calculated Dewatering Rates, With Factors of Safety

It is important to consider that dewatering requirements will be highest at the start of the dewatering process when the volume of water stored within the pore spaces of the overburden deposits must be extracted. This storage must be accounted for to allow for rapid achievement of drawdown targets.

Initial drawdown of the overburden soils within a short period of time would be expected to require additional pumping capacity. An initial drawdown requirement has been calculated assuming a surcharge of 50% of the estimated steady state dewatering rate.

Additionally, it is important to consider that during and after precipitation events significantly higher dewatering flow rates may be required to account for direct precipitation and surficial runoff falling into an excavation; however, recent changes to the Environmental Activity and Sector Registry (EASR) allow pumping of direct precipitation/runoff to be excluded from dewatering calculations.

The table below provides a summary of the calculated dewatering rates and factors of safety for the bulk excavation of the Site.

Table 9: Calculated Maximum Total Dewatering Rate Including Factor of Safety

Excavation	Steady State Dewatering (L/day)	Initial Drawdown Surcharge (L/day)	Maximum Total Dewatering Requirement (L/day)
Phase 1 and Phase 2	20,162	10,081	345,926
Phase 3 – mixed use building with 2 levels of underground parking	1,028,353	514,177	2,371,620
Phase 3 – slab on grade retail/office building	6,253	3,126	37,694

The totals shown in the table above indicate a potential maximum dewatering requirement of up to 345,926 L/day for simultaneous dewatering of Phase 1 and Phase 2. An EASR would be required to authorize the maximum daily water taking rate for the proposed temporary construction dewatering.

For Phase 3, a potential maximum dewatering requirement of up to 2,371,620 L/day for the 2 levels of underground and 37,694 L/day for the slab on grade building is estimated, therefore, a Category 3 Permit to Take Water (PTTW) would be required for the proposed temporary construction dewatering.

While the conservative assumptions and factor of safety discussed in the preceding sections combine to create very conservative dewatering calculations, it is important to consider the variable nature of overburden soils.

The potential maximum dewatering requirements outlined above are reasonable based on the information available; however, it is important to note that a less-conservative assumption of total dewatering requirements (e.g., allowing a longer initial drawdown time for the excavation, completion of a pump test for the 2 levels of underground to determine the effect the gravel layer will have on dewatering, and/or assuming a smaller dewatering area) could reduce the total dewatering requirements. The client, the construction contractor, and the dewatering contractor shall review the dewatering calculations provided above and make their own determinations regarding the potential maximum daily dewatering requirements for the project.

9. Permit Requirements and Dewatering Discharge

Ontario Regulation 387/04 requires authorization from the MECP for all water takings over 50,000 L/day. Ontario Regulation 63/16 specifies that for temporary construction dewatering at rates between 50,000 and 400,000 L/day an EASR may be obtained in lieu of a Permit to Take Water (PTTW). Dewatering at rates of more than 400,000 L/day require a PTTW to authorize groundwater withdrawal.

As shown in Section 8.2.1, construction dewatering will require maximum daily dewatering rates below 400,000 L/day for Phase 1 and Phase 2; therefore, an EASR would be required for the proposed temporary construction dewatering based on the assumptions discussed above.

Construction dewatering for Phase 3 will require maximum daily dewatering rates above 400,000 L/day, therefore, a Category 3 PTTW would be required for the proposed temporary construction dewatering based on the assumptions discussed above.

9.1 Dewatering Discharge

On June 20 and 26, 2024, water chemistry samples were obtained from one overburden monitoring well (BH/MW201) identified as Sample MW201. Filtered and unfiltered water samples were collected from the monitoring well. The laboratory Certificates of Analysis are included in Appendix F for reference.

It is important to consider the water chemistry samples were obtained using low flow pumps, helping to minimize the inclusion of sediments into the water samples.

Water chemistry analysis results were compared to the Town of Collingwood Sanitary Sewer Use By-Law parameters for discharge to municipal sanitary sewers, and to the Town of Collingwood Storm Sewer Use By-Law parameters for discharge to municipal storm sewers.

9.1.1 Town of Collingwood Sewer Use By-Law

Sanitary Sewer

Groundwater chemistry samples exhibited exceedances of the following criteria limits:

• Total Suspended Solids (TSS) in the unfiltered groundwater sample collected from monitoring well BH/MW201 (449 mg/L versus criteria of 300 mg/L). It is noted that the filtered sample collected from monitoring well BH/MW201 met the criteria for TSS.

Based on the analysis results, discharge to municipal sanitary sewers would require treatment such as settling tanks with flocculation and/or mechanical filtration (using filter bags) to reduce TSS concentrations to acceptable levels.

Storm Sewer

Groundwater chemistry samples exhibited exceedances of the following criteria limits:

 Total Suspended Solids (TSS) in the unfiltered groundwater sample collected from monitoring well BH/MW201 (449 mg/L versus criteria of 15 mg/L). It is noted that the filtered sample collected from monitoring well BH/MW201 met the criteria for TSS.

Based on the analysis results, discharge to municipal sanitary sewers would require treatment such as settling tanks with flocculation and/or mechanical filtration (using filter bags) to reduce TSS concentrations to acceptable levels.

During construction dewatering operations, regular sampling and analysis of discharge would be required to confirm continued compliance with the Halton Sewer Use By-Law.

Once the dewatering discharge location is known, G2S should be contacted to confirm the scope of groundwater testing required, if any.

9.2 Evaluation of Potential Impacts

9.2.1 Local Groundwater Sources

The Site and properties within an approximate 500 m radius of the Site were searched within the current MECP WWIS database. Forty-seven water well records were located within the search radius. The locations of the water well records are shown on Drawing 1 in Appendix A and a copy of the well record summary is included in Appendix B.

The wells were identified as public, domestic, livestock, and monitoring use. Municipal water is available to area residents, and as such most or all local residents within the Study Area are presumed to rely on municipal water for their water supplies. The Town of Collingwood is largely supplied with potable water which is sourced from Georgian Bay. The water is supplied via a municipal network comprising a treatment plant, an elevated storage tank, a series of reservoirs and booster stations. Notwithstanding this, a targeted survey was carried out to document the existence and reported performance of 27 water wells (domestic, livestock, and/or public wells) across 23 municipal addresses.

Based on the information obtained during the house to house survey, 13 wells are in use or potential use (assumed present due to no response). Of these 13 locations, 10 are within the DZOI of up to 285 m.

Based on review of the information collected, there are up to five confirmed wells which may be influenced during construction dewatering:

- 1. 7645 Poplar Sideroad (Hamilton Construction Ltd.; washroom use only)
- 2. 4594 Simcoe County Road 124 (Private residence; drinking water purposes)
- 3. 4559/4553 Simcoe County Road 124 (Bloom 'n Nursery; irrigation purposes)

- 4. 7642 County Road 32 (Private residence; drinking water purposes and possible shared with 7640 County Road 32)
- 5. 7636 County Road 32(Private residence; well observed no response)

In this regard, pre-construction, in-construction, and post construction groundwater level monitoring and groundwater quality testing is recommended to establish and monitor baseline conditions. As well, a contingency plan should be developed to outline the actions that would be required should any unanticipated interference with local groundwater supplies occur.

9.2.2 Baseflow Reduction in Waterbodies

Pretty River Tributary, Pretty River, and Nottawasaga Bay are the nearest waterbodies to the Site, located approximately 10 m north, 830 m east and 2.7 km north of the Site, respectively. The water bodies are outside the radius of influence for the slab on grade buildings and as such no significant reduction in baseflow is anticipated.

With respect to Pretty River Tributary, the effects of dewatering for the 2 levels of underground are not anticipated to affect the levels since the high permeability gravel layer is unlikely to be hydraulically connected to the tributary based on the presence of thick, lower permeability clayey silt/sandy silt till layer.

9.2.3 Induced Movement of Contaminant Plumes

No contaminant plumes are known to exist within the radius of influence and based on the previous Phase Two ESA, no groundwater contamination is present on-Site.

9.2.4 Confined Groundwater Conditions and Excavation Bottom Heave

While confined aquifer conditions were not observed in the monitoring wells installed on-Site, bottom heave occurring in excavations due to unweighting of the soil/bedrock as a result of excavations removing soil/bedrock weight overlying pressurized aquifer conditions should still be considered a possibility as a conservative factor of safety. Diligent observation of conditions in the excavation is recommended to monitor for potential bottom heaving. In the unlikely event bottom heaving or other issues due to pressurized aquifer conditions occur, the construction and dewatering strategies for the project would need to be revised.

9.2.5 Dewatering Discharge Quantity and Quality

The construction dewatering discharge receptor was not known at the time of the issuance of this report.

Based on the limited chemical testing results of the unfiltered groundwater samples analyzed, the quality of the water complied with the Town of Collingwood storm and sanitary discharge by-law criteria, except for TSS.

It is important to note that the elevated levels were measured in an unfiltered sample which is not representative of the dewatering discharge from a decantation tank or equivalent treatment system to remove the suspended solids. Treatment and/or removal of suspended solids prior to discharge will be a key component of dewatering mitigation. It is noted that testing of a filtered sample met the sewer use by-law. Additional confirmatory sampling and analyses of the

construction dewatering discharge are recommended to confirm compliance with the criteria of the receiving system to be used.

Discharge permits are required from the Town of Collingwood for short-term and/or long-term groundwater discharge to the municipal sewers.

10. Summary and Conclusions

The purpose of this assignment was to prepare a hydrogeological investigation report for the proposed development at the Site and assess the stratigraphic and hydrogeological conditions for the purpose of evaluating short-term (temporary) dewatering requirements during Site development and long-term dewatering requirements after the Site has been developed. This report was prepared to present the study findings for supporting an application for a Permit to Take Water (PTTW) or Environmental Activity and Sector Registry (EASR). The report was also prepared to address the general requirements of the document titled "Hydrogeological Assessment Submissions, Conservation Authority Guidelines for Development Applications", June 2013.

Based on the proposed development features and our findings of the Site setting, subsurface conditions, results of field work and laboratory analyses, the hydrogeological site assessment salient points for the construction dewatering needs are summarized in the following paragraphs.

Phase 1 and Phase 2

- The approximate finished floor elevations are 196 m ASL and the lowest elevation for the bulk excavation of the Site (Phase 1 and Phase 2) is taken as 193 m ASL (allowance for removal of fill to competent subgrade, ~ 3 m).
- Groundwater levels ranged from a depth of 0 to 1.3 m bgs, during the most recent round
 of groundwater level measurements (May 16, 2025). Refer to Drawing 3 in Appendix A
 for the Groundwater Elevation Contours.
- The water-bearing units that will be exposed in the excavations during construction include fill materials (clayey silt, sand, gravel) and native soil (silt, clayey silt, and sandy silt to silty sand till) with K values ranging from 1.4 x 10⁻⁷ m/s to 9.5 x 10⁻⁸ m/s.
- The required groundwater lowering (drawdown) is recommended 1 m below the base of the excavation to maintain dry working conditions.
- For the purposes of this report, it is presumed that all structures below the water table will be waterproofed and designed to withstand the hydrostatic pressures/hydrostatic uplift.

Phase 3

- The approximate finished floor elevations are 196 m ASL and the lowest elevation for the bulk excavation for two levels of underground parking is taken as elevation 187.7 m ASL (7 to 7.5 m bgs); and 193 m ASL (3 m bgs) for the slab on grade building.
- Groundwater levels ranged from a depth of 0.3 to 0.7 m bgs, during the most recent round of groundwater level measurements (May 16, 2025) in the north part of the Site. Refer to Drawing 3 in Appendix A for the Groundwater Elevation Contours.
- The water-bearing units that will be exposed in the excavations during construction include fill materials (clayey silt) and native soil (clayey silt, sandy silt till). A 0.6 to 0.8 m thick gravel layer was contacted at approximate elevation 188.4 to 188.9 m ASL. K values ranged from 1.8 x 10⁻⁸ m/s to 2.9 x 10⁻⁵ m/s.

- The required groundwater lowering (drawdown) is recommended 1 m below the base of the excavation to maintain dry working conditions.
- For the purposes of this report, it is presumed that all structures below the water table will be waterproofed and designed to withstand the hydrostatic pressures/hydrostatic uplift.

The discharge rates are summarized in the following table:

Calculated Maximum Total Dewatering Rate Including Factors of Safety

Excavation	Steady State Dewatering (L/day)	Initial Drawdown Surcharge (L/day)	Maximum Total Dewatering Requirement (L/day)
Phase 1 and Phase 2	20,162	10,081	345,926
Phase 3 – mixed use building with 2 levels of underground parking	1,028,353	514,177	2,371,620
Phase 3 – slab on grade retail/office building	6,253	3,126	37,694

- No long-term (permanent) dewatering requirement is expected at this time based on preliminary design.
- Phase 1 and Phase 2 construction dewatering will require maximum daily dewatering rates below 400,000 L/day but more than 50,000 L/day; therefore, an EASR would be required for the proposed temporary construction dewatering.
- Phase 3 construction dewatering will require maximum daily dewatering rates of more than 400,000 L/day based on current design details; therefore, a Category 3 PTTW would be required for the proposed temporary construction dewatering.
- Based on the groundwater chemical test results, it was found that, for discharge to Town of Collingwood storm and sanitary sewers, the groundwater quality in the unfiltered sample analyzed exhibited elevated total suspended solids (TSS). The results for a filtered sample indicated the TSS value met the criteria. Removal of suspended solids prior to discharge will be a key component of dewatering mitigation. Additional confirmatory sampling and analyses are to be undertaken to confirm compliance with the regulatory criteria of the receiving system to be used. The construction dewatering discharge receptor was not known at the time of the issuance of this report (i.e. storm sewer, sanitary or combined sewer, surface water etc.). Once the dewatering discharge location is known, G2S should be contacted to confirm the scope of groundwater testing required, if any for a discharge permit from the municipality.
- The pre-development water balance reflects 1% impervious surface area under existing conditions, as the Site is currently undeveloped and consists of a vacant lot with one residential dwelling. The precipitation falling on the Site would infiltrate the grass/vegetation or gravel covered Site, with a portion flowing to municipal storm sewers

on Hurontario Street and Poplar Sideroad. Therefore, under pre-development conditions there is 10,296,916 m³/year of infiltration of precipitation.

- Under post-development conditions with no mitigation measures in place, redevelopment of the Site will result in approximately 78% impervious surface area. As a result, the post-development infiltration rate (2,232,217 m³/year) is less than the pre-development infiltration rate (10,296,916 m³/year). In this regard, Low Impact Development (LID) or other strategies will be required to mitigate the reduction.
- During a house to house water well survey conducted by G2S, it was determined that up
 to ten wells may be located within the dewatering zone of influence (285 m), however only
 five could be confirmed. In this regard, pre-construction, in-construction, and post
 construction groundwater level monitoring and groundwater quality testing is
 recommended to establish and monitor baseline conditions. As well, a contingency plan
 should be developed to outline the actions that would be required should any unanticipated
 interference with local groundwater supplies occur.
- All monitoring wells and dewatering wells should be abandoned in accordance with the
 Ontario Regulation 903, as amended once no longer in use or being maintained for use.
 The Site owner is considered to be the well owner of the monitoring wells installed at the
 Site ("well owner" Section 1.0, Regulation 903). When the monitoring wells are no longer
 required, it is the owner's responsibility to arrange for abandonment in accordance with
 Ontario Water Resources Act–R.R.O. 1990, Regulation 903 Amended to O. Reg.
 128/03.

It is important to note that the design and installation of a construction dewatering system is the responsibility of the construction contractor. The contractor should verify the information presented in this report. This may be done by examining the hydrogeologic conditions in a test pit and a full-range pumping test by the dewatering subcontractor.

The potential maximum dewatering requirements outlined above are reasonable based on the information available; however, it is important to note that a less-conservative assumption of total dewatering requirements (e.g., allowing a longer initial drawdown time for the excavation, completion of a pump test for the 2 levels of underground to determine the effect the gravel layer will have on dewatering, and/or assuming a smaller dewatering area) could reduce the total dewatering requirements. The client, the construction contractor, and the dewatering contractor shall review the dewatering calculations provided above and make their own determinations regarding the potential maximum daily dewatering requirements for the project

Construction dewatering discharges should follow best management practices, including sediment and erosion control measures, removal of suspended solids by decanting pond/tank or similar treatment system, as well as a water quality and quantity control monitoring programs.

A construction dewatering plan should be prepared by the contractor prior to commencement of construction and the construction dewatering activities. The extent and details of the dewatering scheme are left solely to the contractor's discretion to achieve the performance objectives for stable slopes and dry working conditions and will be based on his/her own interpretation and analysis of Site conditions, equipment, experience and plant efficiency.

11. Limitations

The hydrogeological advice and recommendations provided in this report are based on the factual information obtained during this investigation. It may be possible that the subsurface conditions vary between and beyond the investigated borehole and monitoring well locations. For the purpose of this report, it is assumed that the conditions outside of and between the exact borehole locations are similar to the conditions observed in the boreholes. The change in subsurface stratigraphy reported on the borehole logs has also been interpreted based on non-continuous sampling, therefore, changes in stratigraphy as shown on the borehole logs and as discussed in this report should not be regarded as exact lines of geological change. The subsurface conditions at the Site may change with the passage of time and/or by human intervention.

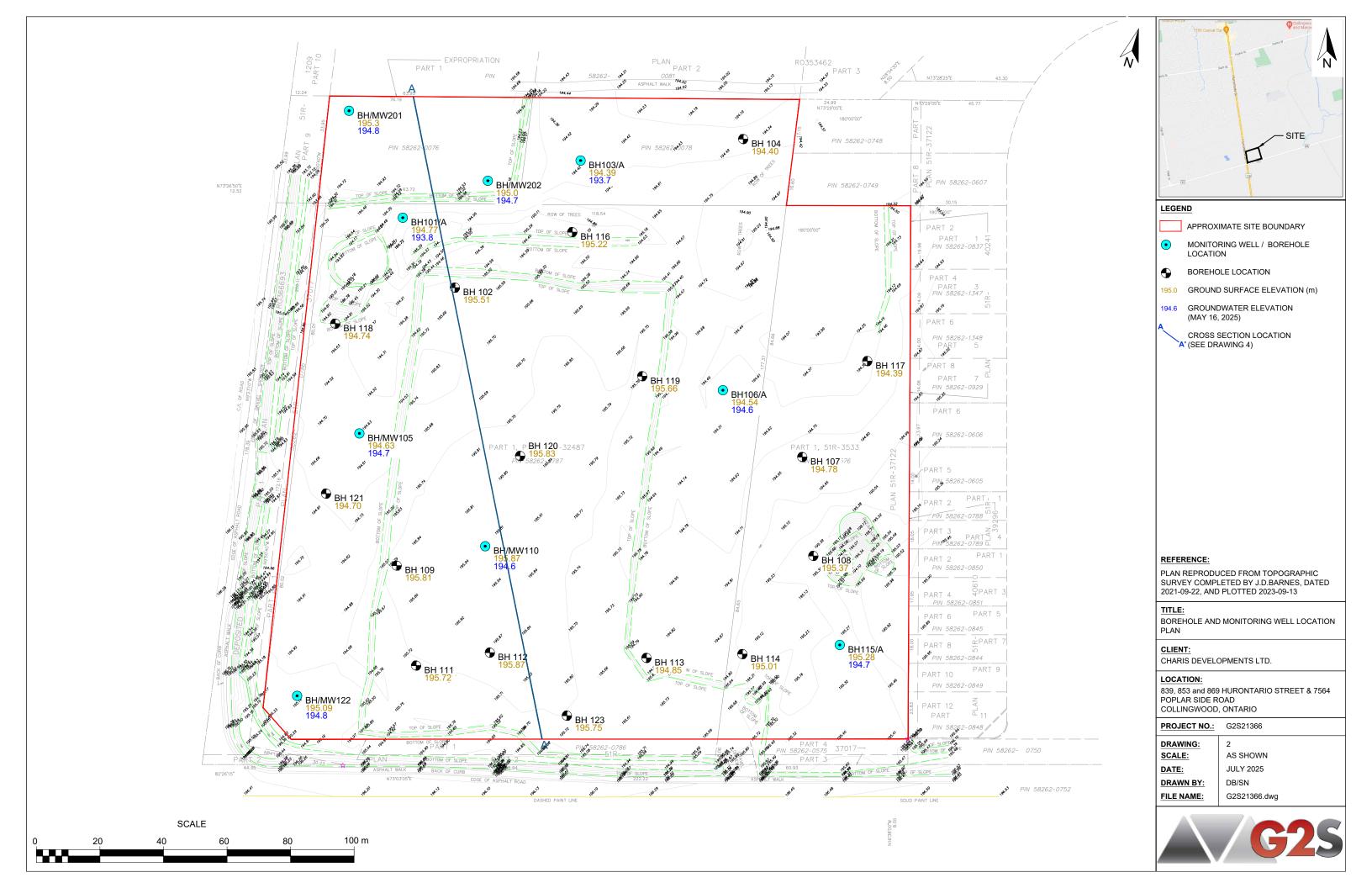
The findings along with the hydrogeological advice and recommendations provided in this report are limited to the conditions at the Site at the time of this investigation as described herein. Conclusions presented in this report should not be construed as legal advice. If Site conditions or applicable standards change or if any additional information becomes available at a future date, changes to the findings, conclusions and recommendations in this report may be necessary.

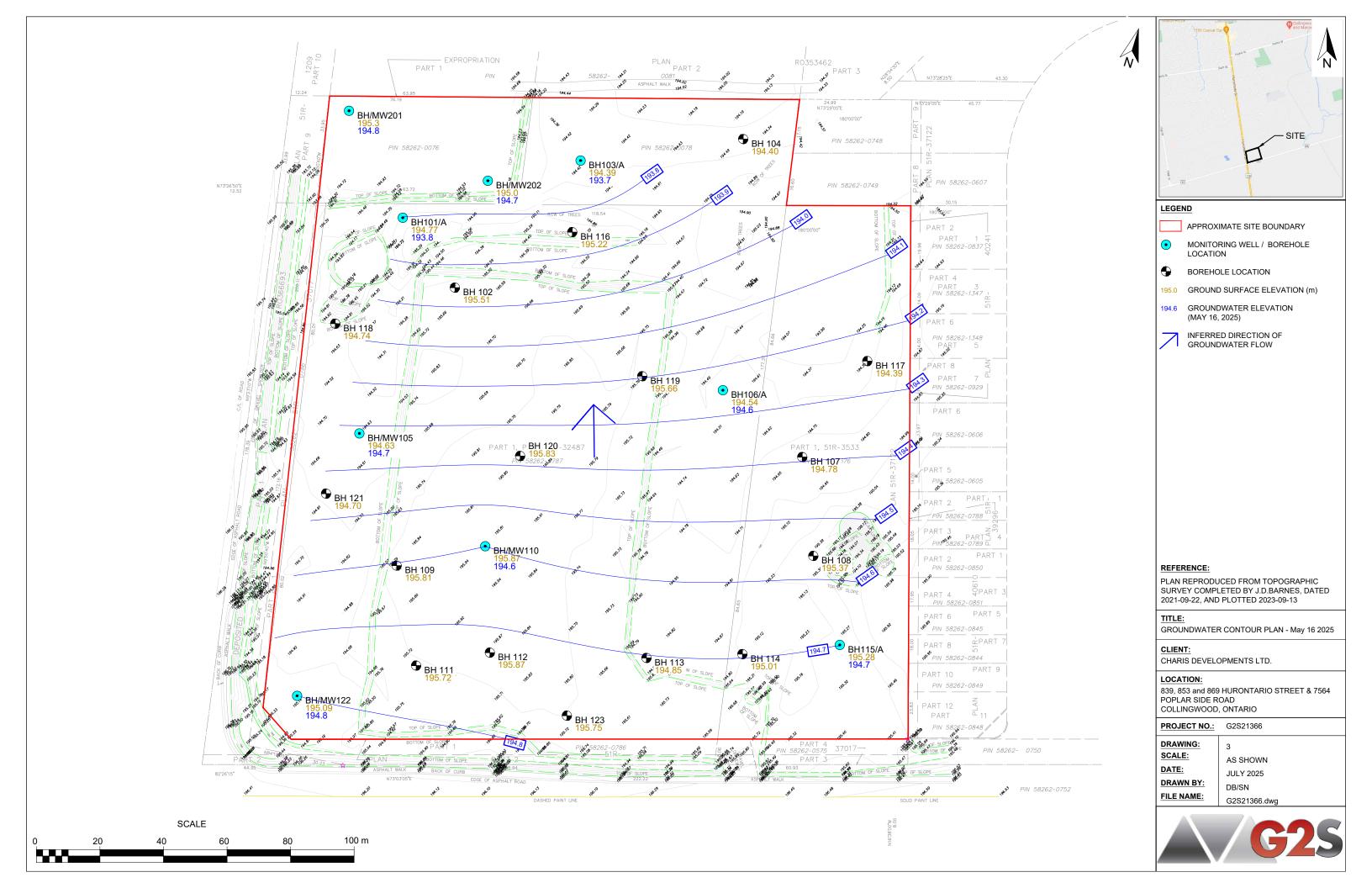
Through any subsurface investigation by boreholes and/or monitoring wells, it may not be possible to identify all aspects of the subsurface conditions at the Site that could affect construction costs, techniques, equipment, and scheduling. Contractors bidding on or undertaking work on the project must be directed to draw their own conclusions as to how the subsurface conditions may affect them, based on their interpretation of the subsurface conditions and/or their own investigations.

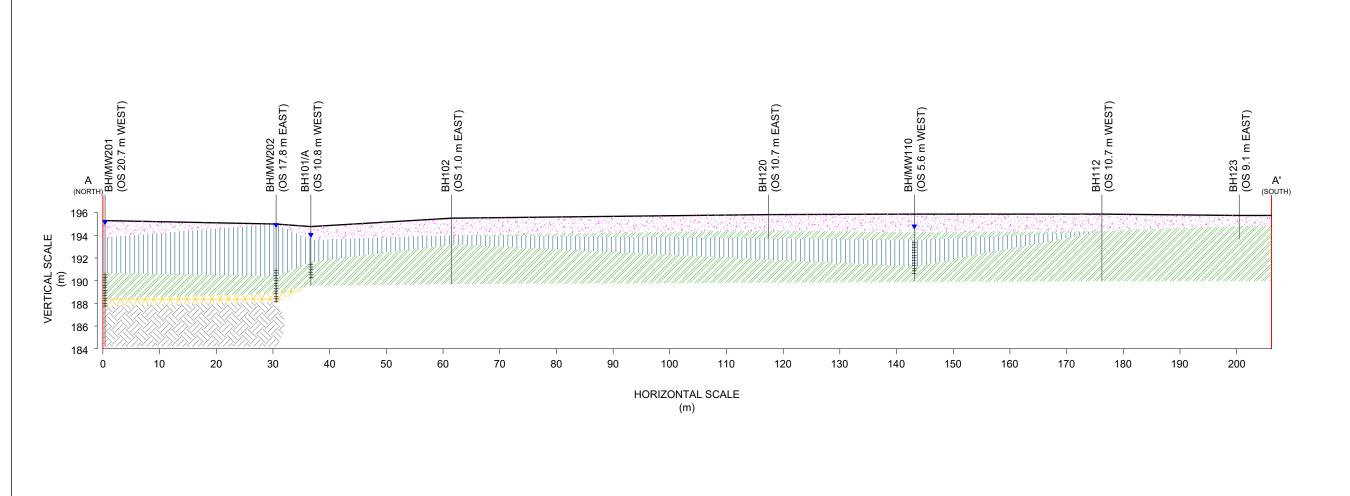
This report has been prepared for the sole benefit of Charis Developments Ltd. (Charis) and is intended to provide hydrogeological advice and recommendations based on the subsurface conditions investigated in the monitoring wells on-Site. This report is the copyright of G2S Consulting Inc. (G2S) and may not be used by any other person or entity without the expressed written consent of Charis and G2S. Any use which a third party makes of this report, or any reliance on decisions made based on it, is the responsibility of such third parties. G2S accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report. It is recognized that Town of Collingwood in their capacity as the planning and building authority under Provincial statues, may make use of and rely upon this report cognizant of the limitations thereof, both as are expressed and implied.

12. Closing Remarks

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.


Yours truly,


G2S Consulting Inc.


Dana Haslett, B.A. Senior Project Manager Melissa King, P.Geo., QP_{ESA} Head of Environmental Services Appendix A: Drawings

LEGEND

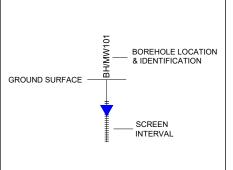
1.00

FILL MATERIALS

NATIVE (SILT / SANDY SILT)

NATIVE (CLAYEY SILT)

NATIVE (GRAVEL)



BEDROCK

GROUNDWATER LEVEL

OS OFFSET

REFERENCE:

PLAN REPRODUCED FROM TOPOGRAPHIC SURVEY COMPLETED BY J.D.BARNES, DATED 2021-09-22, AND PLOTTED 2023-09-13

TITL

CROSS SECTION - A-A'

CLIENT:

CHARIS DEVELOPMENTS LTD.

LOCATION:

839, 853 and 869 HURONTARIO STREET & 7564 POPLAR SIDE ROAD COLLINGWOOD, ONTARIO

PROJECT NO.: G2S21366

DRAWING:

4

SCALE: AS SHOWN
DATE: JULY 2025

DRAWN BY: DB/SN

FILE NAME: G2S21366.dwg

Appendix B: Summary of Water Well Records & House to House Well Survey

	Well Cor	struction		Water	Supply				
Municipal Address	Approx. Year	Туре	Quality	Quality Type Quantity Use		Use	Comments	Survey received	
Poplar Sideroad									
	1990	Domestic	-	-	-	-		N/A	
7564	1964	Domestic	-	-	-	-	No wells identified on-Site; well survey was not completed.	N/A	
	1976	Domestic	-	-	-	-		N/A	
7618	1972	Domestic	-	-	-	-	No wells identified on the property; well survey was not completed.	N/A	
7010	1960	Domestic	-	-	-	-	Tho wells identified on the property, well survey was not completed.	N/A	
7623	1958	Domestic	-	-	-	-	No house on property; well survey was not completed.	No response	
7645	1985	Domestic	Poor-Fair	Hard	Moderate	Domestic	Owner (Hamilton Construction Ltd.) indicated that the well on the property was not used for drinking water, and for washrooms only.	∠	
Hurontario Street	•								
798	2001	Domestic	-	-	-	-	The well is not in use; well survey was not completed.	✓	
864	1954	Domestic	-	-	-	-	Occupant was not home; well survey was not completed.	No response	
876	1968	Domestic	-	-	-	-	Occupant was not home; well survey was not completed.	No response	
Simcoe County Road	124								
4537	2020	Domestic/ commercial	Good	-	Sufficient	Domestic	Owner indicated that the well on the property was not used for drinking water. No other information regarding the use was provided.		
4586	1996	Domestic					Occupant was not home; well survey was not completed.	No response	
4594	1951	Domestic/ livestock	Excellent	Fresh	Moderate	Domestic	Owner indicated that the well was used for drinking water and was shared with a neighbour.	\checkmark	
4559-4553	1961	Domestic	Poor-Fair	Fresh	Not sufficient- moderate	Stock/farm	Owner (Bloom 'n Nursery) indicated that the well on the property was not used for drinking water, and for used for watering the trees and landscaping only. A second well was identified by G2S on this property during the survey; no further information for the second well was available.	v	
County Road 32									
7636	1961	Domestic	-	-	-	-	Occupant was not home; well survey was not completed. A well was observed during the house to house survey.	No response	
7640	1965	Domestic	-	-	-	-	Occupant was not home; well survey was not completed. Potentially use the well at the neighbouring property (7642 Coutny Road 32).	No response	
7642	1950	Domestic	Good	Fresh	Sufficient	Domestic	Owner indicated that the well was used for drinking water and was shared with a neighbour.	☑	

Table 1: House to House Well Survey

	Well Con	struction		Water	Supply				
Municipal Address	Approx. Year	Туре	Quality	Туре	Quantity	Use	Comments	Survey received	
Tracey Lane									
00	1955	Domestic	-	-	-	-	Owner (Newlife Church) indicated that there were no wells on their		
28	1984	Public	-	-	-	-	property to their knowledge and that the property was serviced with municipal water.		
Stanley Street									
19	1954	Domestic	-	-	-	-	Occupant was not home; well survey was not completed.	No response	
37	1990	Domestic	=	-	-	-	No wells identified on the property; well survey was not completed.	N/A	
41	1958	Domestic	-	-	-	-	Occupant was not home; well survey was not completed.	No response	
45	1990	Other (washing equipment)	-	-	-	-	No house on property; well survey was not completed.	No response	
Findlay Drive									
21	1971	Domestic	-	-	-	-	No well identified on the property; well survey was not completed.	N/A	
37	1969	Domestuc	-	-	-	-	The owner indicated that the well is no longer on the property.		
53	1957	Domestic	-	-	-		The owner indicated that the well is no longer on the property.	✓	
54	1994	Domestic	-	-	-	-	No house on property; well survey was not completed.	No response	

Water We	II Record	ds				July 2, 20 3:35:03 I			
TOWNSHIP CON L	UTM	DATE CN	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
COLLINGWOOD TOWN	17 562491 4925435 W	2022-08 7725						7436330 (Z375549) A356205 P	
COLLINGWOOD TOWN	17 562494 4925372 W	2022-08 7725						7436329 (Z375546) A356207 P	
COLLINGWOOD TOWN	17 562451 4925390 W	2022-08 7725						7436328 (Z375547) A356208 P	
COLLINGWOOD TOWN	17 562503 4925398 W	2022-08 7725						7436327 (Z375548) A356206 P	
COLLINGWOOD TOWN	17 562585 4925404 W	2015-08 1565						7247335 (Z197414) A172786 A	
COLLINGWOOD TOWN CON 08 040	17 562649 4925507 W	2021-10 7472	2		///:	МО	0005 10	7405118 (MZKLAOL3) A320007	0015
COLLINGWOOD TOWN CON 08 040	17 562701 4925476 W	2021-10 7472	2		<i>III</i> :	МО	0008 10	7405117 (4FZA2ZPJ) A320006	0018
COLLINGWOOD TOWN CON 08 040	17 562655 4925431 W	2021-10 7472	2		///:	МО	0010 10	7405116 (544AUUBT) A320012	0020
COLLINGWOOD TOWN CON 08 040	17 562686 4925859 W	2018-07 2576	3.88		14///:	NU		7314480 (Z293319) A	
COLLINGWOOD TOWN CON 08 040	17 562699 4925660 W	2023-03 7834						7447170 (Z390675) A355640 P	
COLLINGWOOD TOWN CON 08 040	17 562762 4925883 W	2018-07 2576			4///:	NU		7314481 (Z293318) A	
NOTTAWASAGA TOWNSHIP	17 562602 4925341 W	2020-03 7241	2		///:	MT	0013 10	7359138 (Z330436) A288902	BRWN CLAY 0009 BRWN CLAY 0018 GREY SILT CLAY 0023
NOTTAWASAGA TOWNSHIP	17 562574 4925349 W	2015-08 1565						7247337 (Z197415) A172787 A	
NOTTAWASAGA TOWNSHIP	17 562695 4925955 W	2019-01 7190	12.5	0000	0///:	MT	0016 10	7330327 (Z305971) A264324	BRWN SAND LOOS 0005 GREY SILT TILL GRVL 0016

TOWNSHIP CON L	UTM	DATE CN	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION	
NOTTAWASAGA TOWNSHIP	17 562588 4925295 W	2020-03 7241	2		///:	MT	0011 10	7359137 (Z330437) A288901	BRWN CLAY 0011 BRWN CLAY 0016 GREY SILT CLAY 0021	
NOTTAWASAGA TOWNSHIP	17 562732 4925104 W	2021-08 7241	2		<i>III</i> :	MT	0004 10	7398672 (Z368122) A338037	BRWN LOAM 0002 BRWN CLAY SAND 0004 GREY CLAY 0014	
NOTTAWASAGA TOWNSHIP	17 562761 4925102 W	2021-08 7241	2		///:	MT	0004 10	7398673 (Z368123) A338038	BRWN LOAM 0002 BRWN CLAY SAND 0004 GREY CLAY 0014	
NOTTAWASAGA TOWNSHIP	17 562754 4925124 W	2021-08 7241	2		///:	MT	0004 10	7398674 (Z372228) A338039	BRWN LOAM 0002 BRWN CLAY SAND 0004 GREY CLAY 0014	
NOTTAWASAGA TOWNSHIP	17 562518 4925322 W	2020-03 7241	2		///:	MT	0011 10	7359136 (Z330438) A288900	BRWN CLAY 0010 BRWN CLAY 0018 GREY SILT CLAY 0021	
NOTTAWASAGA TOWNSHIP CON 08 039	17 562648 4925372 W	1960-08 5510	4 4	FR 0040	14/32/3/2:0	DO		5702523 ()	PRDG 0014 CLAY STNS 0023 SHLE CLAY 0029 GREY LMSN 0040	
NOTTAWASAGA TOWNSHIP CON 08 039	17 562758 4925160 W	2011-05 3602	8.25 6.25	SA 0090		DO		7164518 (Z125745) A	BRWN SAND 0002 BRWN CLAY STNS STNY 0005 GREY CLAY STNS STNY 0016 GREY SHLE HARD LYRD 0021 GREY LMSN HARD 0095	
NOTTAWASAGA TOWNSHIP CON 08 040	17 562664 4925574 W	1975-07 3741	6	FR 0018	6/14/10/2:0	DO		5712338 ()	LOAM 0001 GREY CLAY 0013 GREY LMSN 0016 GRVL BLDR SAND 0021	
NOTTAWASAGA TOWNSHIP CON 08 040	17 562614 4925774 W	1984-10 3429	6	SU 0019	8//19/1:15	PS		5719512 ()	BLCK LOAM 0001 FILL 0004 GREY CLAY 0012 BRWN CLAY 0018 GREY SHLE HARD 0022	
NOTTAWASAGA TOWNSHIP CON 08 040	17 562636 4925409 W	1990-06 6443	6	SU 0030	8/17/8/20:0	DO	0027 4	5726973 (75363)	BRWN SAND CLAY STNS 0018 BRWN CSND STNS CMTD 0025 GREY LMSN HARD 0028 GREY FSND 0031	
NOTTAWASAGA TOWNSHIP CON 08 040	17 562599 4925764 W	1955-04 1319	4 4	FR 0024	8/12/3/1:0	DO		5702525 ()	BLCK LOAM 0001 YLLW CLAY 0017 BLUE CLAY 0020 WHIT LMSN 0024	
NOTTAWASAGA TOWNSHIP CON 08 040	17 562677 4925453 W	1964-08 5510	4 4	SU 0032	14/21/2/2:0	DO		5702526 ()	LOAM 0001 CLAY MSND STNS 0014 MSND CLAY SHLE 0019 LMSN 0032	
NOTTAWASAGA TOWNSHIP CON 09 039	17 562598 4925255 W	1951-11 1319	4	FR 0033	14/18/5/1:30	ST DO		5702543 ()	MSND 0027 GRVL 0033	
NOTTAWASAGA TOWNSHIP CON 09 039	17 562614 4925124 W	1984-04 3429	6 6	FR 0050 FR 0053 FR 0057	11/34/5/3:0	DO		5719121 ()	BLCK LOAM 0002 GREY CLAY SAND 0027 GREY GRVL SILT DRTY 0028 GREY SHLE 0057	
NOTTAWASAGA TOWNSHIP CON 09 039	17 562579 4925323 W	1957-09 3807	4 4	FR 0040	16/20/3/1:0	DO		5702544 ()	GREY CLAY STNS 0025 LMSN 0041	

TOWNSHIP CON L	UTM	DATE CN	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
NOTTAWASAGA TOWNSHIP CON 09 039	17 562548 4925162 W	1996-06 1565	6 6	FR 0025 FR 0029	/10/20/12:0	DO		5732377 (157466)	LOAM 0001 CLAY SNDY 0011 GREY CLAY 0025 SAND GRVL 0030
NOTTAWASAGA TOWNSHIP CON 09 040	17 562424 4925362 W	1965-06 1319	4 4	FR 0024	8/18/3/1:0	DO		5702557 ()	FSND 0004 BLUE CLAY 0016 LMSN 0026
NOTTAWASAGA TOWNSHIP CON 09 040	17 562397 4925354 W	1950-09 1549	4 4	FR 0042	16/30/5/:	DO		5702546 ()	MSND STNS CLAY 0005 HPAN STNS CLAY 0021 LMSN 0059
NOTTAWASAGA TOWNSHIP CON 09 040	17 562494 4925712 W	1953-06 5510	4	FR 0032	8/10/5/1:0	DO		5702547 ()	LOAM 0002 SHLE 0012 LMSN SHLE 0032
NOTTAWASAGA TOWNSHIP CON 09 040	17 562563 4925524 W	1954-06 1319	4 4	FR 0033	12/19/4/1:0	DO		5702548 ()	LOAM 0002 YLLW CLAY 0006 YLLW CLAY 0015 LMSN 0033
NOTTAWASAGA TOWNSHIP CON 09 040	17 562361 4925861 W	1957-09 3807	4 4	FR 0055	10///:	DO		5702550 ()	CLAY STNS 0033 LMSN 0055
NOTTAWASAGA TOWNSHIP CON 09 040	17 562379 4925747 W	1958-08 2402	7 7	FR 0050	13/45/5/2:0	DO		5702551 ()	CLAY MSND 0029 STNS 0031 LMSN 0055
NOTTAWASAGA TOWNSHIP CON 09 040	17 562578 4925401 W	1960-01 1319	4 4	FR 0048	7/10/4/1:0	DO		5702552 ()	FSND 0010 BLUE CLAY 0025 BRWN SHLE 0055
NOTTAWASAGA TOWNSHIP CON 09 040	17 562404 4925958 W	1965-04 5510	4 4	FR 0044	9/26/2/2:0	DO		5702555 ()	LOAM 0001 BRWN CLAY STNS 0007 BLUE CLAY 0014 BLUE CLAY MSND 0023 GRVL BLDR 0030 GRVL SHLE 0034 LMSN 0046
NOTTAWASAGA TOWNSHIP CON 09 040	17 562554 4925474 W	1968-12 5510	4	SU 0023	4/13/5/0:30	DO		5706155 ()	STNS 0005 RED CLAY 0014 BLUE CLAY 0019 BLUE CLAY SHLE 0023
NOTTAWASAGA TOWNSHIP CON 09 040	17 562384 4925854 W	1969-05 4726	5	UK 0027	7/24/5/8:0	DO		5706425 ()	BRWN CLAY 0006 BLUE CLAY 0017 HPAN CLAY 0024 MSND 0025 MSND GRVL 0027
NOTTAWASAGA TOWNSHIP CON 09 040	17 562494 4925884 W	1971-10 4716	4	FR 0026	20/24/5/2:0	DO		5708393 ()	BRWN MSND STNS 0002 GREY CLAY STNS 0011 GREY CLAY 0017 GREY CLAY STNS 0022 BRWN MSND 0026 BRWN GRVL MSND 0029
NOTTAWASAGA TOWNSHIP CON 09 040	17 562564 4925404 W	1972-09 4716	5	FR 0032 FR 0046	12/40/5/2:0	DO		5709036 ()	BRWN SAND FILL 0001 BLCK CLAY SAND 0002 BRWN SAND CLAY 0017 GREY CLAY STNS 0028 BRWN SHLE 0046
NOTTAWASAGA TOWNSHIP CON 09 040	17 562529 4925816 W	2001-09 3602	6	FR 0120	/115/2/1:10	DO		5736366 (218495)	BLCK LOAM 0001 BRWN SAND CLAY LYRD 0008 GREY CLAY STNS STNY 0021 GREY SHLE HARD 0025 GREY LMSN HARD 0120
NOTTAWASAGA TOWNSHIP CON 09 040	17 562331 4925777 W	1993-12 3602	6	FR 0037	8/17/8/2:45	DO		5730505 (137016)	BLCK LOAM 0002 BRWN CLAY SOFT 0019 BRWN SHLE HARD 0035 WHIT LMSN HARD PORS 0077

TOWNSHIP CON L	UTM	DATE CN	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
NOTTAWASAGA TOWNSHIP CON 09 040	17 562496 4925372 W	1961-07 3807	4 4	SU 0038	10/25/3/1:0	DO		5702553 ()	LOAM 0002 BRWN CLAY 0020 BLDR 0021 GREY LMSN 0041
NOTTAWASAGA TOWNSHIP CON 09 041	17 562363 4925717 W	1990-06 3030	36	FR 0008 FR 0017	8///:			5727060 (42504)	BRWN FILL 0006 BRWN SAND 0008 GREY SILT 0017 GREY GRVL 0018
NOTTAWASAGA TOWNSHIP CON 09 041	17 562400 4925723 W	1990-06 3030	36	FR 0008 FR 0016	8///:	DO		5727059 (42503)	BRWN FILL 0004 BRWN SAND 0008 GREY SILT 0016 GREY SAND 0018

Notes:

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid

DATE CNTR: Date Work Completedand Well Contractor Licence Number

CASING DIA: .Casing diameter in inches

WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour :

Minutes

WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only

1. Core Material and Descriptive te

Code	Description	Code	Description	Code	Description	Code	Description	Code	Description
BLDR	BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
BSLT	BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD	COARSE-GRAINED	FGVL	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
CGVL	COARSE GRAVEL	FILL	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
CHRT	CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
CLAY	CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
CLN (CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
CLYY	CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	TILL	TILL
CMTD	CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG	CONGLOMERATE	GRNT	GRANITE	MGVL	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
CRYS	CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
CSND	COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL	DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
DLMT	DOLOMITE	GVLY	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
DNSE	DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		
DRTY	DIRTY	HARD	HARD	PEAT	PEAT	SNDS	SANDSTONE		
DRY	DRY	HPAN	HARDPAN	PGVL	PEA GRAVEL	SNDY	SANDYOAPSTONE		

2. Core Color

3. Well Use

Code	Description	Cod	de Description	Coc	de Description
WHIT	WHITE	DO	Domestic	OT	Other
GREY	GREY	ST	Livestock	TH	Test Hole
BLUE	BLUE	IR	Irrigation	DE	Dewatering
GREN	GREEN	IN	Industrial	MO	Monitoring
YLLW	YELLOW	CO	Commercial	MT	Monitoring TestHole
BRWN	BROWN	MN	Municipal		
RED	RED	PS	Public		
BLCK	BLACK	AC	Cooling And A	/C	
BLGY	BLUE-GREY	NU	Not Used		

4. Water Detail

Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
TK	IInknown		

Appendix C: Borehole Logs

	Co	nsulting Inc.														P	AGE 1 OF 1
CL	IENT _	Charis Developments Ltd.					_ PR	OJEC	T NAME	839	& 869	Huronta	ario St	& 7564	Popla	r Side	Rd
PR	OJECT	NUMBER G2S21366B					_ PR	OJEC	T LOCAT	TION _	Colling	wood,	Ontario)			
DA	TE STA	ARTED 21-10-22	COMPLETED	21-10-	22		GR	ROUNE	ELEVA	TION	194.7	7 m					
DF	RILLING	CONTRACTOR LST					_ L0	OGGE	D BY D	В			CHE	CKED	BY A	·A	
DF	RILLING	METHOD Diedrich D50 Tr	rack				NO	TES .									
\vdash					Т	Т			SPT	N VA	LUES	1			(0	z	
DEPTH (m)		MATERIAL DESCRI	PTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	10 Undrainer	20 3 d Shear S	o 40 Strength (kP Vane 20 160	M Pa) P	LASTIC	CITY	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION ° GR SA SI &CL
F	0.36	TOPSOIL: ~360 mm		194.41	1//	- 1	SPT	5						:			
ŀ	0.30	FILL: Sand, brown to dark		134.4		N 551	321	5	^ :					:			
Ī		silt, some clay, moist, deb	ris		\otimes				1 1					:			
1	1				\bigotimes	SS2	SPT	11	<u> </u>								
ŀ	1.2	CLAYEY SILT: Brown to	arev	193.55	***************************************									:			
Ţ		occasional sand seams, s	some clay,			1			}				:	:			
2		moist to very moist, stiff				SS3	SPT	14	A				•	:			
1	1					1			ļ <u>.</u>		<u></u>		<u>.</u>	····· <u>·</u>			
									1 1					:			
ŀ						SS4	SPT	10	À					•			
3	3.1			191.72										:			
	3.1	SILT: Grey, some gravel,	very moist,	191.72		1								:			
-7-52	1	very loose to loose				SS5	SPT	3	A				•				
													:				
4									<u> </u>				<u> </u>				
M 기						SS6	SPT	8	A :			•		:			
	4.6			190.17	,				-					:			
A L		SANDY SILT TILL: Grey,	some gravel,			3								:			
5		moist, dense		400.50		SS7	SPT	55			: >>	`▲ ●					
S 20	5.2	Borehole terminated at 5.2	2 m	189.59	<u> </u>	XI				•	•		•	Uı	oon co	l mpleti	l on of augering
5		Dorchoic terminated at 5.2	<u> </u>											-,			No cave water at 3.9 m
S.G.P.																Free	water at 3.9 m
55																	
퇿																	
S B																	
Ä																	
301																	
1366																	
3282																	
50																	
JEL																	
띪																	
H B0																	
2021 G2S GEOTECH BOREHOLE LOG G2S2/1366 100 SERIES BOREHOLE LOGS GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7																	
GEO																	
G2S																	
1202																	

BOREHOLE NUMBER 102 PAGE 1 OF 1

G2	S
Consulting I	nc.

CL	ENT Charis Developments Ltd.				_ PR	OJEC	CT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd					
	OJECT NUMBER G2S21366B					PROJECT LOCATION Collingwood, Ontario						
- 1	TE STARTED 21-10-21 COMPLETED						ND ELEVATION 195.51 m					
	ILLING CONTRACTOR LST ILLING METHOD Diedrich D50 Track						ED BY DB CHECKED BY AA					
	Diedrich B30 Hack		1		_ 110		CDT NI VALUES					
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values 호 은					
	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist	194.86		SS1	SPT	3	▲ 20/0					
1	becoming clayey silt, brown, some gravel, some silt, moist	193.99		SS2	SPT	22	30/0					
2	CLAYEY SILT: Brown to grey, some sand, stiff			SS3	SPT	10	25/0					
3	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact	193.22		SS4	SPT	16	5 🛕					
				SS5	SPT	12	2 🛕 🕒 15/0 2 6 77 15					
G2S 2021 BH DATA TEMPLATE GDT 25.7-7				SS6	SPT	4	▲ • • • • • • • • • • • • • • • • • • •					
2021 BH DAT	5.2	190.33			VANE		7:0					
	SANDY SILT TILL: Grey, some gravel, trace clay, moist, compact	189.72		SS7	SPT	19						
REHOLE LOG	Borehole terminated at 5.8 m.						Upon completion of augering Wet cave at 4.6 m Free water at 0.65 m after 24 hours					
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ												

PAGE 1 OF 1

G2S Consulting Inc.		BORLHOLL
ENT Charis Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 7564

CLIENT _Charis Developments Ltd. PROJECT NAME _839 & 869 Hurontario St & 7564 Poplar Side Rd

PROJECT NUMBER _G2S21366B PROJECT LOCATION _Collingwood, Ontario

DATE STARTED _21-10-22 COMPLETED _21-10-22 GROUND ELEVATION _194.39 m

DRILLING CONTRACTOR _LST LOGGED BY _DB CHECKED BY _AA

DRILLING METHOD _Diedrich D50 Track NOTES

DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 MOISTURE / PLASTICITY Pocket Penetrometer Vane Pocket Penetrometer Vane 40 80 120 160 MOISTURE / PLASTICITY PL MC LL L DISTRIBUTION % GRAIN SIZE DISTRIBUTION % GRASA SI & C.
-	TOPSOIL: ~125 mm FILL: Clayey silt, brown to grey, some sand, moist	194.27		SS1	SPT	7	•
1	1.00 CLAYEY SILT: Brown, trace sand,	193.39		SS2	SPT	12	
Ė	rootlets, moist, stiff, reworked appearance at the upper section	192.89					
2	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to compact			SS3	SPT	6	
3	-			SS4	SPT	2	2 6 68 24
-	- - - -			SS5	SPT	16	
- 4 -	4.0 SANDY SILT TILL: Grey, some gravel, moist, compact	190.39		SS6	SPT	20	
5	5.2	189.21		SS7	SPT	27	
1	Borehole terminated at 5.2 m						Upon completion of augering

Borehole terminated at 5.2 m.

2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7

Upon completion of augering

Cave at 4.3m

Free water at 4.1 m

PAGE 1 OF 1

	G2S on sulting Inc.		BOKEHOLL
ENT	Charis Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 7564

CLIENT Charis Developments Ltd. PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd

PROJECT NUMBER G2S21366B PROJECT LOCATION Collingwood, Ontario

DATE STARTED 21-10-22 COMPLETED 21-10-22 GROUND ELEVATION 194.40 m

DRILLING CONTRACTOR LST LOGGED BY DB CHECKED BY AA

DRILLING METHOD Diedrich D50 Track NOTES

—	_									
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160 MOISTURE PLASTICITY PL MC LL 10 20 30		WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL
	0.10 TOPSOIL: ~100 mm	194.30								
-	FILL: Clayey silt, brown and grey mottled, some sand, moist	193.62	\bowtie	SS1	SPT	11	•	0/0		
Ł		193.02	紛							
-	CLAYEY SILT: Brown to grey, some sand, reworked appearance at top, moist, stiff	100.00		SS2	SPT	8		0/0		
	1.5	192.90								
2	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, compact		-	SS3	SPT	10	•	0/0		
1							 			
3				SS4	SPT	13	•	0/0		
13										
-				SS5	SPT	10		0/0		
3	3.8	190.59	ЩГ							
4	SANDY SILT TILL: Grey, some gravel, moist, dense			SS6	SPT	33	A •	0/0		
}										
5				SS7	SPT	43		0/0		
1	5.2	189 22								
	Borehole terminated at 5.2 m. Upon completion of augering									

Borehole terminated at 5.2 m.

2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7

lpon completion of augering No cave

Free water at 4.4 m

		G25															PA	GE 1 OF 1
	~ ! !	Consulting Inc.				DD	0 150	T 114		000	9 000	l l	i. C	. 0 750	\ D	la Cia	J_ F	.
		ENT Charis Developments Ltd. DJECT NUMBER G2S21366B									& 869 Colling				94 Рор	iar Sic	ie F	<u>ka</u>
		TE STARTED _21-10-1 COMPLETED	21_10_	1							194.6		Ontai	10				
		ILLING CONTRACTOR Davis									104.0		— CF	IECKE	D BY	AA		
		ILLING METHOD CME 45 Track														, , ,		
			Τ_		T	_		Τ 5	SPT	N VA	LUFS					7	Ŧ	
	(u		ELEVATION (m)	GRAPHIC LOG	2 ~		111	N,	value	es CF	PT value	es			SOIL GAS READINGS	CONSTRUCTION		
	DEPTH (m)	MATERIAL DESCRIPTION	6	₽	NUMBER	TYPE	VALUE		10 2	20 3	0 40			URE /	REAL	STRU		
	EP		<u> </u>	AP		}	> z			d Shear s	Strength (kF Vane	۵,	LAST		GAS			
				98	5				\times	on 1	20 160		PL MO	C LL 1 30	SOIL	WELL		GRAIN SIZE DISTRIBUTION % GR SA SI &CL
İ		0.20 TOPSOIL: ~200 mm	194.43	3 21 7	7.				:	<u>60 12</u> :	: 100		: :) 30 : :				GR SA SI &CL
		CLAYEY SILT: Brown, trace sand, stiff,			SS1	SPT	1		\times					•	25/	0		
	-	very moist, occasional sand seams, moist, firm to stiff, reworked appearance						1	:	:				:				
	1	at the top portion			SS2	SPT	44		: . <u></u>				<u>:</u>	·····	25/			
	-				332	371	11		•	:	: 225	5		:	23/	· ·		
		1.5	193.11											:				
		becoming greyish, layered, numerous sand seams, very moist			ssa	SPT	8	4		:		\star		•	20/	。 :: =		
	2				1			<u> </u>	<u>:</u> :	<u>:</u> :	<u> </u>		:	<u>.</u>				
		2.3 SILT: Grey, layered, trace sand, some	192.34					-	:	:				:				
		clay, very moist to wet, very loose to loose			SS4	SPT	6	*	:	:			Н	•	20/	∘⊩≣		0 9 72 19
	3	loose			-			 	<u>:</u>	<u>:</u>								
							_ \	NH										
25-7	-				SS5	SPT	0	*	:	:	i				30/	°		
:GDT						VA			3.0	:				:				
LATE	4					VA		ļ	50	. <u>:</u>	<u>:</u>	····	<u>:</u> :	<u>:</u> :				
TEM									:	:				:				
DATA		4.6 SILTY SAND TILL: Grey, some gravel,	190.06					1	:	:				:		E		
1 BH [5	trace clay, compact, wet			SS6	SPT	14	ļ	•	<u>:</u>					10/	0		
s 202		5.2 Perchala terminated at 5.2 m	189.45	Z	3				:	<u>:</u>	-		<u> </u>	R	efer to	report	for	groundwater
J G28		Borehole terminated at 5.2 m.												IX	siei lo	героп	(IOI	elevation data
S.GP.																		
LOG																		
40LE																		
ORE																		
ES B																		
SER																		
6 100																		
32136																		
; G28																		
FLOO																		
HOLI																		
BORE																		
ECH																		
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7																		
G2S (
2021																		

		G2S Consulting Inc.						BC	DREHOLE N		ER 106 PAGE 1 OF 1
	CLI	ENT Charis Developments Ltd.				PR	OJEC	T NAME _839 & 869 Hu	ırontario St & 7564 P	oplar Side	Rd
		OJECT NUMBER G2S21366B						T LOCATION Collingwo		•	
	DA	TE STARTED 21-10-22 COMPLETED	21-10-	22		GR	OUNE	ELEVATION 194.54 r	<u>n</u>		
	DR	LLING CONTRACTOR LST				_ L0	OGGE	DBY DB	CHECKED BY	Y _AA	
	DR	LLING METHOD _ Diedrich D50 Track				_ NO	TES .				
•	DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL I O 20 30	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL
		0.08 TOPSOIL: ~75 mm	194.47		×I	ODT					
		FILL: Clayey silt, brown and grey mottled, some sand, very moist, reworked native	193.78		SS1	SPT	4		•		
		CLAYEY SILT: Brown, occasional sand seams, moist, stiff			SS2	SPT	10	A	•		
	2		400.00		SS3	SPT	13	A	•		
	3	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to loose	192.25		SS4	SPT	5	A	•		
T 25-7-7		trace gravel, occasional sand seams	191.49	9	SS5	SPT	3	A	•		
EMPLATE.GD	4				SS6	SPT	6	A	•		
ATA TI		4.6 SILTY SAND TILL: Grey, some gravel,	189.97								
21 BH [5	very moist, compact 5.2	189.36		SS7	SPT	26	A	• :		
32S 20		Borehole terminated at 5.2 m.	100.00	JKX2	<u> </u>				Upo	n complet	ion of augering
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7		Borehole terminated at 5.2 m.							Оро		Cave at 4.3 m water at 2.1 m

PAGE 1 OF 1

G2 5	
Consulting Inc.	

DEPTH (m)	MATERIAL DESCRIPTION	ELEVATIO	GRAPHIC LOG NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160 MOISTURE / PLASTICITY PLASTICITY PLASTICITY SY OUT GRAIN SIZE DISTRIBUTION % GR SA SI & CL
-	0.25 TOPSOIL: ~250 mm	194.53	x ¹ 1 _y .			
-	FILL: Sand, brown, some silt, very moist	194.02	ss	1 SPT	2	
1	CLAYEY SILT: Brown, some sand, moist, very stiff		ss	2 SPT	16	
[
2			ss	3 SPT	14	
-	2.3	192.49				
3	SILTY SAND TILL/SANDY SILT TILL: Grey, some gravel, some clay, moist to very moist, very loose to compact		ss —	4 SPT	7	
Ţ						
5			ss	5 SPT	3	10 36 35 19
4	-					
[]					
-	-					
5	-					1 : : : :
5			ss	6 SPT	15	
<u></u>	Borehole terminated at 5.2 m	189.60	//2	1	1	Upon completion of augering

Borehole terminated at 5.2 m.

2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7

Upon completion of augering No cave Free water at 3.0 m Free water at 0.3 m after 24

PAGE 1 OF 1

G2 S	
Consulting Inc.	

PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd CLIENT Charis Developments Ltd. PROJECT NUMBER G2S21366B **PROJECT LOCATION** Collingwood, Ontario GROUND ELEVATION 195.37 m DATE STARTED 21-10-21 **COMPLETED** 21-10-21 CHECKED BY AA DRILLING CONTRACTOR LST LOGGED BY DB DRILLING METHOD Diedrich D50 Track **NOTES** SPT N VALUES N values CPT values SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION GRAPHIC LOG ELEVATION (m) DEPTH (m) -∆ 40 NUMBER N VALUE 20 30 TYPE MOISTURE / MATERIAL DESCRIPTION **PLASTICITY** Undrained Shear Strength (kPa GRAIN SIZE DISTRIBUTION 9 GR SA SI & CL \times 160 40 80 120 0.10 195.27 TOPSOIL: ~100 mm SPT SS1 10/0 FILL: Clayey silt, brown to dark brown, some sand, very moist 0.76 194.61 CLAYEY SILT: Brown and grey mottled, some sand seams, moist, very SPT SS2 16 193.87 1.5 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to very SPT 17 0/0 SS3 moist, compact SS4 SPT 10/0 3 25-7-7 SS5 SPT 11 5/0 2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 191.56 3.8 SANDY SILT TILL: Grey, some gravel, moist, compact, SS6 SPT 0/0 SPT 21 SS7 5

Borehole terminated at 5.2 m.

Upon completion of augering Cave at 4.4 m

Free water at 3.4 m

PAGE 1 OF 1

G2S		PAGE
Consulting Inc.		
CLIENT Charis Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 7564 Poplar Side Rd
	ů	Consulting Inc.

Р	RC	ROJECT NUMBER G2S21366B				_ PR	OJEC.	T LOCATION Collingwood, Ontario
D	ΑΊ	ATE STARTED 21-10-21 COMPLETED	21-10-2	21		_ GR	OUND	DELEVATION 195.81 m
D	RI	RILLING CONTRACTOR LST				_ LC	GGE	D BY _DB CHECKED BY _AA
D	RI	RILLING METHOD _ Diedrich D50 Track				_ NO	TES _	
DEPTH (m)	חבר ווו (ווו)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 MOISTURE / PLASTICITY PLASTICI
-	-	FILL: Sand and gravel, brown, some silt to silty, possible cobble and boulder size material at the surface, moist			SS1	SPT	8	▲ 25/0
	_	0.95 becoming clayey silt, brown and grey, some sand, some gravel, moist 1.5	194.86 194.29		SS2	SPT	11	25/0
2	2	CLAYEY SILT: Brown to grey mottled, trace sand, moist, stiff to very stiff			SS3	SPT	14	▲ ▶ 30/0 0 2 64 3
- 3	3	3.1	192.76		SS4	SPT	16	▲
GDT 25-7-7	-	becoming layered with trace gravel 3.8	192.00		SS5	SPT	15	▲ 20/0
A TEMPLATE.	-	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist, compact	191.24		SS6	SPT	15	▲ ● 15/0
2021 BH DAT	5_	SANDY SILT TILL: Grey, some gravel, wet, loose	190.63		SS7	SPT	9	A 15/0
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7		Borehole terminated at 5.2 m.	190.63					Upon completion of augerin No cave No free water

BH/MW NUMBER 110 PAGE 1 OF 1

G ₂	25
Consulting	Inc.

		Consulting Inc.														
		ENT Charis Developments Ltd.				PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd PROJECT LOCATION Collingwood, Ontario										
		DJECT NUMBER G2S21366B										rio				
- 1		TE STARTED 21-10-1 COMPLETED	21-10-	1						N 195.87 n		IFOKED F	A	•		
		LLING CONTRACTOR Davis				LOGGED BY DB CHECKED BY AA NOTES										
L	UKI	LLING METHOD CME 45 Track				NC	ILS .									
	DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N val	20 ned Sh	VALUES CPT values 30 40 ear Strength (kPa) theter Vane 120 160	MOIST PLAST PL MC	CLL	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL	
-	-	FILL: Sand and gravel, brown, trace to some silt, possible cobble and boulder size material at the surface, moist			SS1	AU			:				25/0			
-	1				SS2	SPT	52			>>▲	•		25/0			
-	2	SILT: Brown to grey, trace sand, some gravel, very moist, compact, reworked appearance at top portion	194.24		SS3	SPT	11	A	: : : : :		•		25/0			
-	3	CLAYEY SILT: Brown to grey mottled, trace sand, trace gravel, moist, stiff	193.58		SS4	SPT	14	4	\	225	•		45/0			
	-				SS5	SPT	11	•		X		•	25/0			
22 2021 BH DATA TEMPLATE.GDT 25-7-7	4	4.6	191.30													
S 2021 BH DA	5	SILT: Grey, occasional sand pockets, some clay, moist, loose	190.54	Ļ	SS6	SPT	6	X			•		30/0			
GS.GPJ G2	-	SANDY SILT TILL: Grey, some gravel, trace clay, very moist, compact 5.9	189.93		SS7	SPT	19		<u>.</u>	225	•	: : : : : :	30/0			
OLE LO		Borehole terminated at 5.9 m.										Date	W	ater Leve Depth (m	Readings: Elev. (m)	
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ C												2021-11 2024-06 2024-06 2024-07 2022-04 2022-01 2024-06 2021-10 2025-05	I-03 3-05 3-26 7-19 I-05 I-21 3-20	0.90 1.30 1.30 1.33 1.44 1.50 2.00 1.30	194.97 194.57 194.57 194.57 194.54 194.43 194.37 193.87 194.57	

FILL: Sand and gravel, brown, some silt, cobble and boulder size material at the surface, moist 1.5 CLAYEY SILT: Brown to grey, trace sand, some gravel, moist to very moist, stiff to very stiff, reworked appearance at top portion 3 3.1 SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose 4 VANE 5 SPT 1 A VANE 5 SPT 1 A VANE 6 8.1 SPT 20 30															Popla	r Side	Rd
DRILLING CONTRACTOR Davis									Ontario)							
MATERIAL DESCRIPTION Secondary Second		<u> </u>	MPLETED _2	21-9-3	0												
MATERIAL DESCRIPTION Solution Section S																	
MATERIAL DESCRIPTION Well and provide service services and the surface, moist To CLAYEY SILT: Brown to grey, trace sand, some gravel, moist to very moist, stiff to very stiff, reworked appearance at top portion SSS SPT 12 SSS SPT 14 VANE Notice SCPT values 10 20 30 30 40 10 10 20 30 30 40 10 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30	KILLII	NG METHOD CME 45 Track					_ NO	IES .				,					
FILL: Sand and gravel, brown, some silt, cobble and boulder size material at the surface, moist 1	UEPTH (m)	MATERIAL DESCRIPTION	1	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N valu 10 Undraine Pocket Per	20 3 ed Shear netrometer	PT value 30 40 Strength (kPa	M a) P	LASTIC		SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION GR SA SI & C
SS2 SPT 36 CLAYEY SILT: Brown to grey, trace sand, some gravel, moist to very moist, stiff to very stiff, reworked appearance at top portion SS4 SPT 12 3 3.1 SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose 4 VANE SS6 SPT 1 VANE SS8 SPT 1 VANE 192.67	-	silt, cobble and boulder size mat	some terial at			SS1	SPT	32			A	•					
CLAYEY SILT: Brown to grey, trace sand, some gravel, moist to very moist, stiff to very stiff, reworked appearance at top portion SSA SPT 16 SSA SPT 12 SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose VANE SSA SPT 12 VANE 192.67 VANE 189.62	1					SS2	SPT	36			A	•					
SS4 SPT 12 SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose VANE SS6 SPT 1 VANE SS6 SPT 1 VANE SS6 SPT 1 VANE SS6 SPT 1 VANE SS7 SPT 4 SS8 SPT 1 VANE SS8 SPT 1 VANE SS8 SPT 1		CLAYEY SILT: Brown to grey, to sand, some gravel, moist to very stiff to very stiff, reworked appear	race / moist,	<u>194.22</u>		SS3	SPT	16	_	\			•				
SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose SS5 SPT 4 VANE SS6 SPT 1 VANE 6 6.1 189.62	- - - -	at top portion				SS4	SPT	12	A				•				
SS6 SPT 1 NATION OF THE PROPERTY OF THE PROPER	3 3.1	SILT: Grey, layered, trace sand, gravel, some clay, wet, very loos	trace	192.67	· · · · · · · · · · · · · · · · · · ·	SS5	SPT	4	A					•			
VANE 2.0 2.0 6.1 189.62	4						VANE			2;8 80							
6.1	5					SS6	SPT	1					•				
6.1							VANE		2.0 25								
SILTY SAND TILL: Grey, some gravel, trace clay, compact, wet	6.1	SILTY SAND TILL: Grey, some trace clay, compact, wet	gravel,			SS7	SPT	25				•		······································			
Borehole terminated at 6.6 m Upon completion of a	6.6	· · · · · · · · · · · · · · · · · · ·		189.17	<i>Y/L/</i>	1			<u> </u>	<u>:</u>		 :		· U	pon co	mpleti	l on of augerir Cave at 5.8

	G2S								I	PAGE 1 OF 1					
	Consulting Inc.					0.150		0.0 75045							
	IENT Charis Developments Ltd. OJECT NUMBER G2S21366B						T NAME <u>839 & 869 Hu</u> T LOCATION <u>Collingw</u>		oplar Sid	e Rd					
	TE STARTED 21-9-30 COMPLETED	21 10	1												
	ILLING CONTRACTOR Davis ILLING METHOD CME 45 Track				NOTES										
<u> </u>	- SWE TO TROK		_				SPT N VALUES								
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL 10 20 30	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL					
-	FILL: Sand and gravel, brown, some silt, possible cobble and boulder sized material at surface, moist			SS1	AU				15/0						
1	1.5	194.37	7	SS2	SPT	23	A	•	20/0						
2	SILT: Greyish brown, layered, trace sand, trace gravel, some clay moist to wet, very loose to loose			SS3	SPT	7	A	•	10/0						
3				SS4	SPT	10	▲ ×	•	20/0						
				SS5	SPT	4	A ×	•	15/0						
TA TEMPLATE.				SS6	SPT	2)	•	•	20/0						
\$ 2021 BH DA	5.3	190.54	1	SS7	SPT	6	A	•	20/0						
OGS.GPJ G28	SANDY SILT TILL: Grey, some gravel, very moist, compact	189.93		SS8	SPT	12	A	•	15/0						
BOREHOLE LO	Borehole terminated at 5.9 m.							Upo		etion of augering Cave at 3.0 m e water at 3.1 m					
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ. G2S 2021 BH DATA TEMPLATE.GDT. 25-7-7															

PAGE 1 OF 1

	G25 olting Inc.		BOREHOLE
ENT Charis	Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 756

	Charls Developments Ltd.		PROJECT NAME 839 & 869 Hurontario St & 7564 Popiar Side Rd PROJECT LOCATION Collingwood, Ontario										
	OJECT NUMBER G2S21366B								ı, Onta	rio			
1	TE STARTED 21-9-30 COMPLETED					ELEVATION							
1	ILLING CONTRACTOR Davis					D BY DB				HECK	ED B	Y _AA	
DR	ILLING METHOD CME 45 Track			NC	TES .								
DEPTH (m)	MATERIAL DESCRIPTION	"	GRAPHIC LOG NUMBER	TYPE	N VALUE	SPTN VAN values C 10 20 3 Undrained Shear Pocket Penetrometer 40 80 1	PT valu 30 40 Strength (k	Pa)	PLAST	TURE AT TICITY	<i>!</i>	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION GR SA SI &C
	0.20 TOPSOIL: ~200 mm	194.65		ОРТ									
	CLAYEY SILT: Brown to grey, trace sand, trace organics, moist, firm to very stiff, reworked appearance at the top portion		SS1	SPT	6	_							
			SS2	SPT	17	_			•				
2			SS3	SPT	12	A				•			
3	SILT: Greyish brown, layered, trace sand, trace gravel, some clay moist to wet, very loose to loose	192.56	SS4	SPT	6	A				•			
	CLAYEY SILT: Brown to grey, trace sand, trace gravel, moist, very soft		SS5	SPT	0 .	NH			—	•			1 3 68 2
5	4.6	190.28		VANE	-	12							
5	SILTY SAND TILL/SANDY SILT TILL: Grey, some gravel, some clay, very moist, loose to very dense		SS6	SPT	4	A			D.				16 38 28 1
			SS7	SPT	34		A	•					
	6.7	188.14	SS8	SPT	50		50)/125 mm	b				
	Borehole terminated at 6.7 m.			•			•	•	•	•	Upo	n comple	tion of augerin
													No cav e water at 2.3 r

	Consulting Inc.															AGE 1 OF 1
										9 & 869				4 Popla	r Side	Rd
	OJECT NUMBER G2S21366B									Colling		Ontari	О			
	TE STARTED 21-9-30	COMPLETED	21-9-3	0						195.0						
												_ СН	ECKED	BY _/	\A	
DR	ILLING METHOD CME 45 Track					_ NC	TES .									
DEPTH (m)	MATERIAL DESCRIPT	TION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N valu	20 3	Strength (kF	Pa) P	IOISTU LASTI L MC	CITY	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION ' GR SA SI & CL
	TOPSOIL: ~100 mm CLAYEY SILT: Brown to greand, trace organics, occasion seams, moist, firm to very state.	onal sand	194.91		SS1	SPT	5	A	:			•	:			
1	appearance at the top portion	on [´]			SS2	SPT	18	-	A		••••	•				
2	2.3		192.72		SS3	SPT	6	A	: : :				•			
3	SILT: Grey, layered, trace so gravel, some clay, moist, so	and, trace ft	191.96		SS4	SPT	4	A			•					
7-/	SANDY SILT TILL: Grey, tra gravel, trace clay, compact,	ace to some wet	.01100		SS5	SPT	11	A			•					
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.2		190.93		SS6	SPT	11	_			•					
	Borehole terminated at 5.2 r	n.	189.83	<u> </u>	<u> </u>			<u> </u>	<u>;</u>	<u>; ; </u>		<u></u>	·	Jpon co		l on of augering No cave water at 3.7 n
2021 6.20 GEOTECH BUREHOLE LUG 6.252 1300 100 SENIES BUREHOLE LUGS. GFJ 6.25 AL																

	G2 S				· · · · · · · · · · · · · · · · · · ·		ВС	DREHOLE NU	MBER 115 PAGE 1 OF 1
	Consulting Inc.								
CI	IENT Charis Developments Ltd.				_ PR	OJEC.	T NAME <u>839 & 869 Hu</u>	ırontario St & 7564 Popla	ar Side Rd
PI	OJECT NUMBER G2S21366B				_ PR	OJEC.	T LOCATION Collingwo	ood, Ontario	
D	TE STARTED 21-10-1 COMPLETED	21-10-1	1		_ GR	OUND	ELEVATION 195.28 r	<u>n</u>	
DI	ILLING CONTRACTOR Davis				_ LC	GGEI	D BY DB	CHECKED BY _	4A
DI	ILLING METHOD CME 45 Track				_ NO	TES _			
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PLASTICITY PL MC LL H H H H H H H H H H H H H H H H H H	M GRAIN SIZE DISTRIBUTION % GR SA SI & CL
-	0.25 TOPSOIL: ~250 mm	195.03	. <u></u>	SS1	SPT	2			
-	FILL: Clayey silt, brown, some sand, trace gravel, moist 0.76	194.52	\bigotimes	551	371				
-	CLAYEY SILT: Brown to grey, trace sand, trace organics, very moist, stiff, reworked appearance at the top portion			SS2	SPT	12	A		
2				SS3	SPT	11	A	•	
ŀ	2.3	192.99							
3	SILT: Greyish brown, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to loose			SS4	SPT	7	A	•	
1-1-67 10				SS5	SPT	1	<u></u>	•	
DAIA IEMPLAIE.GUI					VANE		5.0: 29:		
- ₹	4.6	190.71							
	SANDY SILT TILL: Grey, some gravel, trace clay, very dense, wet	190.10		SS6	SPT	50	50/100) mm	
PJ 625 2	Borehole terminated at 5.2 m.		W.V.		•			Upon co	ompletion of augering Cave at 3.9 m Free water at 4.0 m
6252 360 100 SERIES BOREHOLE LOGS.GFU G2S 202 BH									

2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 E

PAGE 1 OF 1

	G25
Consult	ing Inc.

CL	ENT Charis Developments Ltd.			PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd												
PR	OJECT NUMBER G2S21366B				_ PR	OJEC ⁻	T LOCATION Collingwo	ood, Ontario								
DA	TE STARTED 21-10-22 COMPLETED _	21-10-	22		_ GR	GROUND ELEVATION 195.22 m										
DR	ILLING CONTRACTOR LST				_ LC	GGE	DB DB	CHECKED BY _A	Α							
DR	ILLING METHOD _ Diedrich D50 Track				_ NO	TES _										
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PLASTICITY PL MC LL 10 20 30	NOOLOGO GRAIN SIZE DISTRIBUTION 9 GR SA SI & CL							
	FILL: Sandy silt, dark brown to brown, trace clay, trace gravel, trace organics, moist			SS1	SPT	5	A	•								
1	1.1 CLAYEY SILT: Brown, some sand, reworked appearance at top portion, moist, stiff	194.15		SS2	SPT	7	A									
2	2.1	193.09		SS3	SPT	11	A	•								

Borehole terminated at 2.1 m.

PAGE 1 OF 1

	G2S
Consult	ing Inc.

CL	IENT Charis Developments Ltd.		PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd														
PR	OJECT NUMBER G2S21366B				_ PR	OJEC ⁻	T LOCATION Collingwo	ood, Ontario									
DA	TE STARTED 21-10-22 COMPLETED	21-10-2	22		_ GR	GROUND ELEVATION 194.39 m											
DR	ILLING CONTRACTOR LST				_ LC	OGGE	DBY DB	CHECKED E	BY AA								
DR	ILLING METHOD _ Diedrich D50 Track				NOTES												
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SOIL GAS READINGS HEXIBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL							
	TOPSOIL: ~75 mm CLAYEY SILT: Brown to grey, occasional sand seams, moist to very moist, firm to stiff, reworked appearance	194.32	иии	SS1	SPT	5	A X	•	0/0								
1	at top portion			SS2	SPT	9	▲ :225×		0/0								
2	2.1	192.26		SS3	SPT	9	▲ 225	•	0/0								

Borehole terminated at 2.1 m.

PAGE 1 OF 1

G2	5
Consulting In	С.

CL	CLIENT Charis Developments Ltd.						PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd						
PR	PROJECT NUMBER G2S21366B						PROJECT LOCATION Collingwood, Ontario						
DA	TE STARTED 21-10-1 COMPLETED 2	21-10-1	1		_ GR	OUND	ELEVATION 194.74	<u>m</u>					
DR	DRILLING CONTRACTOR Davis						LOGGED BY DB CHECKED BY AA						
DR	RILLING METHOD CME 45 Track				_ NO	TES _							
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL H H H H H H H H H H H H H H H H H H	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CI			
	0.20 TOPSOIL: ~200 mm	194.54											
	FILL: Silty sand, brown, trace gravel, moist, contains brick debris	193.98	\boxtimes	SS1	SPT	3							
1	CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist stiff to very stiff			SS2	SPT	16	A	•					
2	2.1	192.61		SS3	SPT	13	A	•					

Borehole terminated at 2.1 m.

PAGE 1 OF 1

	/	G	2 5
Consu	Ιt	i n a	Inc.

CL	CLIENT Charis Developments Ltd.						PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd						
PR	PROJECT NUMBER G2S21366B						PROJECT LOCATION Collingwood, Ontario						
DA	TE STARTED 21-10-21 COMPLETED	21-10-2	21		_ GR	OUND	D ELEVATION 195.66 m						
DR	DRILLING CONTRACTOR LST						LOGGED BY DB CHECKED BY AA						
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _							
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160 NOISTURE / PLASTICITY ROPE OF THE PLASTICITY OF THE	TION %					
	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist			SS1	SPT	28	•						
1	1.2 CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist, very stiff	194.46		SS2	SPT	16							
2	2.1	193.53		SS3.	SPT	17	•						

Borehole terminated at 2.1 m.

PAGE 1 OF 1

	Ä	V					2		5
C	o r	1 S	u I	t	in	g	1	n	С.

CL	CLIENT Charis Developments Ltd.						PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd							
PROJECT NUMBER G2S21366B						PROJECT LOCATION Collingwood, Ontario								
DA	TE STARTED 21-10-21 COMPLETED	21-10-	21		_ GR	OUND	ID ELEVATION 195.83 m							
DR	DRILLING CONTRACTOR LST						LOGGED BY DB CHECKED BY AA							
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _								
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160 NOISTURE / PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY OS GRAINS DISTRIBUTI GRASS OF TRANSPORTED TO THE PLASTICITY OS GRAINS DISTRIBUTI GRASS OF TRANSPORTED TO THE PLASTICITY OS OF TRANSPORTED TO THE PLAS	ION %						
	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist			SS1	SPT	22								
1	1.4	194.48		SS2	SPT	29	4							
2	CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist, very stiff	193.70		SS3	SPT	18	A • • • • • • • • • • • • • • • • • • •							

Borehole terminated at 2.1 m.

BOREHOLE NUMBER 121

PAGE 1 OF 1

	Consulting Inc.												
CL	ENT Charis Developments Ltd.				PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd								
PR	OJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario								
DA	TE STARTED 21-10-1 COMPLETED _	21-10-	1		GROUND ELEVATION 194.70 m								
DR	ILLING CONTRACTOR Davis				_ LC	GGE	ED BY DB CHECKED BY AA						
DR	ILLING METHOD CME 45 Track				_ NO	TES _							
DEРТН (m)	MATERIAL DESCRIPTION 9.15 TOPSOIL: ~150 mm	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values						
	O.15 TOPSOIL: ~150 mm CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist, stiff to very stiff	194.00	rrrn	SS1	SPT	3							
<u>1</u> 				SS2	SPT	15							
2	2.1	192.57	WW	SS3	SPT	16	A •						

Borehole terminated at 2.1 m.

Upon completion of augering No cave No free water

2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7

BOREHOLE NUMBER 122

	Consulting Inc.								PA	GE 1 OF 1		
CL	ENT Charis Developments Ltd.				_ PR	OJEC	T NAME <u>839 & 869 Hu</u>	urontario St & 7564 P	oplar Side I	Rd		
PR	OJECT NUMBER G2S21366B						T LOCATION Collingw					
DA	TE STARTED 21-9-30 COMPLETED	21-9-3	0		_ GR	OUND	ELEVATION _ 195.09	<u>m</u>				
DR	ILLING CONTRACTOR Davis				LOGGED BY DB CHECKED BY AA							
DR	ILLING METHOD CME 45 Track				_ NO	TES _						
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	ТҮРЕ	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane	MOISTURE / PLASTICITY PL MC LL	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION %		
-	0.25 TOPSOIL: ~250 mm	+-	74.7	<u>z</u> .			40 80 120 160	10 20 30	o	GR SA SI & CL		
	FILL: Clayey silt, brown to dark brown, mixed with organics, some sand, some gravel, moist	194.84	\otimes	SS1	SPT	3	A					
1	CLAYEY SILT: Brown to grey, occasional sand seams, trace gravel, moist to very moist, stiff to very stiff			SS2	SPT	16	A	•	Ш			
2				SS3	SPT	11	A	•				
3	SILT: Greyish brown, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to loose	192.80	044	SS4	SPT	7	A	•				
				SS5	SPT	0 V	VH	•				
25 -7-7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.6	190.52			VANE		50					
2 2021 BH DAI	CLAYEY SILT: Brown to grey, trace sand, trace gravel, moist, very soft			SS6	SPT	0 7	VH	⊢ •		5 3 60 32		
6 62.6PJ	6.1	188.99										
S BOKEHOLE	SAND TILL: Grey, medium to coarse, mixed with gravel, trace silt, wet, compact to very dense			SS7	SPT	17	A	•		33 60 7 0		
7 7 886 100 SEKIE												
8 8	8.2	186.86		SS8	SPT	64	>>.	•				
2021 6.20 GEOTECH BOREHOLE LOG 6.2021 800 100 SERVIES BOREHOLE LOGO. 670 6.20 AZ	Borehole terminated at 8.2 m.							Refer		r groundwater elevation data		
2021 625 6.												

BOREHOLE NUMBER 123

PAGE 1 OF 1

G	25
Consulting	Inc.

PROJECT NUMBER G2S21366B PROJECT LOCATION Collingwood, Ontario DATE STARTED 21-10-21 COMPLETED 21-10-21 GROUND ELEVATION 195.75 m DRILLING CONTRACTOR LST LOGGED BY DB CHECKED BY AA									
DRILLING CONTRACTOR LST LOGGED BY DB CHECKED BY AA									
DRILLING METHOD _Diedrich D50 Track NOTES									
	GRAIN SIZE ISTRIBUTION % GR SA SI & CL								
FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist									
1 0.93									
SS3 SPT 15 A Union completion of									

Borehole terminated at 2.1 m.

Upon completion of augering No cave

No free water

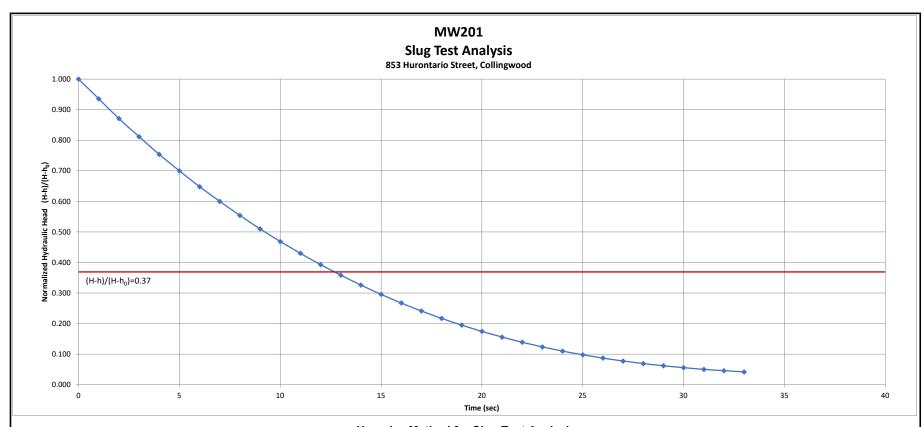
BH/MW NUMBER 101A

		Consulting Inc.											P	AGE 1 OF 1	
	CLI	ENT Charis Developments Ltd.				_ PR	OJEC	T NAME _839	9 & 869 Hu	rontario St	& 7564	Popla	r Side	Rd	
	PR	OJECT NUMBER G2S21366B					OJEC	T LOCATION	Collingwo	ood, Ontario)				
	DA	TE STARTED 22-1-7 COMPLETED	22-1-7	,		GF	GROUND ELEVATION 194.77 m								
		ILLING CONTRACTOR Davis									ECKED E	BY A	Α		
		ILLING METHOD CME 45 Track													
			1	Т				SPT N VA	LUES I			SS	NO		
	DEPTH (m)		ELEVATION (m)	GRAPHIC LOG	ER	111	当	10 20 3	30 40			SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION		
	ĬH.	MATERIAL DESCRIPTION	AT	물	NUMBER	TYPE	N VALUE	Undrained Shear	Strength (kPa)	MOISTU PLASTI		S RE /IBL (NSTE		
	DE		À	RA.	Z		z	Pocket Penetrometer	Vane	PL MC	LL	IL G/	11 00	GRAIN SIZE	
			Ш	Ö				40 80 1	20 160	10 20	30	SO	WE	GRAIN SIZE DISTRIBUTION % GR SA SI & CL	
		Straight auger to 3.05 m for sampling								: :	:			Stickup	
		and 4.57 m for monitoring well installation. Refer to Borehole Log 101													
		for subsurface conditions.													
	1												lacksquare		
													*		
											:			Bentonite seal	
											:				
	2							<u> </u>		<u>:</u>	<u>:</u>				
											:				
											:				
	3										i			Filter sand	
							1		: :		-				
25-7-7					1	ST					:				
DT 2							-				:				
YTE.G	4									<u> </u>	<u> </u>			Slotted screen	
MPL/											:				
'A TE		4.6	190.20	0							:				
I DA		Borehole terminated at 4.6 m.										W	ater Le	evel Readings:	
021 BH DATA TEMPLATE.GDT 25-7-7											Date		Depth	(m) Elev. (m)	
32S 2											2022-04		1.	05 193.72	
PJ 0											2022-0 2024-0	6-05	1.	10 193.67 10 193.67	
GS.G											2024-0 2024-0			10 193.67 20 193.57	
ELO											2025-0			95 193.82	
님															
BORI															
RES															
0 SEF															
36 10															
S213															
3 G2															
E LO															
HOL															
30RE															
HCH E															
EOTE															
2S G															
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2															
7															

BH/MW NUMBER 103A

	Consulting Inc.								P.	AGE 1 OF 1				
CI	ENT Charis Developments Ltd.				PR	O.JFC	TNAME 839 & 869 Hu	rontario St & 7564 Po	nlar Side	Rd				
							F LOCATION Collingwo			110				
	TE STARTED 22-1-7 COMPLETE													
- 1	ILLING CONTRACTOR Davis													
	DRILLING METHOD CME 45 Track													
		<u> </u>		I			SPT N VALUES		T_					
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY SO	HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL				
21 BH DATA TEMPLATE.GDT 25-7-7	Straight auger to 2.29 m for sampling and 4.57 m for monitoring well installation. Refer to Borehole Log 103 for subsurface conditions.			1	ST		40 80 120 160	10 20 30		Stickup Bentonite seal Filter sand				
3H DATA	Borehole terminated at 4.6 m.	189.82	<u> </u>	<u> </u>			<u> ; ; ; ; </u>		Water Le	evel Readings: (m) Elev.(m)				
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 I								Date 2022-01-2 2022-04-0 2024-06-0 2024-07-1 2025-05-1	1 0. 5 0. 5 0. 6 0. 9 0.	65 193.74 59 193.80 80 193.59 90 193.49 70 193.68 71 193.68				

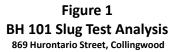
BOREHOLE NUMBER 106A PAGE 1 OF 1

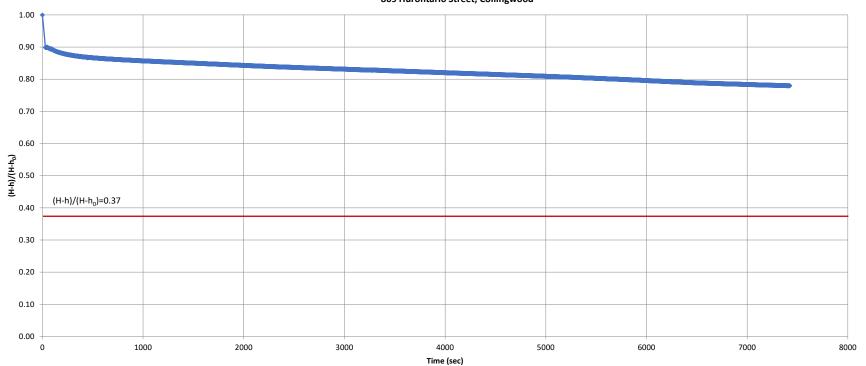

Consulting Inc. CLIENT Charis Developments Ltd. PROJECT NUMBER G2S21366B DATE STARTED 22-1-7 COMPLETED 22-1-7 DRILLING CONTRACTOR Davis DRILLING METHOD CME 45 Track							GROUND ELEVATION 194.54 m LOGGED BY DB CHECKED BY AA							
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG		TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL I I I I I I I I I I I I I I I I I I	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL				
1	Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation. Refer to Borehole Log 106 for subsurface conditions.									Stickup Bentonite seal				
H DATA TEMPLATE GDT 25-7-7	3.1 SILT: Grey, some sand, some clay, trace gravel, wet, loose	191.49		SS1		6	A			Filter sand Slotted screen				
2021 G2S GEOTECH BOREHOLE LOG. G2S21386 100 SERIES BOREHOLE LOGS.GPJ. G2S 2021 BH DATA TEN	Borehole terminated at 4.6 m.	190.12						Refe		or groundwater elevation data				

BH/MW NUMBER 115A

		625													P	AGE 1 OF 1
١		Consulting Inc.											0.0 ==0.4			
		Charis Developments Ltd											St & 7564	Popla	r Side	Rd
		CT NUMBER G2S21366B	201101								Collingw		ario			
		STARTED 22-1-7									195.28		NIFOKEDI	D)	^	
		NG CONTRACTOR Davis NG METHOD CME 45 Trac	L										CHECKED	BY <u>A</u>	Α	
Ľ	KILLII	NG METHOD CME 45 Hac	K				NC	1 5			LUES					
	_			Œ	90	١.			N value	es CF	PT values			SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	
		MATERIAL RECO	DIDTION	NO NO	GRAPHIC LOG	NUMBER	Щ	VALUE	10	20 3	30 40	MOIS	TURE /	EAD	TRUC	
	=	MATERIAL DESCI	RIPTION	/AT	PH		TYPE	× ×			Strength (kPa)		STICITY	SAS F	SONS	
2	5			ELEVATION (m)	GR/	~		~	Pocket Pene	etrometer	Vane	PL —	MC LL	OIC H	ÆLL (GRAIN SIZE DISTRIBUTION %
F		Cturinht average to 2.05 m	. .	+ -	-				40	80 1: :	20 160 : :	10	20 30 : :	Ø	>	GR SA SI &CL
ŀ	1	Straight auger to 3.05 m and 4.57 m for monitoring	ng well							:		•	· · · · · · · · · · · · · · · · · · ·		4	Stickup
-	-	installation													Y	
╁,	, -									:						
F	<u> </u>									:	: : : : : : : : : : : : : : : : : : :	······································	: :			
ŀ	_															Bentonite seal
ŀ	-									:						
	2									<u>.</u>						
ŀ	-															
ţ										:		•	: :			
ŀ,	, -									:		:				Filter sand
ŀ	3.1	CILT: Croy come cond	sama alau	192.23	3 					· !	<u> </u>		·			
2-7-2		SILT: Grey, some sand wet, loose	, some day,			SS1	SPT	4	A							
DT 2	-															
JE C	1											<u> </u>				Slotted screen
MPL	4.3			190.98	3	SS2	SPT	0 .	\	:		:				
¥L	4.4	GRAVELLY SILT TILL:	Grey, some	190.88	36255					<u>:</u>						
H DA		sand, moist Borehole terminated at	4 6 m											W	ater L	evel Readings:
021 B		Boronolo terrimated at	4.0 111.										<u>Date</u>		<u>Depth</u>	(m) Elev. (m)
32S 2													2022-0			.38 194.90
G.													2022-0 2024-0	6-26	1.	.62 194.66 .00 194.28
GS.G													2025-0	5-16	0.	.55 194.73
) 																
잂																
BOF																
INE S																
00 S																
366 1																
32S2																
98																
JE I																
REX																
H BO																
OTEC																
2021 G2S GEOTECH BOREHOLE LOG G2S21366 100 SERIES BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 25-7-7																
21 GZ																
202 																

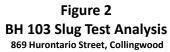
Appendix D: Hydraulic Testing


 $T_{0.37} = 12.75 \text{ sec} \quad T \text{ at (H-h)/(H-h_0)=0.37}$

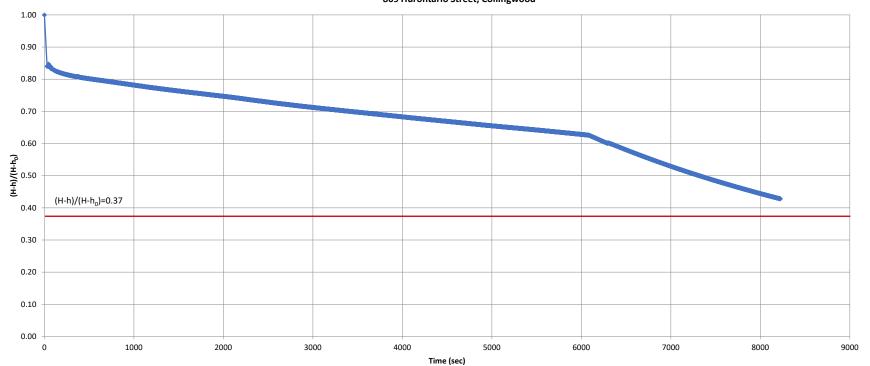

20-Jun-24

 $T_{0.37} = 20898 \text{ sec}$ T at (H-h)/(H-h₀)=0.37

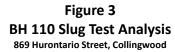
20-Jun-24

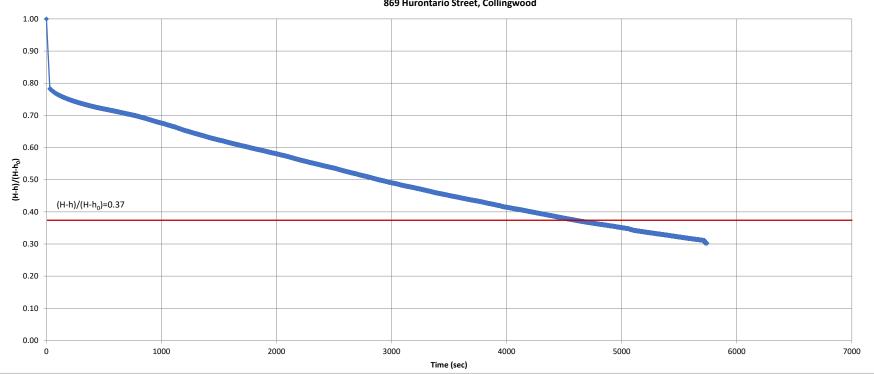


stickup=	1.02 m	casing stickup from ground surface
SWL=	2.10 m	Static Water Level (mBTOP)
r =	0.025 m	casing radius
L =	1.52 m	screen length
R =	0.05 m	borehole radius
$H-h_o =$	3.68 m	Water level change at T=0
$T_{0.37} =$	n/a sec	T at (H-h)/(H-h ₀)=0.37


$$k = (r^2 \ln[(L/R)])/2LT_{0.37}$$

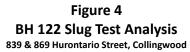
k= <1 x 10⁻⁷ m/sec

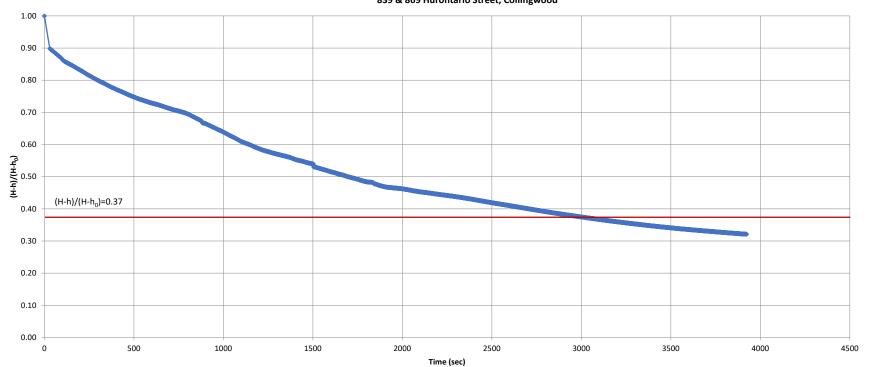



stickup=	1.08 m	casing stickup from ground surface
SWL=	1.73 m	Static Water Level (mBTOP)
r =	0.025 m	casing radius
L =	1.52 m	screen length
R =	0.05 m	borehole radius
$H-h_o =$	3.97 m	Water level change at T=0
$T_{0.37} =$	n/a sec	T at $(H-h)/(H-h_0)=0.37$

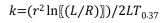
$$k = (r^2 \ln[(L/R)])/2LT_{0.37}$$

k= <1 x 10⁻⁷ m/sec




stickup=	0.65 m	casing stickup from ground surface
SWL=	2.09 m	Static Water Level (mBTOP)
r =	0.025 m	casing radius
L =	3.05 m	screen length
R =	0.05 m	borehole radius
$H-h_o =$	3.87 m	Water level change at T=0
T _{0.27} =	4585 sec	T at (H-h)/(H-h ₀)=0.37

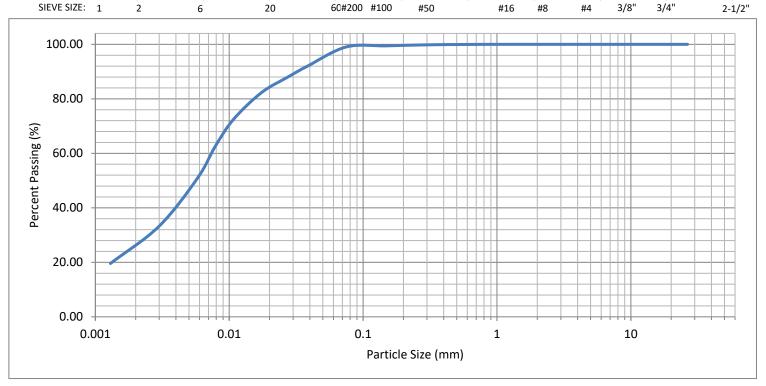
 $k = (r^2 \ln[(L/R)])/2LT_{0.37}$


k= 9.5E-08 m/sec

stickup= SWL=	0.78 m 0.31 m	casing stickup from ground surface Static Water Level (mBTOP)
SVVL=	0.31 111	Static Water Level (IIIBTOP)
r =	0.025 m	casing radius
L =	3.05 m	screen length
R =	0.05 m	borehole radius
$H-h_o =$	5.51 m	Water level change at T=0
$T_{0.37} =$	3000 sec	T at $(H-h)/(H-h_0)=0.37$

k= 1.4E-07 m/sec

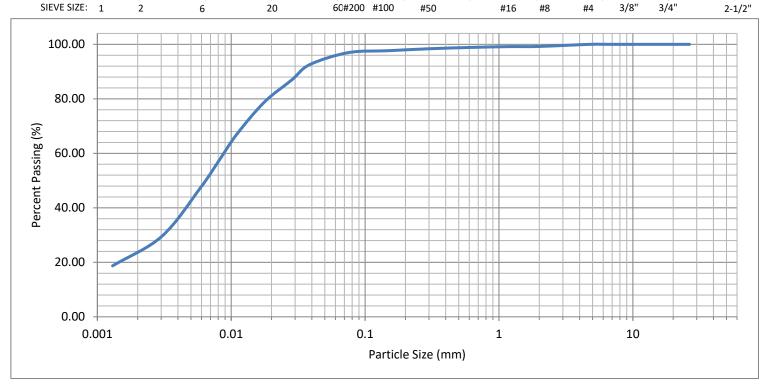
Appendix E: Grain Size Analyses



 Project No.:
 G2S21366D
 Lab No.:
 24132A

Project Name: 839, 853, 869 Hurontario St. & 7564 Poplar Sideroad, Collingwood **Borehole/Sample No.:** BH201-S3

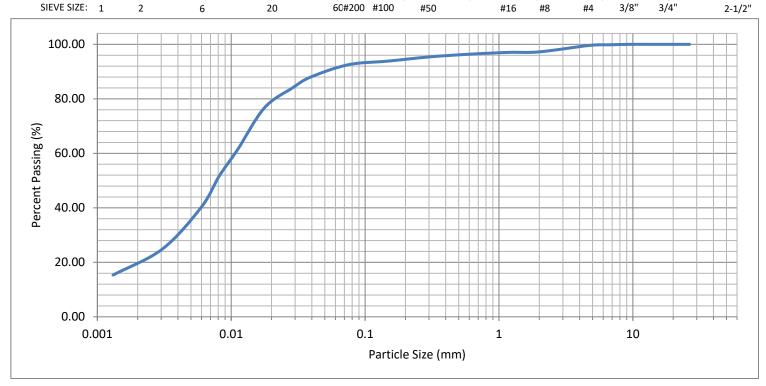
	CLAV	SILT				SAND		GRAVEL			
	CLAT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
::	1	2 6	5 2	0 6	0#200 #100	#50	#16	#8 #4	3/8" 3/	4" 2-	1/2"



 Project No.:
 G2S21366D
 Lab No.:
 24132B

Project Name: 839, 853, 869 Hurontario St. & 7564 Poplar Sideroad, Collingwood Borehole/Sample No.: BH201-S5

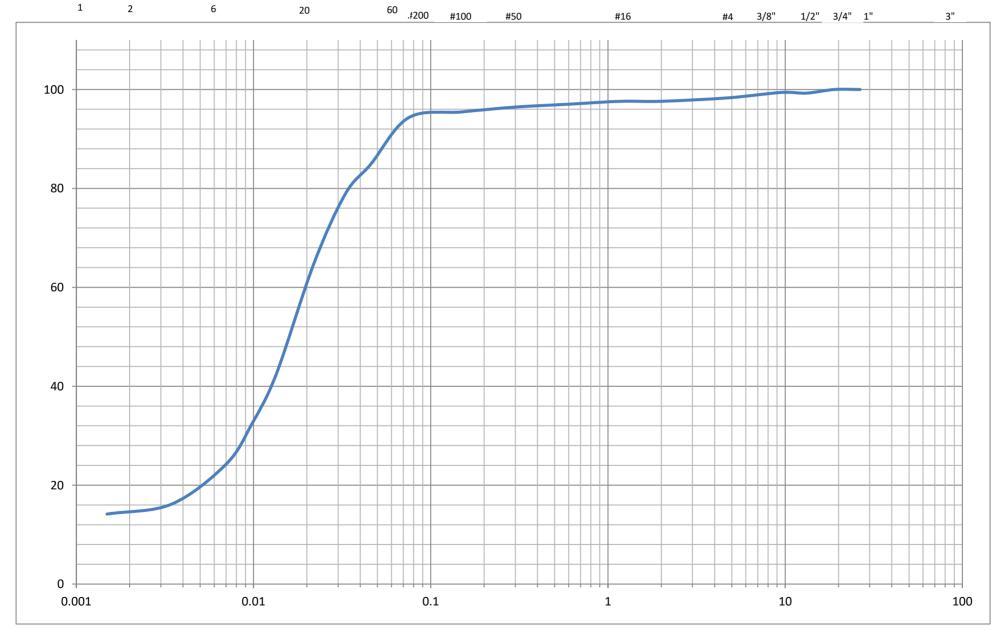
	CLAY	SILT				SAND		GRAVEL			
	CLAT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	1
E:	1	2 6	. 2	0 6	0#200 #100	#50	#16	#8 #4	3/8" 3/	4" 2-	1/2"



 Project No.:
 G2S21366D
 Lab No.:
 24132C

Project Name: 839, 853, 869 Hurontario St. & 7564 Poplar Sideroad, Collingwood Borehole/Sample No.: BH202-S5

	CLAY	SILT				SAND		GRAVEL			
	CLAT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
F:	1	2	5 2	0 (50#200 #100	#50	#16	#8 #4	3/8" 3/	<u>4"</u> 2-	1/2

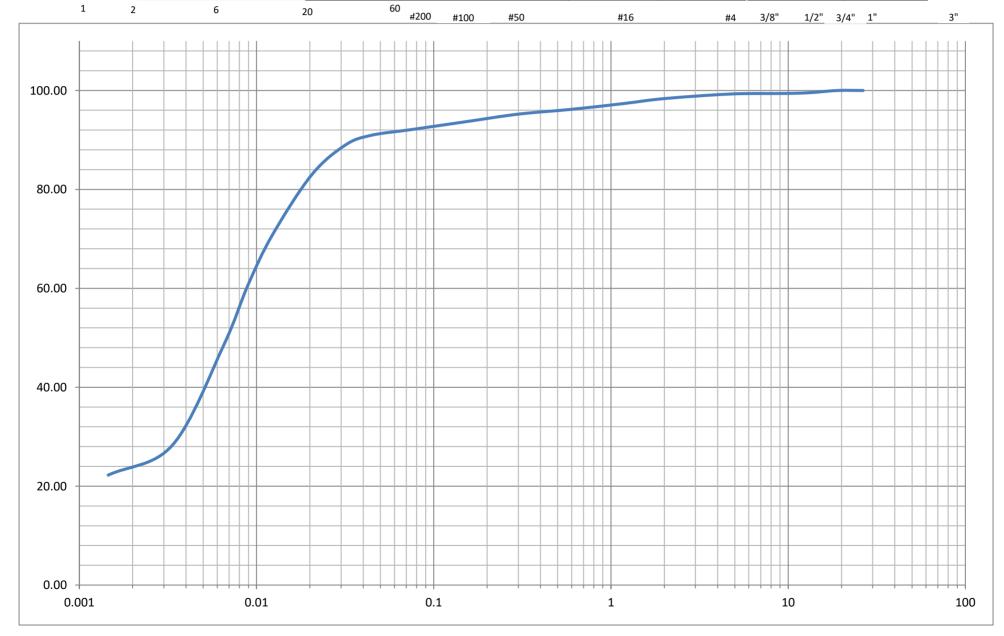

Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031A

Borehole/Sample No.: BH102-SS5

CLAY	SILT				SAND		GRAVEL			
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	

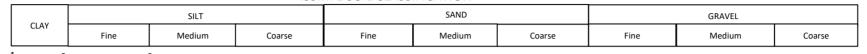

Project No.: G2S21366B

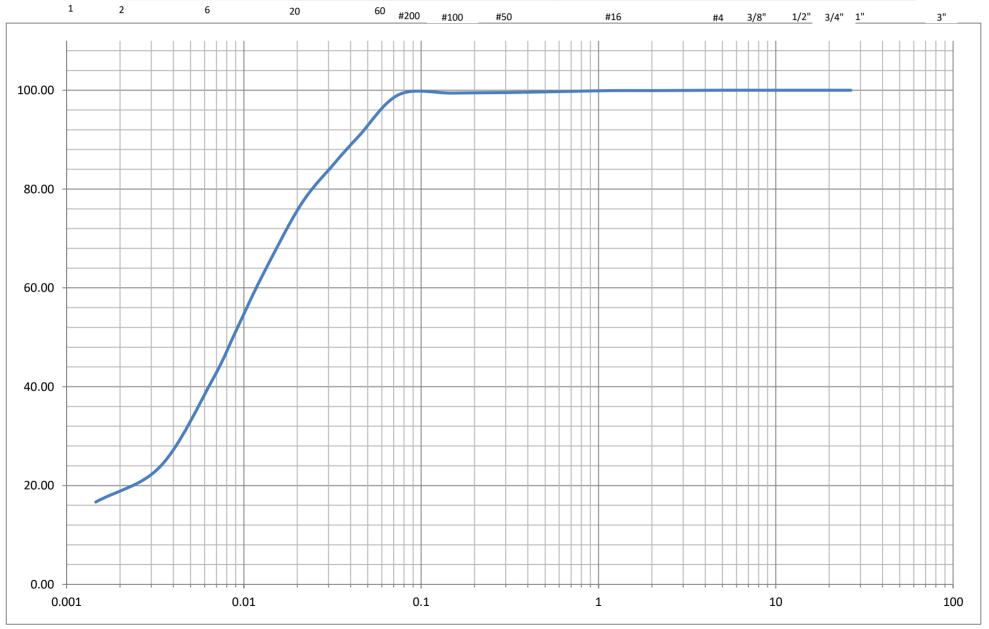
Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031B

Borehole/Sample No.: BH103-SS4

CLAY	SILT				SAND		GRAVEL			
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
1 -								,		

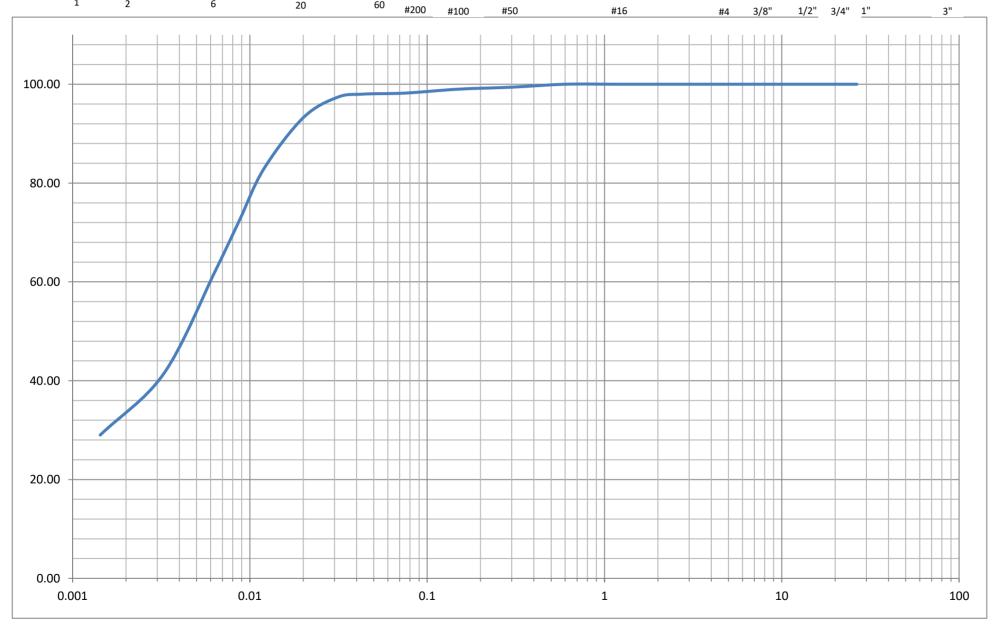



Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031C

Borehole/Sample No.: BH105-SS4

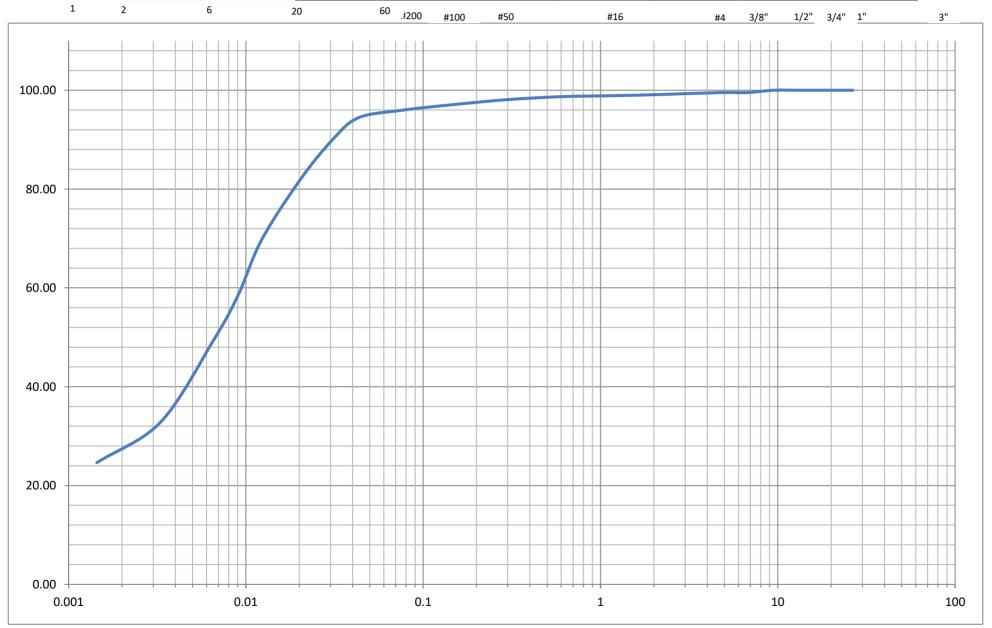

Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St. & 7564 Poplar St.

Lab No.: # 21031E

Borehole/Sample No.: BH109-SS3

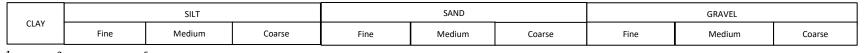
CLAY	SILT				SAND		GRAVEL			
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	


Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St. & 7564 Poplar St.

Lab No.: # 21031G

Borehole/Sample No.: BH113-SS5


Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031F

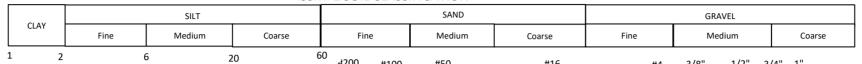
Borehole/Sample No.: BH113-SS6

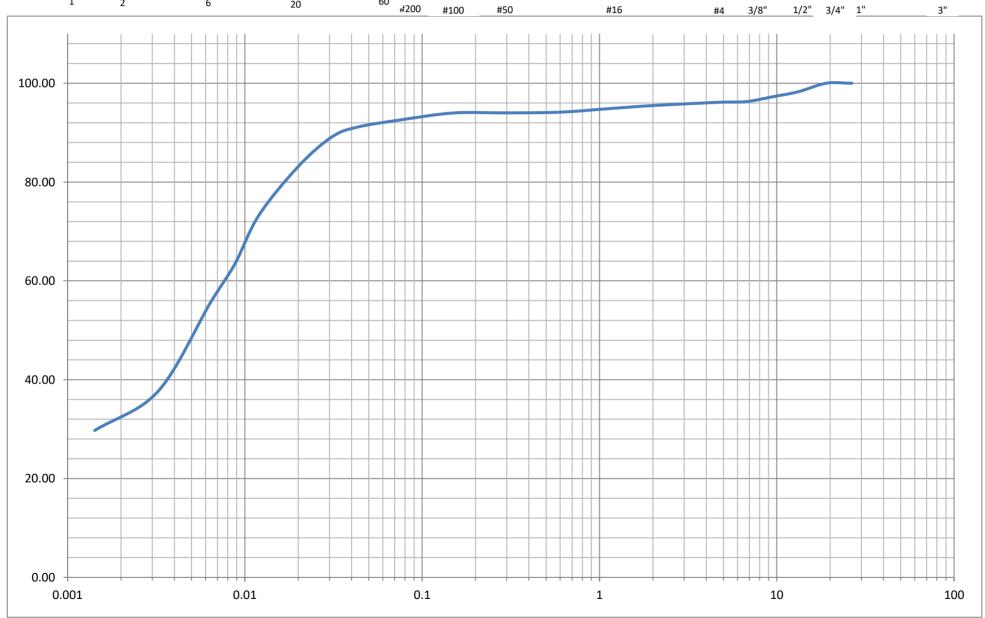
ISSMFE SOIL CLASSIFICATION

60 #200 20 #100 #50 #16 #4 3/8" 1/2" 3/4" 1" 3" 100.00 80.00 60.00 40.00 20.00 0.00 0.001 0.01 0.1 1 10 100

Particle Size (mm)

`




Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031H

Borehole/Sample No.: BH122-SS6

Appendix F: Certificates of Analysis

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

G2S Environmental Consulting Inc. (Burlington)

4361 Harvester Road, Unit 12 Burlington, ON L7L 5M4

Attn: Melissa King

Client PO: 853 Hurontario St., Collingwood

Project: G2S21366

Custody: 73168

Report Date: 4-Jul-2024

Order Date: 21-Jun-2024

Order #: 2425583

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

2425583-01 MW201-UF

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 04-Jul-2024 Order Date: 21-Jun-2024

Project Description: G2S21366

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	25-Jun-24	25-Jun-24
Oil & Grease, animal/vegetable	SM5520 - Gravimetric	28-Jun-24	2-Jul-24
Collingwood - San/Comb: VOCs	EPA 624 - P&T GC-MS	25-Jun-24	25-Jun-24
Cyanide, total	MOE E3015 - Auto Colour	25-Jun-24	25-Jun-24
Hexachlorobenzene	EPA 8081B - GC-ECD	3-Jul-24	3-Jul-24
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	26-Jun-24	26-Jun-24
Metals, ICP-MS	EPA 200.8 - ICP-MS	26-Jun-24	26-Jun-24
Oil & Grease, mineral/synthetic	SM5520F - Gravimetric	28-Jun-24	2-Jul-24
Oil & Grease, total	SM5520B - Gravimetric, hexane soluble	28-Jun-24	2-Jul-24
PCBs, total	EPA 608 - GC-ECD	3-Jul-24	3-Jul-24
pH	EPA 150.1 - pH probe @25 °C	26-Jun-24	26-Jun-24
Phenolics	EPA 420.2 - Auto Colour, 4AAP	25-Jun-24	25-Jun-24
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	25-Jun-24	26-Jun-24
Sulphide	SM 4500SE - Colourimetric	28-Jun-24	28-Jun-24
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	25-Jun-24	26-Jun-24
Total Suspended Solids	SM 2540D - Gravimetric	25-Jun-24	25-Jun-24

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 04-Jul-2024 Order Date: 21-Jun-2024

Project Description: G2S21366

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances)
Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample	Analyte	MDL / Units	Result	Sewer Use - Collingwood: Storm	Sewer Use - Collingwood: Sanitary
MW201-UF	Total Suspended Solids	2 mg/L	449	-	300 mg/L

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 04-Jul-2024

Order Date: 21-Jun-2024

Project Description: G2S21366

	Client ID:	MW201-UF	-	-	-	Crite	eria:
	Sample Date:	20-Jun-24 10:30	-	-	-	Sewer Use -	Sewer Use -
	Sample ID:	2425583-01	-	-	-	Collingwood: Storm	Collingwood:
	Matrix:	Ground Water	-	-	-		Sanitary
	MDL/Units						
General Inorganics					•	-	
Cyanide, total	0.01 mg/L	<0.01	-	-	-	-	1.2 mg/L
рН	0.1 pH Units	8.1	-	-	-	6.00 - 9.00 pH Units	5.50 - 9.50 pH Units
Phenolics	0.001 mg/L	<0.001	-	-	-	-	0.1 mg/L
Phosphorus, total	0.01 mg/L	0.17	-	-	-	-	10 mg/L
Total Suspended Solids	2 mg/L	449	-	-	-	-	300 mg/L
Sulphide	0.02 mg/L	<0.02	-	-	-	-	1 mg/L
Total Kjeldahl Nitrogen	0.1 mg/L	0.6	-	-	-	-	50 mg/L
Anions	•				•	•	
Chloride	1 mg/L	59	-	-	-	-	1500 mg/L
Fluoride	0.1 mg/L	0.3	-	-	-	-	10 mg/L
Sulphate	1 mg/L	17	-	-	-	-	1500 mg/L
Metals - Total	<u> </u>			<u> </u>	<u> </u>	<u> </u>	
Aluminum	0.01 mg/L	2.86	-	-	-	-	50 mg/L
Antimony	0.001 mg/L	<0.001	-	-	-	-	5 mg/L
Arsenic	0.01 mg/L	<0.01	-	-	-	-	1 mg/L
Bismuth	0.005 mg/L	<0.005	-	-	-	-	5 mg/L
Cadmium	0.001 mg/L	<0.001	-	-	-	1 ug/L	0.7 mg/L
Chromium	0.05 mg/L	<0.05	-	-	-	200 ug/L	2.8 mg/L
Cobalt	0.001 mg/L	0.002	-	-	-	-	5 mg/L
Copper	0.005 mg/L	0.006	-	-	-	10 ug/L	2 mg/L
Iron	0.2 mg/L	3.5	-	-	-	-	50 mg/L
Lead	0.001 mg/L	0.003	-	-	-	50 ug/L	0.7 mg/L
Mercury	0.0001 mg/L	<0.0001	-	-	-	1 ug/L	0.01 mg/L
Manganese	0.05 mg/L	0.16	-	-	-	-	5 mg/L
Molybdenum	0.005 mg/L	0.011	-	-	-	-	5 mg/L

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 04-Jul-2024

Order Date: 21-Jun-2024

Project Description: G2S21366

	Client ID:	MW201-UF	-	-	-	Criter	ia:
	Sample Date:	20-Jun-24 10:30	-	-	-	Sewer Use -	Sewer Use -
	Sample ID:	2425583-01	-	-	-	Collingwood: Storm	Collingwood:
	Matrix:	Ground Water	-	-	-		Sanitary
	MDL/Units						
Metals - Total	-				•		
Nickel	0.005 mg/L	<0.005	-	-	-	50 ug/L	2 mg/L
Selenium	0.005 mg/L	<0.005	-	-	-	-	0.8 mg/L
Silver	0.001 mg/L	<0.001	-	1	-	-	0.4 mg/L
Tin	0.01 mg/L	<0.01	-	-	-	-	5 mg/L
Titanium	0.01 mg/L	0.07	-	-	-	-	5 mg/L
Vanadium	0.001 mg/L	0.006	-	-	-	-	5 mg/L
Zinc	0.02 mg/L	<0.02	-	-	-	50 ug/L	2 mg/L
Volatiles	-				•		
Benzene	0.0005 mg/L	0.0006	-	-	-	-	0.01 mg/L
Chloroform	0.0005 mg/L	0.001	-	-	-	-	0.04 mg/L
1,2-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-	-	0.05 mg/L
1,4-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-	-	0.08 mg/L
Ethylbenzene	0.0005 mg/L	<0.0005	-	-	-	-	0.06 mg/L
Methylene Chloride	0.005 mg/L	<0.005	-	-	-	-	0.09 mg/L
1,1,2,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	-	-	-	0.06 mg/L
Tetrachloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	0.06 mg/L
Toluene	0.0005 mg/L	0.002	-	-	-	-	0.02 mg/L
Trichloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	0.05 mg/L
Xylenes, total	0.0005 mg/L	<0.0005	-	-	-	-	0.3 mg/L
4-Bromofluorobenzene	Surrogate	116%	-	-	-	-	-
Dibromofluoromethane	Surrogate	100%	-	-	-	-	-
Toluene-d8	Surrogate	115%	-	-	-	-	-
Hydrocarbons							
Oil & Grease, animal/vegetable	mg/L	<1.00	-	-	-	-	150 mg/L
Oil & Grease, mineral/synthetic	0.5 mg/L	<0.5	-	-	-	<u></u>	15 mg/L

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 04-Jul-2024 Order Date: 21-Jun-2024

Project Description: G2S21366

	Client ID:	MW201-UF	-	-	-	Criteria:	
	Sample Date:	20-Jun-24 10:30	-	-	-	Sewer Use -	Sewer Use -
	Sample ID:	2425583-01	-	-	-	Collingwood: Storm	Collingwood:
	Matrix:	Ground Water	-	-	-		Sanitary
	MDL/Units						
Hydrocarbons	-				•	-	
Oil & Grease, total	0.5 mg/L	0.5	•	•	-	-	-
Pesticides, OC	•						•
Hexachlorobenzene	0.00001 mg/L	<0.00001	•	•	-	-	0.0001 mg/L
Decachlorobiphenyl	Surrogate	52.0%	-	-	-	-	-
PCBs	·				•		
PCBs, total	0.05 ug/L	<0.05	-	-	-	-	0.004 mg/L
Decachlorobiphenyl	Surrogate	66.2%	-	-	-	-	-

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Cyanide, total	ND	0.01	mg/L					
Phenolics	ND	0.001	mg/L					
Phosphorus, total	ND	0.01	mg/L					
Total Suspended Solids	ND	2	mg/L					
Sulphide	ND	0.02	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Hydrocarbons								
Oil & Grease, mineral/synthetic	ND	0.5	mg/L					
Oil & Grease, total	ND	0.5	mg/L					
Metals - Total								
Aluminum	ND	0.01	mg/L					
Antimony	ND	0.001	mg/L					
Arsenic	ND	0.01	mg/L					
Bismuth	ND	0.005	mg/L					
Cadmium	ND	0.001	mg/L					
Chromium	ND	0.05	mg/L					
Cobalt	ND	0.001	mg/L					
Copper	ND	0.005	mg/L					
Iron	ND	0.2	mg/L					
Lead	ND	0.001	mg/L					
Mercury	ND	0.0001	mg/L					
Manganese	ND	0.05	mg/L					
Molybdenum	ND	0.005	mg/L					
Nickel	ND	0.005	mg/L					
Selenium	ND	0.005	mg/L					
Silver	ND	0.001	mg/L					
Tin	ND	0.01	mg/L					
Titanium	ND	0.01	mg/L					
			Ü					

Report Date: 04-Jul-2024

Order Date: 21-Jun-2024

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 04-Jul-2024 Order Date: 21-Jun-2024

Project Description: G2S21366

Client PO: 853 Hurontario St., Collingwood

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Vanadium	ND	0.001	mg/L					
Zinc	ND	0.02	mg/L					
PCBs								
PCBs, total	ND	0.05	ug/L					
Surrogate: Decachlorobiphenyl	0.355		%	71.1	60-140			
Pesticides, OC								
Hexachlorobenzene	ND	0.00001	mg/L					
Surrogate: Decachlorobiphenyl).00033		%	66.2	50-140			
Volatiles								
Benzene	ND	0.0005	mg/L					
Chloroform	ND	0.0005	mg/L					
1,2-Dichlorobenzene	ND	0.0005	mg/L					
1,4-Dichlorobenzene	ND	0.0005	mg/L					
Ethylbenzene	ND	0.0005	mg/L					
Methylene Chloride	ND	0.005	mg/L					
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L					
Tetrachloroethylene	ND	0.0005	mg/L					
Toluene	ND	0.0005	mg/L					
Trichloroethylene	ND	0.0005	mg/L					
Xylenes, total	ND	0.0005	mg/L					
Surrogate: 4-Bromofluorobenzene	0.0960		%	120	50-140			
Surrogate: Dibromofluoromethane	0.0778		%	97.2	50-140			
Surrogate: Toluene-d8	0.0939		%	117	50-140			
			-					

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 04-Jul-2024 Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Method Quality Control: Duplicate

			Result	%REC	Limit	RPD	Limit	Notes
26.0	1	mg/L	25.2			3.2	20	
0.17	0.1	mg/L	0.17			2.3	20	
123	1	mg/L	125			1.8	10	
0.042								
8.2	0.1	pH Units						
ND	0.001	mg/L	ND					
0.085	0.01	mg/L	0.080			6.9	15	
ND	2	mg/L	ND			NC	10	
ND	0.02	mg/L	ND			NC	10	
4.29	0.2	mg/L	4.36			1.7	16	
7.18	0.01	mg/L	7.26			1.1	20	
ND	0.001	mg/L	ND			NC	20	
ND	0.01	mg/L	ND			NC	20	
ND	0.005	mg/L	ND			NC	20	
ND	0.001	mg/L	ND			NC	20	
ND	0.05	mg/L	ND			NC	20	
ND	0.001	mg/L	ND			NC	20	
0.020	0.005	mg/L	0.021			2.6	20	
ND	0.2	mg/L	ND			NC	20	
			ND			NC	20	
ND	0.0001		ND			NC	20	
ND	0.05		ND			NC	20	
ND			ND			NC	20	
			0.006			6.4	20	
		_					20	
	123 0.042 8.2 ND 0.085 ND ND 4.29 7.18 ND	123 1 0.042 0.01 8.2 0.1 ND 0.001 0.085 0.01 ND 2 ND 0.02 4.29 0.2 7.18 0.01 ND 0.001 ND 0.001 ND 0.001 ND 0.005 ND 0.001 ND 0.005 ND 0.001 ND 0.001 ND 0.005 ND 0.001 ND 0.005 ND 0.001 ND 0.005 123 1 mg/L 0.042 0.01 mg/L 8.2 0.1 pH Units ND 0.001 mg/L 0.085 0.01 mg/L ND 2 mg/L ND 0.02 mg/L ND 0.02 mg/L ND 0.01 mg/L ND 0.001 mg/L ND 0.005 mg/L ND 0.001 mg/L ND 0.005 mg/L ND 0.001 mg/L ND 0.001 mg/L	123 1 mg/L 125 0.042 0.01 mg/L 0.042 8.2 0.1 pH Units 8.2 ND 0.001 mg/L ND 0.085 0.01 mg/L ND ND 2 mg/L ND ND 0.02 mg/L ND ND 0.02 mg/L ND 4.29 0.2 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.005 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.005 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.005 m	123 1 mg/L 125 0.042 0.01 mg/L 0.042 8.2 0.1 pH Units 8.2 ND 0.001 mg/L ND 0.085 0.01 mg/L 0.080 ND 2 mg/L ND ND 0.02 mg/L ND ND 0.02 mg/L ND 4.29 0.2 mg/L ND ND 0.001 mg/L ND ND 0.005 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.001 mg/L ND ND 0.005 <t< td=""><td>123</td><td>123 1 mg/L 125 1.8 0.042 0.01 mg/L 0.042 1.3 8.2 0.1 pH Units 8.2 0.4 ND 0.001 mg/L ND NC 0.085 0.01 mg/L 0.080 6.9 ND 2 mg/L ND NC ND 0.02 mg/L ND NC ND 0.02 mg/L ND NC 4.29 0.2 mg/L ND NC 4.29 0.2 mg/L ND NC ND 0.001 mg/L ND NC ND 0.001 mg/L ND NC ND 0.005 mg/L ND NC ND 0.005 mg/L ND NC ND 0.001 mg/L ND NC ND 0.005 mg/L ND NC ND 0.005<td>123 1 mg/L 125 1.8 10 0.042 0.01 mg/L 0.042 1.3 20 8.2 0.1 pH Units 8.2 0.4 3.3 ND 0.001 mg/L ND NC 10 0.085 0.01 mg/L 0.080 6.9 15 ND 2 mg/L ND NC 10 ND 0.02 mg/L ND NC 10 ND 0.02 mg/L ND NC 10 4.29 0.2 mg/L ND NC 10 4.29 0.2 mg/L 4.36 1.7 16 7.18 0.01 mg/L ND NC 20 ND 0.001 mg/L ND NC 20 ND 0.001 mg/L ND NC 20 ND 0.005 mg/L ND NC 20</td></td></t<>	123	123 1 mg/L 125 1.8 0.042 0.01 mg/L 0.042 1.3 8.2 0.1 pH Units 8.2 0.4 ND 0.001 mg/L ND NC 0.085 0.01 mg/L 0.080 6.9 ND 2 mg/L ND NC ND 0.02 mg/L ND NC ND 0.02 mg/L ND NC 4.29 0.2 mg/L ND NC 4.29 0.2 mg/L ND NC ND 0.001 mg/L ND NC ND 0.001 mg/L ND NC ND 0.005 mg/L ND NC ND 0.005 mg/L ND NC ND 0.001 mg/L ND NC ND 0.005 mg/L ND NC ND 0.005 <td>123 1 mg/L 125 1.8 10 0.042 0.01 mg/L 0.042 1.3 20 8.2 0.1 pH Units 8.2 0.4 3.3 ND 0.001 mg/L ND NC 10 0.085 0.01 mg/L 0.080 6.9 15 ND 2 mg/L ND NC 10 ND 0.02 mg/L ND NC 10 ND 0.02 mg/L ND NC 10 4.29 0.2 mg/L ND NC 10 4.29 0.2 mg/L 4.36 1.7 16 7.18 0.01 mg/L ND NC 20 ND 0.001 mg/L ND NC 20 ND 0.001 mg/L ND NC 20 ND 0.005 mg/L ND NC 20</td>	123 1 mg/L 125 1.8 10 0.042 0.01 mg/L 0.042 1.3 20 8.2 0.1 pH Units 8.2 0.4 3.3 ND 0.001 mg/L ND NC 10 0.085 0.01 mg/L 0.080 6.9 15 ND 2 mg/L ND NC 10 ND 0.02 mg/L ND NC 10 ND 0.02 mg/L ND NC 10 4.29 0.2 mg/L ND NC 10 4.29 0.2 mg/L 4.36 1.7 16 7.18 0.01 mg/L ND NC 20 ND 0.001 mg/L ND NC 20 ND 0.001 mg/L ND NC 20 ND 0.005 mg/L ND NC 20	

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Vanadium	0.002	0.001	mg/L	0.002			1.7	20	
Zinc	ND	0.02	mg/L	ND			NC	20	
Volatiles									
Benzene	ND	0.0005	mg/L	ND			NC	30	
Chloroform	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
Ethylbenzene	ND	0.0005	mg/L	ND			NC	30	
Methylene Chloride	ND	0.005	mg/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L	ND			NC	30	
Tetrachloroethylene	ND	0.0005	mg/L	ND			NC	30	
Toluene	ND	0.0005	mg/L	ND			NC	30	
Trichloroethylene	ND	0.0005	mg/L	ND			NC	30	
m,p-Xylenes	ND	0.0005	mg/L	ND			NC	30	
o-Xylene	ND	0.0005	mg/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	0.0946		%		118	50-140			
Surrogate: Dibromofluoromethane	0.0799		%		99.8	50-140			
Surrogate: Toluene-d8	0.0923		%		115	50-140			

Report Date: 04-Jul-2024

Order Date: 21-Jun-2024

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Project Description: G2S21366

Report Date: 04-Jul-2024

Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	34.6	1	mg/L	25.2	94.0	70-124			
Fluoride	0.95	0.1	mg/L	0.17	78.0	70-130			
Sulphate	132	1	mg/L	125	76.7	74-126			
General Inorganics									
Cyanide, total	0.094	0.01	mg/L	0.042	105	64-136			
Phenolics	0.026	0.001	mg/L	ND	105	67-133			
Phosphorus, total	1.07	0.01	mg/L	0.080	99.3	80-120			
otal Suspended Solids	23.0	2	mg/L	ND	107	75-125			
Sulphide	0.51	0.02	mg/L	ND	103	79-115			
otal Kjeldahl Nitrogen	0.98	0.1	mg/L	ND	97.9	81-126			
lydrocarbons									
Oil & Grease, mineral/synthetic	7.80	0.5	mg/L	ND	78.0	65-110			
Dil & Grease, total	20.4	0.5	mg/L	ND	102	85-110			
letals - Total									
luminum	759	0.01	mg/L	726	65.6	80-120			QM-07
rsenic	47.6	0.01	mg/L	0.040	95.2	80-120			
Bismuth	55.5	0.005	mg/L	0.133	111	80-120			
Cadmium	44.3	0.001	mg/L	ND	88.7	80-120			
Chromium	51.4	0.05	mg/L	0.090	103	80-120			
Cobalt	48.8	0.001	mg/L	0.021	97.6	80-120			
Copper	48.0	0.005	mg/L	2.06	91.9	80-120			
ron	2360	0.2	mg/L	8.02	94.2	80-120			
ead	47.0	0.001	mg/L	0.083	93.8	80-120			
Mercury	0.0027	0.0001	mg/L	ND	91.5	70-130			
Manganese	53.2	0.05	mg/L	0.584	105	80-120			
Nolybdenum	48.7	0.005	mg/L	0.081	97.2	80-120			
lickel	48.4	0.005	mg/L	0.589	95.6	80-120			
Selenium	44.4	0.005	mg/L	0.014	88.7	80-120			
Silver	44.2	0.001	mg/L	ND	88.4	80-120			
Гіп	47.9	0.01	mg/L	0.149	95.6	80-120			

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 04-Jul-2024 Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood Project Description: G2S21366

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Titanium	55.4	0.01	mg/L	0.113	111	80-120			
Vanadium	52.4	0.001	mg/L	0.211	104	80-120			
Zinc	44.3	0.02	mg/L	1.36	85.8	80-120			
PCBs									
PCBs, total	0.953	0.05	ug/L	ND	95.3	65-135			
Surrogate: Decachlorobiphenyl	0.356		%		71.1	60-140			
Pesticides, OC									
Hexachlorobenzene	0.00060	0.00001	mg/L	ND	119	50-140			
Surrogate: Decachlorobiphenyl	0.000340		%		67.9	50-140			
Volatiles									
Benzene	0.03	0.0005	mg/L	ND	82.8	60-130			
Chloroform	0.03	0.0005	mg/L	ND	86.0	60-130			
1,2-Dichlorobenzene	0.03	0.0005	mg/L	ND	87.2	60-130			
1,4-Dichlorobenzene	0.04	0.0005	mg/L	ND	91.0	60-130			
Ethylbenzene	0.04	0.0005	mg/L	ND	88.2	60-130			
Methylene Chloride	0.04	0.005	mg/L	ND	110	60-130			
1,1,2,2-Tetrachloroethane	0.03	0.0005	mg/L	ND	84.7	60-130			
Tetrachloroethylene	0.04	0.0005	mg/L	ND	98.8	60-130			
Toluene	0.04	0.0005	mg/L	ND	93.1	60-130			
Trichloroethylene	0.03	0.0005	mg/L	ND	80.1	60-130			
m,p-Xylenes	0.07	0.0005	mg/L	ND	86.8	60-130			
o-Xylene	0.04	0.0005	mg/L	ND	87.5	60-130			
Surrogate: 4-Bromofluorobenzene	0.0811		%		101	50-140			
Surrogate: Dibromofluoromethane	0.0819		%		102	50-140			
Surrogate: Toluene-d8	0.0819		%		102	50-140			

Client: G2S Environmental Consulting Inc. (Burlington)

Order #: 2425583

Certificate of Analysis

Report Date: 04-Jul-2024

Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Qualifier Notes:

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel ID: 2425583

Chain Of Custody

mber

Cont	nt Name: G25 Consulting Inc.			Proje	ct Ref:	GZ521366		1 1		33		Page \ of	T.	
CONT	Melissa King			Quote #: Standing offer PO #: 853 Huronfario St, Collingwood E-mail: melissak agrsconsulting.com blakeza "							Turnaround Time			
Addr	ress: 4361 Harvester Road, Juite	12		PO #:	8:	53 Hurosta	00 51	Calle			- ·			
	Berling for John College			E-mai	1: ma	Llissak Doz	Sconsull	ing cood			□ 1 day		☐ 3 day	
ele	phone: 905 - 638 - 2502					blakeza	10	9 . cc			☐ 2 day		□ Regular	
_	REG 153/04 REG 406/19 Other Regulation	nn .	Т	1	_	149 AT 50		100000000000000000000000000000000000000			Date Required	f:		
] 1	Table 1 D and an D and an D	WQO	N.	1atrix 1	ype:	S (Soil/Sed.) GW (G	round Water)			Red	quired Analysis			
	Table 2		"	an (Su	P (F	Water) SS (Storm/Sa Paint) A (Air) O (Oth	nitary Sewer) ner)	200						
J T	Table 3 ☐ Agri/Other SU - Sani S		_			1 1 1 1 1 1 1 1 1		Collingua Yer byk					4	
T	For BSC: Tives Tilling woo				iner	Samula	Takan	le Co						
	For RSC: Yes No Other:	4	.×	Sample Taken				90					9	
	Sample ID/Location Name		Matrix	Air Volume # Of Containers Poten are Coll									4	
1	MWZOI-UF		GW		14	6/20/2024	Am	+ %	+	-		+	. 5	
2			-		, ,	or corce of	HM	1	+			\perp	-	
3						,		+	+	-		$\perp \perp$		
4								+	-	-				
5								-		\perp			3	
6														
7														
3													1	
,			-											
0			_											
mme	ents: all bottles unfiltered													
										Method	of Delivery:			
inqu	uished By (Sign): Blos	ved at de	Art:			_	1				200	m		
ingu	tithod Dy (Dylat)	(V	5_				Received at Lab:	fm.		Verified	By:			
	ime: 6/21/2024 Temp	Tu.	a d	(/	3	1908)	Date/Time: Lo	21/24	1530		612H24	926	242.11	

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

G2S Environmental Consulting Inc. (Burlington)

4361 Harvester Road, Unit 12 Burlington, ON L7L 5M4

Attn: Melissa King

Client PO: 853 Hurontario St., Collingwood

Project: G2S21366

Custody: 144141

Report Date: 27-Jun-2024

Order Date: 21-Jun-2024

Order #: 2426022

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 2426022-01 MW201-F

Dass

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 27-Jun-2024

Order Date: 21-Jun-2024

Project Description: G2S21366

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	26-Jun-24	26-Jun-24
Total Suspended Solids	SM 2540D - Gravimetric	25-Jun-24	25-Jun-24

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Report Date: 27-Jun-2024

Order Date: 21-Jun-2024

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances)
Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample Analyte MDL / Units Result Sewer Use - Sewer Use - Collingwood: Sanitary Collingwood: Storm

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: 853 Hurontario St., Collingwood

Report Date: 27-Jun-2024

Order Date: 21-Jun-2024

Project Description: G2S21366

	Client ID:	MW201-F	-	-	-	Cı	riteria:
	Sample Date:	20-Jun-24 00:00	-	-	-	Sewer Use -	Sewer Use -
	Sample ID:	2426022-01	-	-	-	Collingwood:	Collingwood: Storm
	Matrix:	Ground Water	-	-	-	Sanitary	
	MDL/Units						
General Inorganics					•	-	
Total Suspended Solids	2 mg/L	<2	-	-	-	300 mg/L	-
Metals - Total					•	•	
Aluminum	0.01 mg/L	0.02	-	-	-	50 mg/L	-
Antimony	0.001 mg/L	<0.001	-	-	-	5 mg/L	-
Arsenic	0.01 mg/L	<0.01	-	-	-	1 mg/L	-
Bismuth	0.005 mg/L	<0.005	-	-	-	5 mg/L	-
Boron	0.05 mg/L	0.30	-	-	-	-	-
Cadmium	0.001 mg/L	<0.001	-	-	-	0.7 mg/L	1 ug/L
Chromium	0.05 mg/L	<0.05	-	-	-	2.8 mg/L	200 ug/L
Cobalt	0.001 mg/L	<0.001	-	-	-	5 mg/L	-
Copper	0.005 mg/L	<0.005	-	-	-	2 mg/L	10 ug/L
Lead	0.001 mg/L	<0.001	-	-	-	0.7 mg/L	50 ug/L
Manganese	0.05 mg/L	<0.05	-	-	-	5 mg/L	-
Molybdenum	0.005 mg/L	0.008	-	-	-	5 mg/L	-
Nickel	0.005 mg/L	<0.005	-	-	-	2 mg/L	50 ug/L
Selenium	0.005 mg/L	<0.005	-	-	-	0.8 mg/L	-
Silver	0.001 mg/L	<0.001	-	-	-	0.4 mg/L	-
Tin	0.01 mg/L	<0.01	-	-	-	5 mg/L	-
Titanium	0.01 mg/L	<0.01	-	-	-	5 mg/L	-
Vanadium	0.001 mg/L	<0.001	-	-	-	5 mg/L	-
Zinc	0.02 mg/L	<0.02	-	-	-	2 mg/L	50 ug/L

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 27-Jun-2024 Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Total Suspended Solids	ND	2	mg/L					
Metals - Total								
Aluminum	ND	0.01	mg/L					
Antimony	ND	0.001	mg/L					
Arsenic	ND	0.01	mg/L					
Bismuth	ND	0.005	mg/L					
Boron	ND	0.05	mg/L					
Cadmium	ND	0.001	mg/L					
Chromium	ND	0.05	mg/L					
Cobalt	ND	0.001	mg/L					
Copper	ND	0.005	mg/L					
Lead	ND	0.001	mg/L					
Manganese	ND	0.05	mg/L					
Molybdenum	ND	0.005	mg/L					
Nickel	ND	0.005	mg/L					
Selenium	ND	0.005	mg/L					
Silver	ND	0.001	mg/L					
Tin	ND	0.01	mg/L					
Titanium	ND	0.01	mg/L					
Vanadium	ND	0.001	mg/L					
Zinc	ND	0.02	mg/L					

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 27-Jun-2024 Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Total Suspended Solids	ND	2	mg/L	ND			NC	10	
Metals - Total									
Aluminum	7.18	0.01	mg/L	7.26			1.1	20	
Antimony	ND	0.001	mg/L	ND			NC	20	
Arsenic	ND	0.01	mg/L	ND			NC	20	
Bismuth	ND	0.005	mg/L	ND			NC	20	
Boron	0.05	0.05	mg/L	0.06			4.5	20	
Cadmium	ND	0.001	mg/L	ND			NC	20	
Chromium	ND	0.05	mg/L	ND			NC	20	
Cobalt	ND	0.001	mg/L	ND			NC	20	
Copper	0.020	0.005	mg/L	0.021			2.6	20	
Lead	ND	0.001	mg/L	ND			NC	20	
Manganese	ND	0.05	mg/L	ND			NC	20	
Molybdenum	ND	0.005	mg/L	ND			NC	20	
Nickel	0.006	0.005	mg/L	0.006			6.4	20	
Selenium	ND	0.005	mg/L	ND			NC	20	
Silver	ND	0.001	mg/L	ND			NC	20	
Tin	ND	0.01	mg/L	ND			NC	20	
Titanium	ND	0.01	mg/L	ND			NC	20	
Vanadium	0.002	0.001	mg/L	0.002			1.7	20	
Zinc	ND	0.02	mg/L	ND			NC	20	

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 27-Jun-2024 Order Date: 21-Jun-2024

Project Description: G2S21366

Client PO: 853 Hurontario St., Collingwood

Method Quality Control: Spike

mounta quanty control opike									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Total Suspended Solids	23.0	2	mg/L	ND	107	75-125			
Metals - Total									
Aluminum	759	0.01	mg/L	726	65.6	80-120			QM-07
Arsenic	47.6	0.01	mg/L	0.040	95.2	80-120			
Bismuth	55.5	0.005	mg/L	0.133	111	80-120			
Boron	54.9	0.05	mg/L	5.63	98.6	80-120			
Cadmium	44.3	0.001	mg/L	ND	88.7	80-120			
Chromium	51.4	0.05	mg/L	0.090	103	80-120			
Cobalt	48.8	0.001	mg/L	0.021	97.6	80-120			
Copper	48.0	0.005	mg/L	2.06	91.9	80-120			
Lead	47.0	0.001	mg/L	0.083	93.8	80-120			
Manganese	53.2	0.05	mg/L	0.584	105	80-120			
Molybdenum	48.7	0.005	mg/L	0.081	97.2	80-120			
Nickel	48.4	0.005	mg/L	0.589	95.6	80-120			
Selenium	44.4	0.005	mg/L	0.014	88.7	80-120			
Silver	44.2	0.001	mg/L	ND	88.4	80-120			
Tin	47.9	0.01	mg/L	0.149	95.6	80-120			
Titanium	55.4	0.01	mg/L	0.113	111	80-120			
Vanadium	52.4	0.001	mg/L	0.211	104	80-120			
Zinc	44.3	0.02	mg/L	1.36	85.8	80-120			

Client: G2S Environmental Consulting Inc. (Burlington)

Order #: 2426022

Certificate of Analysis

Report Date: 27-Jun-2024

Order Date: 21-Jun-2024

Client PO: 853 Hurontario St., Collingwood

Project Description: G2S21366

Qualifier Notes:

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

RESPONSIVE

Chain of Custody
(Lab Use Only)
Nº 144141

Client Name: (_2C_C	1		Denio	ot Dof												
Client Name: 625 Consulting	9 11 C.		Projec	GI Her.	G2521366							Page of(
Contact Name: Melissa Kini	9		Quote	2	tanding OFF	~				7.		i		Turnard	ound Ti	me
9561 Harvester	Road, Suite 12		PO #:	8	53 Hunon	tacio 56	. Col	line		d					3 day	
Burlington, Ont	ario		E-mail: melissak@gzsconselking.con							2 day				⊠ Regular		
elephone: 905 - 638 - 250	2			E-mail: Melissak@gssconsulting.con blakez@gesconsulting.com							Requ	M negular				
REG 153/04 REG 406/19	Other Regulation	П			S (Soil/Sed.) GW (G							Date	nequ	ired:		
Table 1 Res/Park Med/Fine	☐ REG 558 ☐ PWQO				Vater) SS (Storm/Sa						Re	quirec	Anal	ysis		
Table 2 Ind/Comm Coarse	☐ CCME ☐ MISA				paint A (Air) O (Othe						T					
Table 3 Agri/Other	SU - Sani SU-Storm			2			HE)									
Table	Mun: Collingwood	φ in Sample Tal				Taken	F4+			<u>S</u>						
For RSC: Yes No	Other	Air Volume Air Volume To Gontainers				PHCs F1-F4+BTEX	(0)		Metals by ICP			(S)				
Sample ID/Loca	ition Name	Matrix	Mary Date		Time	- Ä	VOCs	PAHs	vleta	D)	CrVI	B (HWS)	455			
MW201-F		Gw		2	6/2012024	Am	_			×		-	ш	X	-	
	- Age Becarding	1000				AIS	7	-		^				^		1 (4)
															-	-
		-						-		-						
							-			_						
							+									-
		-					-									
																1
)																
mments: both bottles Fi	lkerd															
	ITCICOL				×	\					Metho	d of De	nvery.	HV	.7	
inquished By (Sign): Black	Received	epot:				Received at Lab:					Verifie	d By:/	VVE	=	20	um
ellinquished By (Print): Blake Zazinsky Date/Time: Jun				- Xm				Y1				am				
18/Time: 6/21/2024	Temperature:	Jun	d.	12	024 900	Date/Time: 6/2 Temperature:	1124	1	530		Date/1	lime'6	24/2	14	953	
ain of Custody (Env) xlsx				Temperature: 14.00 °C					pH Ver	riied: 🗖	By:	d	w			

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

G2S Environmental Consulting Inc. (Burlington)

4361 Harvester Road, Unit 12 Burlington, ON L7L 5M4

Attn: Melissa King

Client PO:

Project: G2S21366

Custody: 73200

Report Date: 3-Jul-2024

Order Date: 26-Jun-2024

Order #: 2426326

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID

Client ID

2426326-01

MW201-UF

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: Project Description: G2S21366

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Biochemical Oxygen Demand	SM 5210B - DO Probe	28-Jun-24	3-Jul-24
E. coli	MOE E3407	28-Jun-24	28-Jun-24

Report Date: 03-Jul-2024

Order Date: 26-Jun-2024

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: Project Description: G2S21366

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances)
Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample Analyte MDL / Units Result Sewer Use - Sewer Use - Collingwood: Sanitary Collingwood: Storm

Report Date: 03-Jul-2024

Order Date: 26-Jun-2024

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Client PO: Project Description: G2S21366

	Client ID:	MW201-UF	-	-	-	Cr	iteria:
	Sample Date:	26-Jun-24 13:00	-	-	-	Sewer Use -	Sewer Use -
	Sample ID:	2426326-01	-	-	-	Collingwood:	Collingwood: Storm
	Matrix:	Ground Water	-	-	-	Sanitary	
	MDL/Units						
Microbiological Parameters							•
E. coli	1 CFU/100mL	5 [1]	-	-	-	-	-
General Inorganics					·		
BOD	2 mg/L	<2	-	-	-	300 mg/L	-

Report Date: 03-Jul-2024

Order Date: 26-Jun-2024

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 03-Jul-2024 Order Date: 26-Jun-2024

Client PO:

Project Description: G2S21366

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics BOD	ND	2	mg/L					
Microbiological Parameters E. coli	ND	1	CFU/100mL					

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 03-Jul-2024 Order Date: 26-Jun-2024

Project Description: G2S21366

Client PO:

Method Quality Control: Duplicate

metrica Quanty Control: Bupileate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics BOD	6560	2	mg/L	6570			0.2	20	
Microbiological Parameters E. coli	4	1	CFU/100mL	5			22.2	30	BAC12

Certificate of Analysis

Client: G2S Environmental Consulting Inc. (Burlington)

Report Date: 03-Jul-2024 Order Date: 26-Jun-2024

Client PO:

Project Description: G2S21366

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics BOD	176	2	mg/L	ND	88.0	71-121			

Client: G2S Environmental Consulting Inc. (Burlington)

Order #: 2426326

Certificate of Analysis

Report Date: 03-Jul-2024

Order Date: 26-Jun-2024

Client PO: Project Description: G2S21366

Qualifier Notes:

Sample Qualifiers:

1: Confluent background/interfering flora: May interfere with target colony growth and the analysts' ability to count discreet colonies. The target colonies

may be under-represented.

Applies to Samples: MW201-UF

QC Qualifiers:

BAC12 Confluent background/interfering flora: May interfere with target colony growth and the analysts' ability to count discreet colonies. The target

colonies may be under-represented.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel Order Number (Lab Use Only)

Chain Of Custody

(Lab Use Only)

CUDOKATOKIES LID.				426326		Nº 7320	00		
Contact Name: 625 Conspirms	Project Ref:	2521366		Page of (
Contact Name: Melissa King Address: 4361 Llanester Rd, Builington	Quote #:	-021500			Turnaround	-			
Modern 4361 Llanester Rd, Birlington	PO #:			□ 1 day □ 3 day					
LIC SMICE	E-mail: 1945	melissak P a	7 = Mn 51						
Telephone: 719.887 9510		metissak@ a dylanbese	12 ,,,,,			Regular			
REG 153/04 REG 406/19 Other Regulation			1000	2.000	Date Required:				
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO	Matrix Type: \$ (So SW (Surface Water	oil/Sed.) GW (Groun	d Water)	Required Analysis					
☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ MISA	P (Paint)	r) SS (Storm/Sanitan) A (Air) O (Other)	y Sewer)				and the second second		
☐ Table 3 ☐ Agri/Other									
Table Mun: Colling wood	olume	Sample Take	on.	I O					
TOTAGE I TES II NO III Others	Air Volume	oumple rake							
Sample ID/Location Name	Air V	Date	Time	BOD					
1 MW201-UF GH	J 2 24	106/26 1	300 X						
2		1,	^	X					
3									
4									
5									
6									
7									
8						4.			
9									
0									
mments:									
					Method of Deliv				
inquished By (Sign): Received at Deport.		Receive	ed at Lab:		Verified By:	M Ylac	\		
inquished By (Print): Date/(Ime: Date/(Ime: Date/			SO		\wedge	lm .			
e/Time:2024/06/25 /615 Date/Time: 0612	B124 16:	16 Date/T	Jac 28, 2	024 10:054	Date/Time 2	7/24 915			
in of Custody (Blank) xlsx	8	°C Temper	rature: 8.8	°C	pH Verified:	By: NA			

Appendix G: Water Balance Calculations

Water Balance Calculation

July 2025 G2S21366D

*Stormwater Management Planning and Design Manual, Section 3.2

39700 m2

Entire site

Calculated Water Budget Balance: Thornthwaite - Mather 435.13 mm

Existing Conditions

Infiltration Factors (SWMPDM)*:

Topography
Soils
Cover
0.1
0.6

Infiltration = Infiltration factor * water budget balance 261.078 mm/year

Infiltration Area: Entire Site: 39,700 m2

Less impermeable surface areas: <u>260</u> m2 Total Infiltration Area: 39,440 m2

% impervious area= 1

Per year

Infiltration volume = Infiltration *area 10,296,916 L/year

Post Development Conditions

Infiltration Factors (SWMPDM)*: Topography 0.3

Soils 0.2 Cover <u>0.1</u> 0.6

Infiltration = Infiltration factor * water budget balance 261.078 mm/year

Infiltration Area: Entire Site: 39,700 m2

Less impermeable surface areas: 31150 m2

Total Infiltration Area: 8550 m2

% impervious area 78

Per year

Infiltration volume = Infiltration *area 2,232,217 L/year

Difference 8,064,699 L/year decrease

