# TRAFFIC IMPACT STUDY BRIDGEWATER ON GEORGIAN BAY (COLLINGWOOD) CONSULATE DEVELOPMENT (ONTARIO) INC.

#### PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 40 HURON STREET, SUITE 301 COLLINGWOOD, ON L9Y4R3

ORIGINAL: FEBRUARY 2007 ADDENDUM: JULY 2018

**CFCA FILE NO. 131-2543** 

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



| Identification   | Date       | Description of Work |  |
|------------------|------------|---------------------|--|
| Draft Submission | March 2018 | Project Team Review |  |

#### 1.0 **EXECUTIVE SUMMARY**

C.F. Crozier & Associates Inc. (Crozier) was retained by Consulate Development (Ontario) Inc. to complete a revised Traffic Impact Study in support of a Zoning By-law Amendment for the proposed Bridgewater on Georgian Bay (Collingwood) Residential Subdivision. The proposed development is bounded by environmental protection lands owned by the proponent to the west, Highway 26 to the south, Princeton Shores Blvd to the east, and existing residential developments to the north.

The analysis contained within this report included the following key intersections:

- Highway 26 and Silver Glen Boulevard
- Highway 26 and Cranberry Trail West

Analysis of traffic operations at the study intersections indicate the following:

- The intersections are operating acceptably under 2018 existing traffic conditions, and are expected to continue operating efficiently under future background traffic conditions through the 2025, 2030 and 2035 horizon years.
- A signal warrant was undertaken at the intersection of Highway 26 and Silver Glen Boulevard under 2025 through 2035 future total conditions, and the results indicate that signals are warranted under all scenarios.
- A functional design was completed for auxiliary turn lanes at the intersection of Highway 26 and Silver Glen Boulevard. It was calculated that a westbound right-turn lane of 50 metres, an eastbound left-turn lane of 20 metres, and a southbound left-turn lane of 45 metres would be required. All dimensions should be confirmed at the detailed design stage.
- The analysis of future total traffic operations indicated that 95th percentile queues can be contained within the proposed storage lengths.
- The intersections are expected to continue operating efficiently under future total traffic conditions, when compared with future background operations.

The analysis undertaken within was prepared using the most recent Site Plan prepared by Guthrie Muscovitch Architects, dated March 2, 2018. Any minor changes to the Plan will not materially affect the conclusions contained within this report.

Therefore, the proposed development can be supported from a transportation operations and safety perspective.

C.F. Crozier & Associates Inc.

### **TABLE OF CONTENTS**

| 1.0 | Exec       | utive Summaryi                         |
|-----|------------|----------------------------------------|
| 2.0 | Intro      | duction                                |
|     | 2.1        | Background                             |
|     | 2.2        | Purpose                                |
|     | 2.3        | Development Proposal                   |
|     | 2.0        | 2010l0p110111110p0301                  |
| 3.0 | Existi     | ng Conditions2                         |
|     | 3.1        | Development Lands                      |
|     | 3.2        | Study Area2                            |
|     | 3.3        | Boundary Road Network                  |
|     | 3.4        | Key Intersections                      |
|     | 3.5        | Active Transportation Network          |
|     | 3.6        | Traffic Data                           |
|     | 3.7        | Intersection Operations                |
| 4.0 | E t        | e Background Conditions4               |
| 4.0 | 4.1        | Horizon Years4                         |
|     | 4.1        | Growth Rate                            |
|     | 4.2        | Future Roadway Improvements            |
|     | 4.3<br>4.4 | Background Development Trip Generation |
|     | 4.4        | Intersection Operations                |
|     | 4.5        | inersection Operations                 |
| 5.0 | Site (     | Generated Traffic                      |
|     | 5.1        | Trip Generation                        |
|     | 5.2        | Trip Distribution and Assignment       |
| 6.0 | Futur      | re Total Conditions                    |
|     | 6.1        | Basis of Assessment                    |
|     | 6.2        | Traffic Signal Warrants                |
|     | 6.3        | Auxiliary Right-Turn Lane              |
|     | 6.4        | Auxiliary Left-Turn Lane               |
|     | 6.5        | Intersection Modelling                 |
|     | 6.6        | Intersection Operations10              |
| 7.0 | Con        | clusions 11                            |

#### List of Tables

| Table 1: Development Site Statistics              | 2  |
|---------------------------------------------------|----|
| Table 2: Boundary Road Network Summary            | 2  |
| Table 3: Active Transportation Network            | 3  |
| Table 4: Peak Hour Factors                        | 4  |
| Table 5: 2018 Exisiting Traffic Levels of Service | 4  |
| Table 6: Silver Glen Trip Generation              | 5  |
| Table 7: 2025 Future Background Levels of Service | 6  |
| Table 8: 2030 Future Background Levels of Service | 6  |
| Table 9: 2035 Future Background Levels of Service | 6  |
| Table 10: Trip Generation                         | 7  |
| Table 11: 2025 Future Total Levels of Service     | 10 |
| Table 12: 2030 Future Total Levels of Service     | 10 |
| Table 13: 2035 Future Total Levels of Service     | 10 |

### **List of Appendices**

**Appendix A:** Correspondence

**Appendix B:** Zoning By-Law and Official Plan Excerpts

**Appendix C:** Transit Schedules

**Appendix D:** Traffic Data

**Appendix E:** LOS Definitions

**Appendix F:** Detailed Capacity Analysis Worksheets

Appendix G: Growth Rate Analysis

Appendix H: Signal Warrant Sheets

Appendix I: TAC GDGCR Excerpts

### **List of Figures**

Figure 1: Site Location Plan

Figure 2: Site Plan

**Figure 3:** Existing Traffic Control and Lane Configurations

**Figure 4:** 2018 Seasonally Adjusted Traffic Volumes

Figure 5: Silver Glen Trip Distribution
Figure 6: Silver Glen Trip Assignment

Figure 7: 2025 Future Background Traffic Volumes
Figure 8: 2030 Future Background Traffic Volumes
Figure 9: 2035 Future Background Traffic Volumes

Figure 10: Trip Distribution
Figure 11: Trip Assignment

Figure 12:2025 Future Total Traffic VolumesFigure 13:2030 Future Total Traffic VolumesFigure 14:2035 Future Total Traffic Volumes

#### 2.0 INTRODUCTION

#### 2.1 Background

CF Crozier & Associates Inc. (Crozier) was retained by Consulate Development (Ontario) Inc. to complete a revised Traffic Impact Study (TIS) for the Bridgewater on Georgian Bay residential development located in the Town of Collingwood, County of Simcoe. The Subject Property is bounded by environmental protection lands owned by the proponent to the west, Highway 26 to the south, Princeton Shores Blvd to the east, and existing residential developments to the north. The location of the Subject Property is reflected on the development Site Location Plan included as **Figure 1**.

Crozier staff completed the original TIS in February 2007, which was based on a unit count of 39 single family detached units and 350 medium/high density residential units, and the entrance to the development formed the fourth leg of the intersection of Highway 26 and Cranberry Trail West. The February 2007 TIS recommended signalization of the intersection of Highway 26 and Cranberry Trail West. The concept plan has recently been revised, and proposes 539 townhouses and 116 apartment units, for a total of 655 mid-rise multi-family units. The proposed development is discussed further in Section 2.3.

#### 2.2 Purpose

This TIS addendum is being prepared to support the Zoning By-law Amendment for the Bridgewater on Georgian Bay residential development.

The purpose of the study was to assess the impacts of the proposed development on the boundary road network and to recommend any required mitigation measures, if warranted.

The study reviews the following main aspects of the proposed residential development from a transportation engineering perspective:

- Existing, future background, and future total traffic operations at the intersections of Highway
   26 and Cranberry Trail West, and Highway
   26 and Silver Glen Boulevard/Site Access
- Forecasted trip generation of the proposed development
- Signal warrant at the intersection of Highway 26 and Silver Glen Boulevard/Site Access
- Auxiliary lane requirements at the intersection of Highway 26 and Silver Glen Boulevard/Site Access

The Terms of Reference for the study were confirmed with Town staff, with correspondence included in **Appendix A**.

The study has been prepared based on the "Transportation Impact Analyses for Site Development", Institute of Transportation Engineers (ITE) guidelines, and agreed upon Terms of Reference with Town, with the associated analyses and findings outlined herein.

#### 2.3 Development Proposal

As noted previously, the site plan was recently revised, and proposes an additional 266 units. The original and current site statistics have been summarized in **Table 1** below. The entrance to the development will form the fourth leg of the intersection of Highway 26 and Silver Glen Blvd. The most recent site plan has been included as **Figure 2**.

Table 1: Development Site Statistics

| Development Type | Unit Type Original Concept Plan |     | Current Concept Plan |
|------------------|---------------------------------|-----|----------------------|
|                  | Single Family Detached          | 39  | 0                    |
| Residential      | Condominium/<br>Townhouse       | 350 | 539                  |
|                  | Apartment                       | 0   | 116                  |

#### 3.0 EXISTING CONDITIONS

#### 3.1 Development Lands

The Subject Lands are approximately 37.2 hectares (92 acres), of which approximately 12.1 hectares will comprise of medium and high density residential units, and is legally described as Part of Lots 48, 49, and 50, Concession 11. The Subject Lands are currently zoned as a mix of "Residential (R3)," "Environmental Protection (EP-3)," and "Recreational (REC-3)" per the Town of Collingwood's Comprehensive Zoning By-law 2010-40. The lands are also designated a mix of "Environmental Protection" and "Residential" in the Official Plan of the Town of Collingwood. Relevant Zoning By-law and Official Plan excerpts have been included in **Appendix B**.

#### 3.2 Study Area

The Subject Lands are bounded by the Silver Creek to the west, Highway 26 to the south, Princeton Shores Boulevard to the east, and Princeton Shores Boulevard/Bartlett Boulevard to the north.

The study area encompasses the boundary road network surrounding the Subject Lands, and is described in Section 3.3.

#### 3.3 Boundary Road Network

The boundary road network is described in **Table 2** below.

Table 2: Boundary Road Network Summary

| Road                                                          | Lanes      | Posted Speed | Posted Speed Classification |                        |  |
|---------------------------------------------------------------|------------|--------------|-----------------------------|------------------------|--|
| Highway 26<br>(East of Silver Glen<br>Boulevard)              | 3          | Town         |                             | Town of                |  |
| Highway 26<br>(West of Silver Glen<br>Boulevard)              | 2          | 60 km/h      | Arterial                    | Collingwood            |  |
| Cranberry Trail West                                          | 2          | 50 km/h      | Collector                   | Town of<br>Collingwood |  |
| Silver Glen Boulevard<br>(First 150 m south of<br>Highway 26) | 2          | 50 km/h      | Local                       | Town of<br>Collingwood |  |
| Silver Glen Boulevard                                         | (Unposted) |              | Private                     | Private                |  |

#### 3.4 Key Intersections

The following are the key intersections contained within this study area. **Figure 3** illustrates the existing traffic controls and lane configurations at each intersection.

- Highway 26 and Silver Glen Boulevard
- Highway 26 and Cranberry Trail West

#### 3.5 Active Transportation Network

The active transportation facilities on the boundary road network have been summarized in **Table 3** below.

| Road                                                             | Pedestrian Facilities                                               | Pedestrian Facilities Cycling Facilities |      | Typical Headways |                 |         |
|------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------|------------------|-----------------|---------|
| Highway 26<br>(East of Cranberry<br>Trail West)                  | Off-road Trail<br>(Vacation Inn Trail)                              |                                          |      |                  | Crosstown Route | 60 mins |
| Highway 26<br>(West of Cranberry<br>Trail West)                  | West of Cranberry (Vacation Inn Trail extension to Silver Glen None |                                          | N/A  |                  |                 |         |
| Cranberry Trail<br>West                                          | None                                                                | None On-road Bike Route                  |      | 60 mins          |                 |         |
| Silver Glen<br>Boulevard<br>(First 150 m south of<br>Highway 26) | 1.5 metres sidewalk<br>on the west side of<br>the roadway           | None                                     | None | N/A              |                 |         |
| Silver Glen<br>Boulevard                                         | None                                                                | None                                     | None | N/A              |                 |         |

Table 3: Active Transportation Network

The Collingwood Transit map illustrates the closest bus stops to the Site and has been included in **Appendix C** for reference. There are three Crosstown Route bus stops along Cranberry Trail West. Additionally, there is another Crosstown Route bus stop on Highway 26 at Vacation Inn Drive. The Crosstown Route maintains a headway of 60 minutes throughout the day.

#### 3.6 Traffic Data

Turning movement counts for the boundary road network were undertaken by Spectrum Traffic Data Inc. staff from 6:00 a.m. to 10:00 a.m. and 3:00 p.m. to 7:00 p.m. on Thursday, March 1, 2018. The traffic count data is summarized in **Appendix D**.

To adjust the traffic volumes for the peak summer driving season, winter average daily traffic (WADT) and summer average daily traffic (SADT) volumes from the MTO "Provincial Highways Traffic Volumes, 1988-2016" for the adjacent segment of Highway 26 to the west were compared and a seasonal adjustment factor of 1.43 was calculated. **Figure 4** illustrates the 2018 seasonally adjusted existing traffic volumes.

Peak hour factors (PHF) associated with the weekday a.m. and p.m. peak hours were calculated for each intersection within the study area based on the existing traffic volumes.

**Table 4** outlines the PHFs as calculated and applied to the model for the study intersections.

**Table 4: Peak Hour Factors** 

| Intersection                   | Peak Hour        | Peak Hour Factor |
|--------------------------------|------------------|------------------|
| Highway 26 and Silver Glen     | 7:45 – 8:45 a.m. | 0.98             |
| Boulevard                      | 4:30 – 5:30 p.m. | 0.99             |
| Highway 26 and Cranberry Trail | 7:45 – 8:45 a.m. | 0.94             |
| West                           | 4:30 – 5:30 p.m. | 0.94             |

#### 3.7 Intersection Operations

The operations of the critical intersections were analyzed on the basis of the traffic volumes illustrated in **Figure 4**. **Table 5** summarizes the 2018 traffic levels of service for the counts taken at the intersection under seasonally adjusted existing conditions. The Level of Service (LOS) definitions for stop-controlled intersections are included in **Appendix E**. Detailed capacity analyses are included in **Appendix F**.

The south approaches on Silver Glen Boulevard and Cranberry Trail West have a width of approximately seven metres. Accordingly, the intersection was assumed to operate with dedicated northbound right- and left-turn lanes. For modelling purposes, the approaches were modeled with a left-turn lane as a continuation of the through lane, and right-turn lane with 15 metres of storage. As noted below, all 95th percentile queues can be contained within the available storage lengths.

Table 5: 2018 Exisiting Traffic Levels of Service

| Intersection                  | Control | Peak Hour    | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |
|-------------------------------|---------|--------------|---------------------|------------------|----------------------|----------------------------------|
| Highway 26<br>and Silver Glen | 2ton    | Weekday A.M. | В                   | 13.1 s           | 0.35 (WBT)           | None                             |
| Boulevard                     | Stop    | Weekday P.M. | В                   | 14.3 s           | 0.50 (WBT)           | None                             |
| Highway 26                    | CI.     | Weekday A.M. | В                   | 13.5 s           | 0.38 (WBT)           | None                             |
| and Cranberry<br>Trail West   | Stop    | Weekday P.M. | С                   | 16.0 s           | 0.54 (WBT)           | None                             |

Note: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

The metrics summarized above indicate that the study intersections operate at a LOS "C" or better in the weekday a.m. and p.m. peak hours, with minimal delay and reserve capacity for increases in traffic volumes. It can also be seen that no movements are operating with 95th percentile queues exceeding the available storage.

#### 4.0 FUTURE BACKGROUND CONDITIONS

#### 4.1 Horizon Years

The development is expected to be fully built-out by 2025. Per correspondence with the Town of Collingwood, the full build-out year plus the five-year and ten-year horizons must be analyzed. Therefore, the full build-out horizon year (2025), the five-year horizon (2030) and ten-year horizon (2035) were analyzed.

#### 4.2 Growth Rate

To determine growth rates for the study, the Environmental Study Report: Highway 26 West from 280 m West of Princeton Shores Boulevard to Harbour Street Improvements completed by R.J. Burnside and Associates in April 2014 (referred to as the Highway 26 ESR) was reviewed. The two-way peak hour volumes were analyzed on the segment of Highway 26 immediately east of Cranberry Trail West under the "existing" 2013 conditions and future background 2028 conditions. The future background volumes include future background traffic growth and background development traffic. Growth rates of 1.49% and 1.28% compounded annually were calculated for the a.m. and p.m. peak periods, respectively.

Additionally, historical Annual Average Daily Traffic (AADT) and Summer Average Daily Traffic (SADT) volumes from 2008-2016 were analyzed on Highway 26 from Long Point Road to Grey Road 21. Average growth rates of 0.26% and 0.40% compounded annually were calculated using the AADT and SADT volumes, respectively.

Therefore, a growth rate of 1.5% compounded annually was applied to all traffic volumes on the boundary road network. This growth rate was confirmed by Town Staff (see **Appendix A** for correspondence).

**Appendix G** contains the detailed growth rate documentation and analysis.

#### 4.3 Future Roadway Improvements

No capacity improvements have been identified for the boundary roads within the study horizons.

#### 4.4 Background Development Trip Generation

The Silver Glen residential development is located south of Highway 26, directly opposite the Subject Property. At the time of the traffic surveys being taken, 20 townhouse units were still unoccupied. Accordingly, the trip generation of the remaining 20 units was calculated using the fitted curve equations provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10<sup>th</sup> Edition, for Land Use Category 220 "Multifamily Housing (Low-Rise)". The trip generation results are summarized in Table 6: Silver Glen Trip Generation below.

**Number of Trips** Use **Peak Hour** Inbound Outbound Total Weekday A.M. 2 8 10 L.U. 220: Multifamily Housing (Low-Rise) (20 units) Weekday P.M. 9 5 14

Table 6: Silver Glen Trip Generation

The trips generated by the Silver Glen residential development were distributed to the boundary road network based on existing travel patterns. As discussed in Section 5.2, 70 percent of trips were distributed to the east, and 30 percent of trips were distributed to the west on Highway 26. The Silver Glen Trip Distribution and assignment have been illustrated in **Figure 5** and **Figure 6**, respectively.

#### 4.5 Intersection Operations

The 2025, 2030 and 2035 future background traffic levels of service are summarized in **Table 7**, **Table 8** and **Table 9**, respectively, based on the future background traffic volumes illustrated in **Figures 7**, **8**, and **9**, with detailed capacity analyses included in **Appendix F**.

Table 7: 2025 Future Background Levels of Service

| Intersection                              | Control | Peak Hour       | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |
|-------------------------------------------|---------|-----------------|---------------------|------------------|----------------------|----------------------------------|
| Highway 26<br>and Silver Glen             | Stop    | Weekday<br>A.M. | В                   | 14.1 s           | 0.39 (WBT)           | None                             |
| Boulevard                                 | 3100    | Weekday P.M.    | С                   | 15.6 s           | 0.55 (WBT)           | None                             |
| Highway 26<br>and Cranberry<br>Trail West | Stop    | Weekday<br>A.M. | В                   | 14.5 s           | 0.42 (WBT)           | None                             |
|                                           |         | Weekday P.M.    | С                   | 17.6 s           | 0.60 (WBT)           | None                             |

Note: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

Table 8: 2030 Future Background Levels of Service

| Intersection                                    | Control | Peak Hour       | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |
|-------------------------------------------------|---------|-----------------|---------------------|------------------|----------------------|----------------------------------|
| Highway 26<br>and Silver Glen Stop<br>Boulevard | Stop    | Weekday<br>A.M. | В                   | 14.8 s           | 0.42 (WBT)           | None                             |
|                                                 | 3100    | Weekday P.M.    | С                   | 16.6 s           | 0.59 (WBT)           | None                             |
| Highway 26<br>and Cranberry<br>Trail West       | Stop    | Weekday<br>A.M. | С                   | 15.4 s           | 0.46 (WBT)           | None                             |
|                                                 |         | Weekday P.M.    | С                   | 19.1 s           | 0.65 (WBT)           | None                             |

Note: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

Table 9: 2035 Future Background Levels of Service

| Intersection                              | Control | Peak Hour       | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |
|-------------------------------------------|---------|-----------------|---------------------|------------------|----------------------|----------------------------------|
| Highway 26<br>and Silver Glen             | Stop    | Weekday<br>A.M. | С                   | 15.7 s           | 0.45 (WBT)           | None                             |
| Boulevard S                               | 3100    | Weekday P.M.    | С                   | 17.8 s           | 0.64 (WBT)           | None                             |
| Highway 26<br>and Cranberry<br>Trail West | Stop    | Weekday<br>A.M. | С                   | 16.4 s           | 0.49 (WBT)           | None                             |
|                                           |         | Weekday P.M.    | С                   | 20.8 s           | 0.70 (WBT)           | None                             |

Note: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

The metrics listed above indicate that the study intersections are expected to operate at a LOS "C" in the weekday a.m. and p.m. peak hours, under 2035 future background conditions. The intersection experiences minimal delay, has reserve capacity for increases in traffic volumes, and the 95<sup>th</sup> percentile queues can be contained within the existing storage.

#### 5.0 SITE GENERATED TRAFFIC

#### 5.1 Trip Generation

The proposed development will result in additional vehicles on the boundary road network that previously did not exist. The proposed development will also result in additional turning movements at the boundary road intersections.

The trip generation of the residential townhomes was forecasted using the fitted curve equations found in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10<sup>th</sup> Edition, under Land Use Category 220 "Multifamily Housing (Low-Rise)".

The trip generation of the residential apartment building was forecasted using the fitted curve equations found in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10<sup>th</sup> Edition, under Land Use Category 221 "Multifamily Housing (Mid-Rise)".

The forecasted trips are tabulated in Table 10.

**Number of Trips Subject Property Roadway Peak Hour** Use Outbound Inbound Total LU 220: Multifamily Housing Weekday A.M. 54 182 236 (Low-Rise) (539 Units) 167 98 265 Weekday P.M. 10 30 40 LU 221: Multifamily Housing Weekday A.M. (Mid-Rise) (116 Units) 31 20 51 Weekday P.M. Weekday A.M. 64 212 276 **Total** Weekday P.M. 198 118 316

**Table 10: Trip Generation** 

#### 5.2 Trip Distribution and Assignment

The trips generated by the proposed development were distributed to the boundary road network based on the travel patterns observed at the intersection of Highway 26 and Silver Glen Boulevard. The distributions were similar in both the a.m. and p.m. peak hours, with approximately 70 percent arriving from and departing to the east, and 30 percent arriving from and departing to the west.

This distribution is consistent with the location of employment, retail and service destinations. The Town of Collingwood is a net importer of jobs, and is the site of regional "big box" stores, as well as the majority of services in the regional area. Therefore, the distribution was deemed to be representative of the future trip characteristics of the proposed development, and 70 percent of the trips were judged to arrive from/depart to the east towards Collingwood, and the remaining 30 percent of the trips were judged to arrive from/depart to the west towards the Town of Blue Mountains.

The trips generated by the proposed development were assigned to the boundary road network as per the distribution illustrated in **Figure 10**. The trip assignment is illustrated in **Figure 11**.

#### 6.0 FUTURE TOTAL CONDITIONS

#### 6.1 Basis of Assessment

The traffic impacts arising from the proposed development were assessed on the basis of the site generated traffic, illustrated in **Figure 11**, being superimposed on the future background traffic volumes in **Figures 7**, **8** and **9**. The resulting total traffic volumes for the weekday a.m. and p.m. peak hours are illustrated in **Figures 12**, **13** and **14** for the 2025, 2030 and 2035 horizon years.

#### 6.2 Traffic Signal Warrants

Traffic signal warrants were undertaken at the intersection of Highway 26 and Silver Glen Boulevard for the 2025, 2030 and 2035 future total traffic conditions. The analysis followed the procedures specified in Chapter 4 of the "Ontario Traffic Manual – Book 12", March 2012. Justifications 1 (Minimum Vehicular Volume), 2 (delay to Cross Traffic), 3 (Combination of Justifications 1 and 2), and 4 (4-Hour Volume) were selected as the most appropriate warrants with which to assess the intersections.

Justifications 1 to 4 were based on eight hour traffic volumes, which were derived as a percentage of the forecasted peak hour traffic volumes used in the operations analysis.

Despite Highway 26 having a posted speed limit of 60 km/h, the conditions on the road network indicate free flow conditions, and accordingly, the signal warrants were undertaken for rural conditions.

This assessment determined that signals are warranted under 2025, 2030 and 2035 future total conditions due to the high volumes on all approaches and the delay to cross traffic. The signal warrant sheets for the future total conditions have been included in **Appendix H**.

#### 6.3 Auxiliary Right-Turn Lane

The westbound right-turn movement from Highway 26 into the Site was analyzed for auxiliary right-turn lane requirements.

Section 9.14.2 of the Transportation Association of Canada (TAC) Geometric Design Guides for Canadian Roads (GDGCR) suggests the implementation of "an auxiliary right-turn lane without separate signal indication when the volume of right-turning traffic is 10% to 20% of the total approaching volume". In the 2025 weekday p.m. peak hour under future total conditions, the westbound approach is expected to experience 115 vehicles per hour turning right, 929 vehicles per hour travelling straight, and 32 vehicles per hour turning left, totalling 1076 vehicles per hour. The forecasted eastbound right-turn volume consists of approximately 10.6% of the total approach volume, indicating that a westbound right turn lane should be implemented to reduce the delay to the through vehicles.

The eastbound approach currently consists of a through lane and a right-turn taper. However, given the implementation of signals at the intersection, a full turn-lane with taper and parallel length will be required in order to provide additional deceleration length and storage for right-turning vehicles.

A functional design was completed for an eastbound and westbound right-turn lane using the approach described in Section 9.14.2 of the TAC GDGCR. Per Table 9.14.2, for roads with a 70 km/h design speed, a minimum taper length of 60 metres should be provided, with a parallel length of 50 metres.

The sufficiency of this lane configuration was confirmed using Synchro modeling software. It was found that the eastbound and westbound 95<sup>th</sup> percentile queues are not expected to exceed one vehicle. Accordingly, the taper and parallel lengths are sufficient to provide storage and deceleration for right-turning vehicles.

The exact dimensions of the auxiliary turn-lanes should be confirmed at the detailed design stage.

Relevant TAC GDGCR excerpts have been included in Appendix I.

#### 6.4 Auxiliary Left-Turn Lane

The existing westbound left turn lane will require a corresponding eastbound left turn lane at the intersection. Accordingly, a functional design was completed for an eastbound left-turn lane using the approach described in Section 9.17.3 of the TAC GDGCR. Per Table 9.17.1, for roads with a 70 km/h design speed, a minimum taper length of 55 metres should be provided. Deceleration was assumed to be completed within the taper length, per Section 9.17.4.2. A storage length of 20 metres was calculated using the following equation (9.14.1):

$$S = \frac{NL}{30} * 2.$$

A functional design was also completed for a southbound left-turn lane. Using a design speed of 50 km/h, a minimum taper length of 15 metres and storage of 45 metres should be provided.

The sufficiency of these lane configurations was confirmed using Synchro modeling software. It was found that the 95<sup>th</sup> percentile eastbound and southbound queues are not expected to exceed 4.0 metres and 29.5 metres respectively. Accordingly, the taper and parallel length are sufficient to provide storage and deceleration for left-turning vehicles.

The exact dimensions of the auxiliary turn-lanes should be confirmed at the detailed design stage.

Relevant TAC GDGCR excerpts have been included in Appendix I.

#### 6.5 Intersection Modelling

As discussed previously, the construction of a north leg at the intersection of Highway 26 and Silver Glen Boulevard will introduce westbound right-turns and eastbound left-turns at the intersection. Accordingly, a functional design was completed for both movements, following the procedure outlined in the TAC GDGCR. The details regarding these auxiliary lane designs are described in Sections 6.3 and 6.4.

The new north leg of the intersection of Highway 26 and Silver Glen Boulevard was modelled with an exclusive southbound left-turn lane, with a calculated storage length of 45 metres, and a shared southbound through/right-turn lane. Similarly, the existing south approach was also assumed to function with an exclusive left-turn lane with a storage of 15 metres, and shared through/right-turn lane.

In order to establish signal timings for the proposed signalized intersection, signal timings observed at the intersection of Highway 26 and Waterfalls lane were used to establish intergreen times, as well as pedestrian crossing times. Synchro modeling software was then used to determine the optimized cycle length and maximum green times.

#### 6.6 Intersection Operations

**Table 11, Table 12, and Table 13** outline the 2025, 2030 and 2035 total background traffic levels of service, respectively, based on the future total traffic volumes illustrated in **Figures 12, 13** and **14**, with detailed capacity analyses included in **Appendix F.** 

Table 11: 2025 Future Total Levels of Service

| Intersection             | Control  | Peak Hour    | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |
|--------------------------|----------|--------------|---------------------|------------------|----------------------|----------------------------------|
| Highway 26 and           | Proposed | Weekday A.M. | В                   | 11.5 s           | 0.66 (WBT)           | None                             |
| Silver Glen<br>Boulevard | Signal   | Weekday P.M. | Α                   | 9.0 s            | 0.68 (WBT)           | None                             |
| Highway 26 and           | Stop     | Weekday A.M. | С                   | 16.8 s           | 0.49 (EBT)           | None                             |
| Cranberry Trail<br>West  |          | Weekday P.M. | С                   | 20.2 s           | 0.69 (WBT)           | None                             |

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle.

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

Table 12: 2030 Future Total Levels of Service

| Intersection                  | Control  | Peak Hour    | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |
|-------------------------------|----------|--------------|---------------------|------------------|----------------------|----------------------------------|
| Highway 26 and<br>Silver Glen | Proposed | Weekday A.M. | В                   | 12.1 s           | 0.71 (WBT)           | None                             |
| Boulevard                     | Signal   | Weekday P.M. | Α                   | 9.8 s            | 0.74 (WBT)           | None                             |
| Highway 26 and                | Ct       | Weekday A.M. | С                   | 18.2 s           | 0.52 (EBT)           | None                             |
| Cranberry Trail<br>West       | Stop     | Weekday P.M. | С                   | 22.3 s           | 0.73 (WBT)           | None                             |

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle.

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

Table 13: 2035 Future Total Levels of Service

| Intersection                  | Control            | Peak Hour    | Level of<br>Service | Control<br>Delay | Maximum<br>V/C Ratio | 95th %ile<br>Queues ><br>Storage |  |
|-------------------------------|--------------------|--------------|---------------------|------------------|----------------------|----------------------------------|--|
| Highway 26 and<br>Silver Glen | Proposed<br>Signal | Weekday A.M. | В                   | 13.0 s           | 0.76 (WBT)           | None                             |  |
| Boulevard                     |                    | Weekday P.M. | В                   | 10.8 s           | 0.79 (WBT)           | None                             |  |
| Highway 26 and                | Ctore              | Weekday A.M. | С                   | 19.9 s           | 0.55 (EBT)           | None                             |  |
| Cranberry Trail<br>West       | Stop               | Weekday P.M. | D                   | 25.1 s           | 0.78 (WBT)           | None                             |  |

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle. The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach, i.e. Cranberry Trail West and Silver Glen Boulevard.

The study intersections are expected to continue operating with acceptable levels of service under 2035 future total traffic conditions. The intersection of Highway 26 and Cranberry Trail West is expected to operate at a LOS "D" in the weekday p.m. peak hour, and experience a maximum increase in

C.F. Crozier & Associates Inc. Project No. 131-2543

control delay of 4.3 seconds when compared with future background conditions, indicating that the increase in traffic generated by the site is expected to have a minimal impact to the intersection operations. Further, given the implementation of signals at the intersection of Highway 26 and Silver Glen Boulevard, the operations are expected to improve to a LOS "B", with a maximum control delay of 11.9 seconds in the a.m. peak hour. All movements are anticipated to operate with volume-tocapacity ratios within the critical threshold, and all 95th percentile queues are expected to be contained within the available storage.

Therefore, the addition of site traffic to the boundary road network is expected to minimally impact traffic operations.

#### 7.0 CONCLUSIONS

The detailed analysis contained within this report has resulted in the following key findings:

- Analysis of 2018 seasonally adjusted existing traffic operations at the study intersections indicate that the intersection is currently operating at LOS "C" or better during the weekday a.m. and p.m. peak hour with reserve capacity for future background growth;
- Examination of the 2025, 2030 and 2035 future background traffic conditions indicate that the study intersections are anticipated to continue operating efficiently at a LOS "C" in the weekday a.m. and p.m. peak hours;
- Signal warrants were undertaken at the intersection of Highway 26 and Silver Glen Boulevard and the results indicate that signals are warranted under 2025 through 2035 future total traffic conditions.
- Per the Transportation Association of Canada (TAC) Geometric Design Guides for Canadian Roads (GDGCR) guidelines and future total traffic operations, an auxiliary westbound rightturn lane, eastbound left-turn lane, and southbound left-turn lane are required under future total conditions. All dimensions should be confirmed at the detailed design stage;
- Examination of the 2025 through 2035 future total traffic conditions indicate that the study intersections are anticipated to continue to operate at a LOS "D" or better in the weekday a.m. and p.m. peak hours; and,

The analysis undertaken within was prepared using the most recent Site Plan prepared by Guthrie Muscovitch Architects, dated March 2, 2018. Any minor changes to the Plan will not materially affect the conclusions contained within this report.

The addition of site traffic to the boundary road network is expected to minimally impact traffic operations. In conclusion, the Site Plan can be supported from a traffic operations perspective.

Respectfully submitted by,

C.F. CROZIER & ASSOCIATES INC.

Alexander J. W. Fleming, MBA

Associate

C.F. CROZIER & ASSOCIATES INC.

Madeleine N. Ferguson, EIT

**Engineering Intern** 

J:\100\131 - Consulate Development (Ontario) Inc\2543\Reports\Traffic\2543\_TIS Addendum.docx

# APPENDIX A

Correspondence

#### **Madeleine Ferguson**

From: Alex Fleming

**Sent:** Thursday, March 15, 2018 11:24 AM

To: John Velick

Cc:Madeleine Ferguson; Herb LemonSubject:RE: Consulate Development

Hi John,

Thanks for that, much appreciated. Regards, Alex

#### | ALEXANDER FLEMING, MBA, P.Eng. | ASSOCIATE | C.F. CROZIER & ASSOCIATES

| 2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4

| cfcrozier.ca | afleming@cfcrozier.ca | tel 905 875 0026



Land development engineering, from the ground up.

Water Resources • Transportation • Structural • Mechanical • Electrical • Building Science

This communication is intended solely for the attention and use of the named recipients and contains information that is privileged and confidential. If you are not the intended recipient, or the person responsible for delivering this information to the intended recipient, please notify us immediately by telephone. If you have received this information in error, please be notified that you are not authorized to read, copy, distribute, use or retain this message or any part of it.

From: John Velick <jvelick@collingwood.ca>
Sent: Thursday, March 15, 2018 8:59 AM
To: Alex Fleming <afleming@cfcrozier.ca>

Cc: Madeleine Ferguson <mferguson@cfcrozier.ca>; Herb Lemon <hlemon@collingwood.ca>

Subject: RE: Consulate Development

Hi Alex,

I have no issues with the scope below.

I can confirm that the Town owns the first 150m (approx.) of Silver Glen Blvd.

John

**John Velick** P.Eng. Manager, Engineering Services

Town of Collingwood P.O. Box 157, 545 Tenth Line North Collingwood, ON L9Y 3Z5 **From:** Alex Fleming [mailto:afleming@cfcrozier.ca]

Sent: Wednesday, March 14, 2018 2:14 PM

To: John Velick

Cc: Madeleine Ferguson

**Subject:** Consulate Development

Hi John,

It was nice chatting with you earlier today. I thought it might be helpful to send you an email detailing what we discussed, plus a couple of other elements. We've been retained to complete a revised Traffic Impact Study for the Consulate lands located on the north side of Highway 26, west of Princeton Shores Blvd, and directly opposite Silver Glen Blvd.

Our staff completed the original TIS in February 2007, which was based on a unit count of 39 single family detached units and 350 medium/high density residential units, and entrance to the development formed the fourth leg of the intersection of Highway 26 and Cranberry Trails West. The site plan has recently been revised, and proposes 539 townhouses and 116 apartment units, for a total of 655 mid-rise multi-family units. The entrance to the development will form the fourth leg of the intersection of Highway 26 and Silver Glen Blvd. The 2007 study concluded signals were needed at the site entrance, I expect that the update will reach the same conclusion.

Given the revised development proposal, we will be following this scope of work for the updated TIS:

- 1. The following intersections will be analyzed in the weekday a.m. and p.m. peak hours (6 a.m. to 10 a.m. and 3 p.m. to 7 p.m.)
  - a. Highway 26 and Silver Glen Blvd
  - b. Highway 26 and Cranberry Trail West
- 2. The study horizons of full build-out (assumed 2025) as well as five (2030) and ten (2035) years beyond will be analyzed.
- 3. We assume a growth rate of 1.5% will be acceptable, as previously discussed for the Silver Creek residential development, located approximately 1 km east of the subject lands. This growth rate was assumed to capture the background growth in the area, as described in the *Environmental Study Report: Highway 26 West from 280 m West of Princeton Shores Boulevard to Harbour Street Improvements* completed by R.J. Burnside and Associates in April 2014.
- 4. The trip generation characteristics of the site will be forecasted using the rates provided in the ITE Trip Generation Manual, 10<sup>th</sup> Edition. These trips will be applied to the boundary road network using either Transportation Tomorrow Survey (TTS) data, or existing turning movements at Silver Glen Blvd and Cranberry Trail West.
- 5. An auxiliary lane warrant will be completed to determine the eastbound left-turn lane and westbound right-turn lane requirements at the site entrance.
- A signal warrant will be completed at the intersection of Highway 26 and the Site Access/Silver Glen Blvd to determine if signals are warranted (we believe this will be so), changes to lane configurations, and establish optimized signal timings.

You were going to check that Silver Glen Boulevard was a public road at Highway 26, which we both believe is the case.

Thanks,

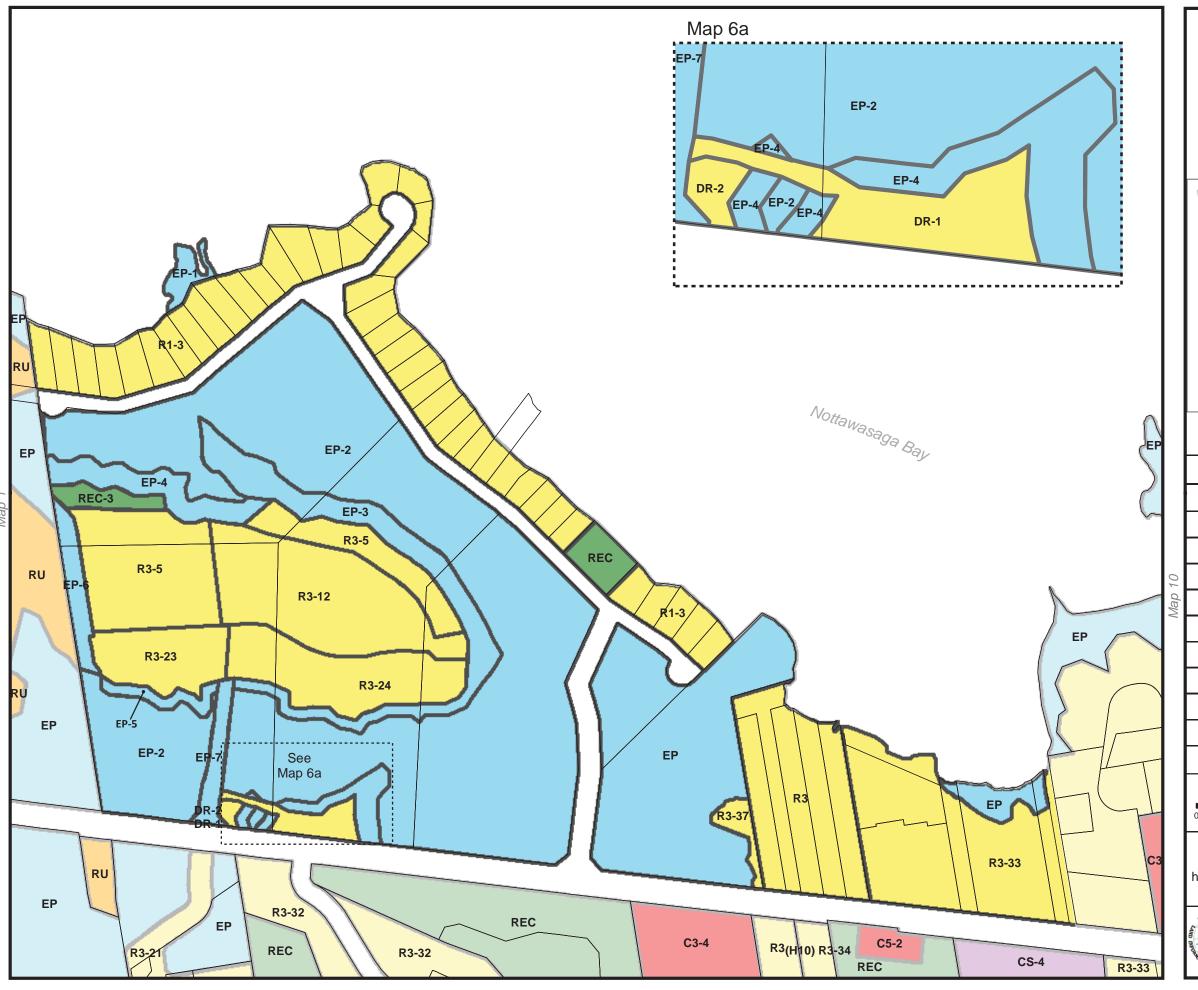
Alex

### | **ALEXANDER FLEMING**, MBA, P.Eng. | ASSOCIATE | C.F. CROZIER & ASSOCIATES

| 2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4

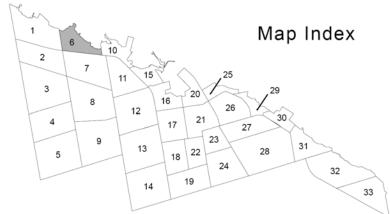
| cfcrozier.ca | afleming@cfcrozier.ca | tel 905 875 0026




Land development engineering, from the ground up.

Water Resources • Transportation • Structural • Mechanical • Electrical • Building Science

This communication is intended solely for the attention and use of the named recipients and contains information that is privileged and confidential. If you are not the intended recipient, or the person responsible for delivering this information to the intended recipient, please notify us immediately by telephone. If you have received this information in error, please be notified that you are not authorized to read, copy, distribute, use or retain this message or any part of it.


## APPENDIX B

Zoning By-Law and Official Plan Excerpts



## **Collingwood Zoning By-Law** Schedule 'A' - Map 6



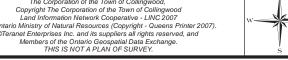


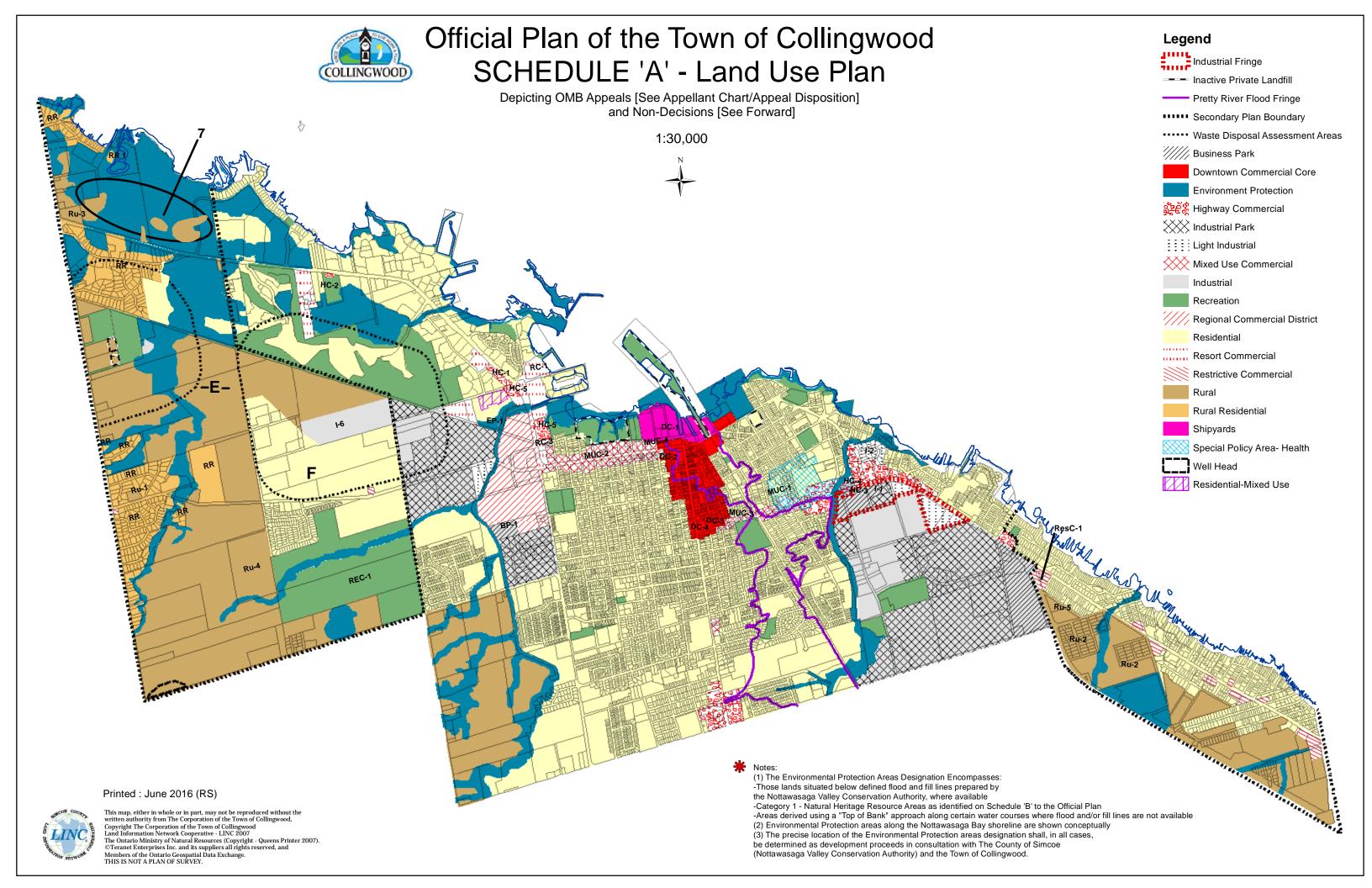
### **REVISIONS**

| No. | Date        | By-law                    |
|-----|-------------|---------------------------|
| 1   | Oct 7, 2010 | OMB Decision-Appeal No. 2 |
| 2   | Nov 8, 2012 | OMB Decision-Appeal No. 3 |
| 3   |             |                           |
| 4   |             |                           |
| 5   |             |                           |
| 6   |             |                           |
| 7   |             |                           |
| 8   |             |                           |
| 9   |             |                           |
| 10  |             |                           |

1:5000

Revised by:


Produced by the Town of Collingwood, Planning Services. The information contained herein is believed to be correct, however, the Town assumes no liability for negligence, inaccuracies or omissions. This drawing is not a legal survey.


This map, either in whole or in part, may not be reproduced without the written authority from The Corporation of the Town of Collingwood, Copyright The Corporation of the Town of Collingwood Land Information Network Cooperative - LINC 2007

The Ontario Ministry of Natural Resources (Copyright - Queens Printer 2007).

©Teranet Enterprises Inc. and its suppliers all rights reserved, and Members of the Ontario Geospatial Data Exchange.

THIS IS NOT A PLAN OF SURVEY.





# APPENDIX C

Transit Schedules

# Four Ways to Discover Collingwood

parks recreation culture

Whether you're a swimmer, skater, artist, or AquaFit enthusiast, Collingwood has the recreational & cultural activities that your family will enjoy. Check out the activity guide to find out what's happening.

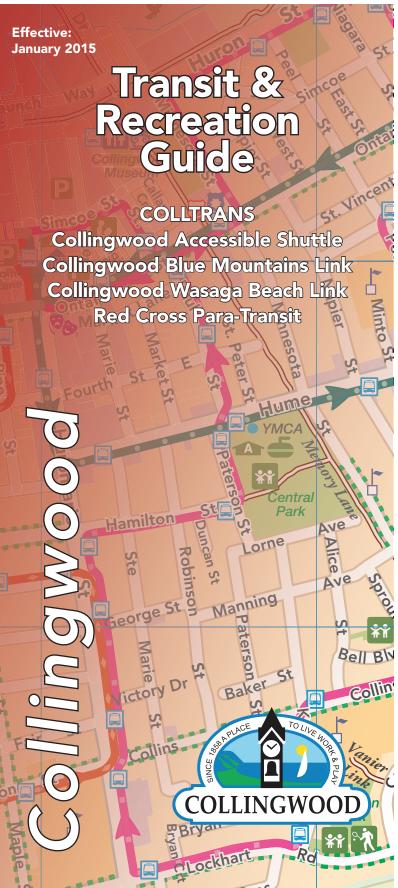
www.collingwood.ca/communityactivityguide



Did you know that Collingwood has nearly 70 kilometres of recreational trails for cyclists, walkers, joggers, skiers, and snowshoers? There's a trail leading to every major point of interest in the Town, including the beaches of Sunset Point, the scenic lookout at Millennium Park, and the tranquil gardens

of the Arboretum. www.collingwood.ca/trails






From learning about the rich ship-building history to accessing educational & cultural experiences, it's easy to get inspired at the Collingwood Museum and the Collingwood Public Library.

www.collingwoodpubliclibrary.ca



Collingwood's historic Downtown is filled with fantastic shopping. Discover trendy fashions, unique home décor, and creative spaces full of artisans and galleries. Enjoy a great meal in an award-winning restaurant or cozy up with a hot drink in one of the many cafés.



# Colltrans ~ Catch the Spirit!

Colltrans, the Town of Collingwood's public transportation system, provides a convenient alternative to driving within Collingwood. There are



3 regularly scheduled transit routes and the frequency of pickup at the downtown terminal is every thirty minutes. Route maps are available online at www.collingwood.ca or at Town Hall and various other locations.

Bus services operate on all days except statutory holidays. The terminal for Collingwood's public transit is located on the corner of Second St. and Pine St., adjacent to the municipal parking lot at 100 Pine St. Currently, the terminal is located outdoors and is outfitted with two shelters.

#### Transfers may only be made at the terminal.

Buses are wheelchair accessible and may also be used for mobility scooters, pull behind shopping carts, as well as strollers. All buses also have bike racks which are available at no additional charge. All buses operate on bio-diesel.

| Fare Structure - Single Fares  |                     |
|--------------------------------|---------------------|
| Colltrans Adults               | \$2.00              |
| Colltrans Seniors/Students     | \$1.50              |
| Colltrans Children (5 & Under) | FREE                |
| Collingwood Blue Mountain Link | \$2.00 (All Riders) |
| Collingwood Wasaga Beach Link  | \$2.00 (All Riders) |
| Red Cross Para-Transit         | \$3.50 (One Way)    |
| Fare Structure - Monthly Passe | es                  |

| Fare Structure - Monthly Passes           | ;               |
|-------------------------------------------|-----------------|
| Colltrans Adults                          | \$40.00         |
| Colltrans Seniors/Students                | \$30.00         |
| Collingwood Blue Mountain Link            | \$40.00         |
| Collingwood Wasaga Beach Link             | \$40.00         |
| UNIVERSAL PASS*                           | \$120.00        |
| *Valid on Colltrans, Wasaga Beach Transit | , and Link Bus. |
|                                           |                 |

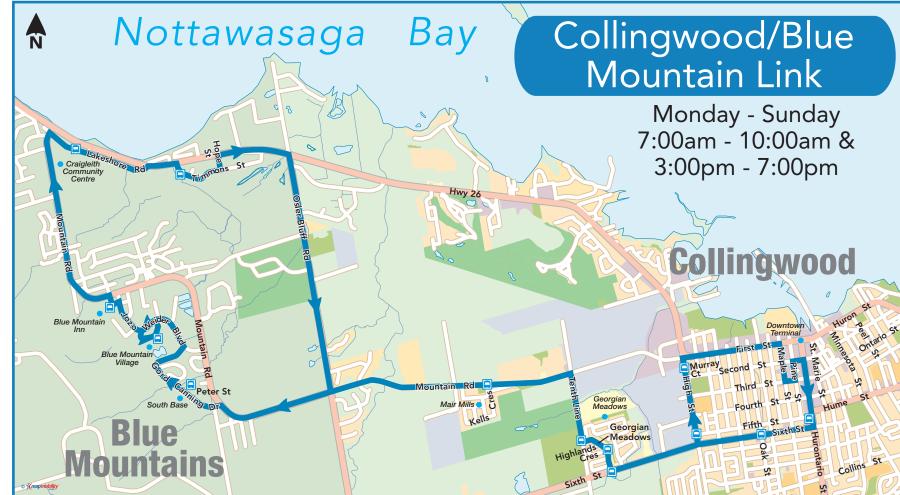
| Colltrans Operating Hours |                 |
|---------------------------|-----------------|
| Monday-Friday             | 6:30am - 9:00pm |
| Saturday                  | 7:00am - 6:00pm |
| Sunday                    | 9:00am - 5:00pm |

Red Cross Para-Transit is also available within the Town of Collingwood. Hours are Monday-Friday 7:00am-5:00pm Please contact 705-721-3313 x 5266 to apply for eligibility or to arrange for service.

### Collingwood Accessible Shuttle Service.

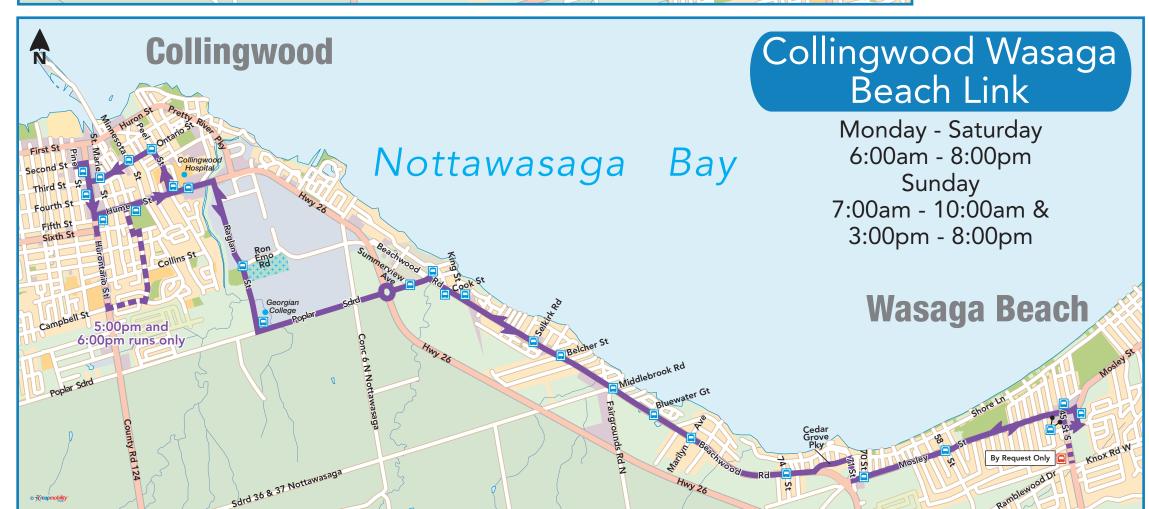
The town of Collingwood offers an Accessible shuttle service which operates similar to a taxi service to accommodate on demand service for accessible passengers. Fares are based upon a metered rate set by the town of Collingwood Taxi By-law. Hours of Operation are from 8:00am-Midnight 7 Days a week. To book the service please contact Sinton Transportation at 705-446-1196 and follow the prompts for accessible shuttle.

### Additional Colltrans Information.


Please visit our website at www.collingwood.ca for more information regarding complaints, concerns, and suggestions as well as information on new stops and shelters. Our website will also contain information on construction detours/delays as well as disruptions to service. If transit is to be cancelled due to inclement weather, please tune into local radio for updates on service or call us at 705-446-1196.

Bicycle racks are available for use at no extra

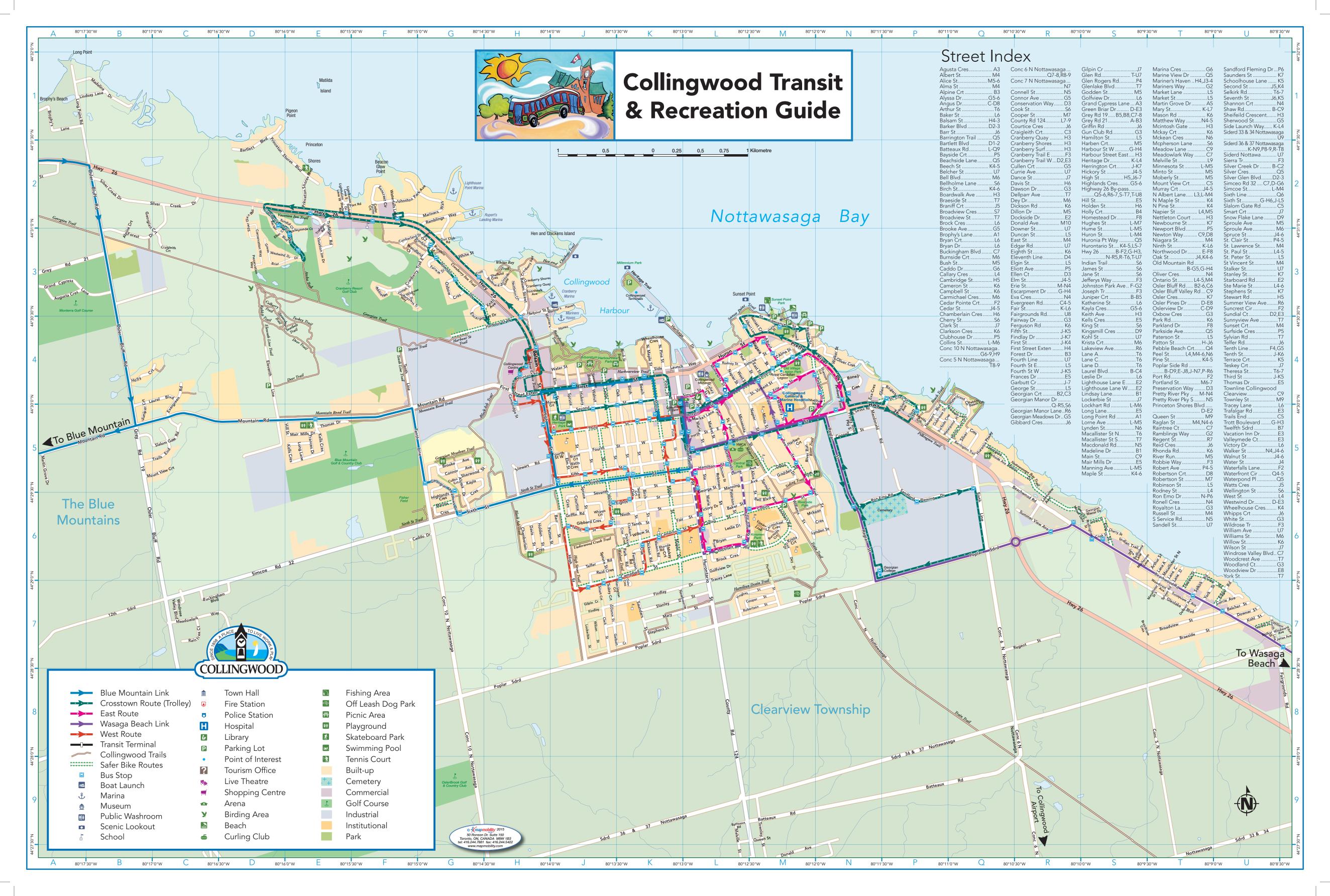





| Collingwood Wasaga Beach Transit I                                                                                                                        | Minutes           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                           | Past The Ho       |
| BEGINS AT 100 PINE STREET                                                                                                                                 |                   |
| Hurontario Street at TD Bank (Colltrans Stop)                                                                                                             | :01               |
| Hurontario Street at Macs (Colltrans Stop)                                                                                                                | :01               |
| St. Marie Street and Hume Street (Colltrans Stop)                                                                                                         | :02               |
| YMCA on Hume Street (Colltrans Stop)                                                                                                                      | :02               |
| Hume Street at Minnesota                                                                                                                                  | :03               |
| TSC Hardware Store (Colltrans Stop)                                                                                                                       | :04               |
| Raglan Street at Ron Emo Drive                                                                                                                            | :06               |
| Georgian College                                                                                                                                          | :07               |
| Poplar Sideroad at Summerview Avenue                                                                                                                      | :10               |
| Beachwood and Poplar Sideroad                                                                                                                             | :10               |
| Hwy 26 and Cook Street off Highway                                                                                                                        | :11               |
| Relax Inn                                                                                                                                                 | :12               |
| Rockdell Restaurant                                                                                                                                       | :12               |
| Fairgrounds Road (Right Turn Lane)                                                                                                                        | :13               |
| Bluewater Gate Entrance                                                                                                                                   | :13               |
| Krown Rust Control/Pennzoil                                                                                                                               | :14               |
| Wasaga Motel                                                                                                                                              | :15               |
| Lorna Dunes                                                                                                                                               | :17               |
| 58th Street at Lights                                                                                                                                     | :18               |
| Home Hardware on Mosely (Current Stop)                                                                                                                    | :19               |
| 45th Street at IDA (Current Stop)                                                                                                                         | :20               |
| Ramblewood Medical Centre (BY REQUEST ONLY)                                                                                                               | N/A               |
| Travelling to Collingwood                                                                                                                                 | Minutes           |
| BEGINS AT SUPERSTORE                                                                                                                                      | Past The Ho       |
| Mosely Street Tim Hortons (Current Stop)                                                                                                                  | :31               |
| 58th Street at Traffic Signals                                                                                                                            | :33               |
| Lorna Dunes Mini Putt                                                                                                                                     | :34               |
| 74th Street on paved shoulder                                                                                                                             | :36               |
| Marilyn Avenue on paved shoulder                                                                                                                          | :37               |
| Bluewater Gate at Entrance                                                                                                                                | :38               |
| Middlebrook Road on side of road                                                                                                                          | :38               |
| Rockdell Restaurant                                                                                                                                       | :39               |
| Relax Inn                                                                                                                                                 | :39               |
|                                                                                                                                                           | :40               |
| Hwy 26 and King Street off Highway                                                                                                                        | :40               |
| Wellington Street                                                                                                                                         |                   |
| Poplar Sideroad at Summerview Avenue                                                                                                                      | :41               |
|                                                                                                                                                           | :44               |
| Georgian College                                                                                                                                          | :45               |
| Raglan Street at Ron Emo Drive                                                                                                                            |                   |
| Raglan Street at Ron Emo Drive<br>Tim Hortons                                                                                                             | :48               |
| Raglan Street at Ron Emo Drive<br>Tim Hortons<br>Collingwood G&M Hospital at Heidelberg Inn                                                               | :48               |
| Raglan Street at Ron Emo Drive Tim Hortons Collingwood G&M Hospital at Heidelberg Inn Peel Street across from Hanna Motors                                | :48               |
| Raglan Street at Ron Emo Drive Tim Hortons Collingwood G&M Hospital at Heidelberg Inn Peel Street across from Hanna Motors Peel Street and Ontario Street | :48<br>:49<br>:50 |
| Raglan Street at Ron Emo Drive Tim Hortons Collingwood G&M Hospital at Heidelberg Inn Peel Street across from Hanna Motors                                | :48               |

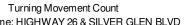


|                                                                                                              | olling<br>ountai |          |      |      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------|----------|------|------|--|--|--|--|--|
| Collingwood Terminal Georgian Meadows (Outbound) Blue Mountain Village Craigleith Georgian Meadows (Inbound) |                  |          |      |      |  |  |  |  |  |
|                                                                                                              | Mor              | nday-Sur | nday |      |  |  |  |  |  |
| 7:00                                                                                                         | 7:06             | 7:16     | 7:27 | 7:37 |  |  |  |  |  |
| 8:00                                                                                                         | 8:06             | 8:16     | 8:27 | 8:37 |  |  |  |  |  |
| 9:00                                                                                                         | 9:06             | 9:16     | 9:27 | 9:37 |  |  |  |  |  |
| 10:00                                                                                                        |                  |          |      |      |  |  |  |  |  |
| 3:00                                                                                                         | 3:06             | 3:16     | 3:27 | 3:37 |  |  |  |  |  |
| 4:00                                                                                                         | 4:06             | 4:16     | 4:27 | 4:37 |  |  |  |  |  |
| 5:00                                                                                                         | 5:06             | 5:16     | 5:27 | 5:37 |  |  |  |  |  |
| 6:00                                                                                                         | 6:06             | 6:16     | 6:27 | 6:37 |  |  |  |  |  |
| 7:00                                                                                                         |                  |          |      |      |  |  |  |  |  |






| .L       |       |          |             |                  |                   | - 6        | 'uo o o l |               | David          |                 |                |              |                |       |              |          |
|----------|-------|----------|-------------|------------------|-------------------|------------|-----------|---------------|----------------|-----------------|----------------|--------------|----------------|-------|--------------|----------|
| Ġ        |       |          |             |                  |                   |            | rosst     | own           | Rout           | .e              |                |              |                |       |              |          |
| Terminal | YMCA  | Hospital | Ron Emo Rd. | Georgian College | Elliot & St Clair | Sunset Pt. | Terminal  | Balsam @ Mall | Lighthouse Pt. | Cranberry Links | Georgian Manor | P.R. Academy | Dawson & Oxbow | Mall  | Oak & Second | Terminal |
|          |       |          |             |                  |                   |            | Mor       | nday-Fr       | iday           |                 |                |              |                |       |              |          |
|          |       |          |             |                  |                   |            | 6:25      | 6:34          | 6:36           | 6:38            | 6:41           | 6:42         | 6:45           | 6:47  | 6:50         | 6:55     |
| 7:00     | 7:02  | 7:03     | 7:06        | 7:11             | 7:17              | 7:21       | 7:25      | 7:34          | 7:36           | 7:38            | 7:41           | 7:42         | 7:45           | 7:47  | 7:50         | 7:55     |
| 8:00     | 8:02  | 8:03     | 8:06        | 8:11             | 8:17              | 8:21       | 8:25      | 8:34          | 8:36           | 8:38            | 8:41           | 8:42         | 8:45           | 8:47  | 8:50         | 8:55     |
| 9:00     | 9:02  | 9:03     | 9:06        | 9:11             | 9:17              | 9:21       | 9:25      | 9:34          | 9:36           | 9:38            | 9:41           | 9:42         | 9:45           | 9:47  | 9:50         | 9:55     |
| 10:00    | 10:02 | 10:03    | 10:06       | 10:11            | 10:17             | 10:21      | 10:25     | 10:34         | 10:36          | 10:38           | 10:41          | 10:42        | 10:45          | 10:47 | 10:50        | 10:55    |
| 11:00    | 11:02 | 11:03    | 11:06       | 11:11            | 11:17             | 11:21      | 11:25     | 11:34         | 11:36          | 11:38           | 11:41          | 11:42        | 11:45          | 11:47 | 11:50        | 11:55    |
| 12:00    | 12:02 | 12:03    | 12:06       | 12:11            | 12:17             | 12:21      | 12:25     | 12:34         | 12:36          | 12:38           | 12:41          | 12:42        | 12:45          | 12:47 | 12:50        | 12:55    |
| 1:00     | 1:02  | 1:03     | 1:06        | 1:11             | 1:17              | 1:21       | 1:25      | 1:34          | 1:36           | 1:38            | 1:41           | 1:42         | 1:45           | 1:47  | 1:50         | 1:55     |
| 2:00     | 2:02  | 2:03     | 2:06        | 2:11             | 2:17              | 2:21       | 2:25      | 2:34          | 2:36           | 2:38            | 2:41           | 2:42         | 2:45           | 2:47  | 2:50         | 2:55     |
| 3:00     | 3:02  | 3:03     | 3:06        | 3:11             | 3:17              | 3:21       | 3:25      | 3:34          | 3:36           | 3:38            | 3:41           | 3:42         | 3:45           | 3:47  | 3:50         | 3:55     |
| 4:00     | 4:02  | 4:03     | 4:06        | 4:11             | 4:17              | 4:21       | 4:25      | 4:34          | 4:36           | 4:38            | 4:41           | 4:42         | 4:45           | 4:47  | 4:50         | 4:55     |
| 5:00     | 5:02  | 5:03     | 5:06        | 5:11             | 5:17              | 5:21       | 5:25      | 5:34          | 5:36           | 5:38            | 5:41           | 5:42         | 5:45           | 5:47  | 5:50         | 5:55     |
| 6:00     | 6:02  | 6:03     | 6:06        | 6:11             | 6:17              | 6:21       | 6:25      | 6:34          | 6:36           | 6:38            | 6:41           | 6:42         | 6:45           | 6:47  | 6:50         | 6:55     |
| 7:00     | 7:02  | 7:03     | 7:06        | 7:11             | 7:17              | 7:21       | 7:25      | 7:34          | 7:36           | 7:38            | 7:41           | 7:42         | 7:45           | 7:47  | 7:50         | 7:55     |
| 8:00     | 8:02  | 8:03     | 8:06        | 8:11             | 8:17              | 8:21       | 8:25      | 8:34          | 8:36           | 8:38            | 8:41           | 8:42         | 8:45           | 8:47  | 8:50         | 8:55     |
|          |       |          |             |                  |                   |            | S         | aturda        | У              |                 |                |              |                |       |              |          |
| 7:00     | 7:02  | 7:03     | 7:06        | 7:11             | 7:17              | 7:21       | 7:25      | 7:34          | 7:36           | 7:38            | 7:41           | 7:42         | 7:45           | 7:47  | 7:50         | 7:55     |
| 8:00     | 8:02  | 8:03     | 8:06        | 8:11             | 8:17              | 8:21       | 8:25      | 8:34          | 8:36           | 8:38            | 8:41           | 8:42         | 8:45           | 8:47  | 8:50         | 8:55     |
| 9:00     | 9:02  | 9:03     | 9:06        | 9:11             | 9:17              | 9:21       | 9:25      | 9:34          | 9:36           | 9:38            | 9:41           | 9:42         | 9:45           | 9:47  | 9:50         | 9:55     |
| 10:00    | 10:02 | 10:03    | 10:06       | 10:11            | 10:17             | 10:21      | 10:25     | 10:34         | 10:36          | 10:38           | 10:41          | 10:42        | 10:45          | 10:47 | 10:50        | 10:55    |
| 11:00    | 11:02 | 11:03    | 11:06       | 11:11            | 11:17             | 11:21      | 11:25     | 11:34         | 11:36          | 11:38           | 11:41          | 11:42        | 11:45          | 11:47 | 11:50        | 11:55    |
| 12:00    | 12:02 | 12:03    | 12:06       | 12:11            | 12:17             | 12:21      | 12:25     | 12:34         | 12:36          | 12:38           | 12:41          | 12:42        | 12:45          | 12:47 | 12:50        | 12:55    |
| 1:00     | 1:02  | 1:03     | 1:06        | 1:11             | 1:17              | 1:21       | 1:25      | 1:34          | 1:36           | 1:38            | 1:41           | 1:42         | 1:45           | 1:47  | 1:50         | 1:55     |
| 2:00     | 2:02  | 2:03     | 2:06        | 2:11             | 2:17              | 2:21       | 2:25      | 2:34          | 2:36           | 2:38            | 2:41           | 2:42         | 2:45           | 2:47  | 2:50         | 2:55     |
| 3:00     | 3:02  | 3:03     | 3:06        | 3:11             | 3:17              | 3:21       | 3:25      | 3:34          | 3:36           | 3:38            | 3:41           | 3:42         | 3:45           | 3:47  | 3:50         | 3:55     |
| 4:00     | 4:02  | 4:03     | 4:06        | 4:11             | 4:17              | 4:21       | 4:25      | 4:34          | 4:36           | 4:38            | 4:41           | 4:42         | 4:45           | 4:47  | 4:50         | 4:55     |
| 5:00     | 5:02  | 5:03     | 5:06        | 5:11             | 5:17              | 5:21       | 5:25      | 5:34          | 5:36           | 5:38            | 5:41           | 5:42         | 5:45           | 5:47  | 5:50         | 5:55     |
|          |       |          |             |                  |                   |            |           | Sunday        |                |                 |                |              |                |       |              |          |
| 9:00     | 9:02  | 9:03     | 9:06        | 9:11             | 9:17              | 9:21       | 9:25      | 9:34          | 9:36           | 9:38            | 9:41           | 9:42         | 9:45           | 9:47  | 9:50         | 9:55     |
| 10:00    | 10:02 | 10:03    | 10:06       | 10:11            | 10:17             | 10:21      | 10:25     | 10:34         | 10:36          | 10:38           | 10:41          | 10:42        | 10:45          | 10:47 | 10:50        | 10:55    |
| 11:00    | 11:02 | 11:03    | 11:06       | 11:11            | 11:17             | 11:21      | 11:25     | 11:34         | 11:36          | 11:38           | 11:41          | 11:42        | 11:45          | 11:47 | 11:50        | 11:55    |
| 12:00    | 12:02 | 12:03    | 12:06       | 12:11            | 12:17             | 12:21      | 12:25     | 12:34         | 12:36          | 12:38           | 12:41          | 12:42        | 12:45          | 12:47 | 12:50        | 12:55    |
| 1:00     | 1:02  | 1:03     | 1:06        | 1:11             | 1:17              | 1:21       | 1:25      | 1:34          | 1:36           | 1:38            | 1:41           | 1:42         | 1:45           | 1:47  | 1:50         | 1:55     |
| 2:00     | 2:02  | 2:03     | 2:06        | 2:11             | 2:17              | 2:21       | 2:25      | 2:34          | 2:36           | 2:38            | 2:41           | 2:42         | 2:45           | 2:47  | 2:50         | 2:55     |
| 3:00     | 3:02  | 3:03     | 3:06        | 3:11             | 3:17              | 3:21       | 3:25      | 3:34          | 3:36           | 3:38            | 3:41           | 3:42         | 3:45           | 3:47  | 3:50         | 3:55     |
| 4:00     | 4:02  | 4:03     | 4:06        | 4:11             | 4:17              | 4:21       | 4:25      | 4:34          | 4:36           | 4:38            | 4:41           | 4:42         | 4:45           | 4:47  | 4:50         | 4:55     |
| 7.00     | 7.02  | 7.00     | 7.00        | 7.11             | 7.17              | 7.41       | 7.23      | 7.57          | 7.50           | 7.50            | 7.71           | 7.72         | 7.73           | 7.7/  | 7.50         | 7.55     |
|          |       |          | E o o t     | Daut             | _                 |            |           |               | 1              |                 |                | 14/~         | + Da           |       |              |          |
| à        |       |          | -ast        | Rout             | е                 |            |           |               | F              |                 |                | vves         | st Ro          | ute   |              |          |
| - 1      | 1     | 1        | - 1         | - 1              | 1                 | - 1        | - 1       | - 1           | 1              | 1               | 1              | 1            | 1              | 1     |              |          |


| 4.0          | 70   4.0       | 72 7.0         | 75   4.0       | 70 4.        | 11   4.        | 17 7.2         | -1 7.2              | -5   4.        |
|--------------|----------------|----------------|----------------|--------------|----------------|----------------|---------------------|----------------|
| Ł            |                |                | Eas            | t Ro         | ute            |                |                     |                |
| Terminal     | Bay Haven      | Sunset Manor   | Hospital       | Jean Vanier  | IDD            | YMCA           | Ontario & St. Marie | Terminal       |
| <u>'</u>     |                |                |                | nday-Fr      | iday           |                |                     | <u>'</u>       |
| 6:30         | 6:36           | 6:38           | 6:41           | 6:44         | 6:47           | 6:50           | 6:52                | 6:55           |
| 7:00         | 7:06           | 7:08           | 7:11           | 7:14         | 7:17           | 7:20           | 7:22                | 7:25           |
| 7:30         | 7:36           | 7:38           | 7:41           | 7:44         | 7:47           | 7:50           | 7:52                | 7:55           |
| 8:00         | 8:06           | 8:08           | 8:11           | 8:14         | 8:17           | 8:20           | 8:22                | 8:25           |
| 8:30         | 8:36           | 8:38           | 8:41           | 8:44         | 8:47           | 8:50           | 8:52                | 8:55           |
| 9:30         | 9:36           | 9:38           | 9:41           | 9:44         | 9:47           | 9:50           | 9:52                | 9:55           |
| 10:30        | 10:36          | 10:38          | 10:41          | 10:44        | 10:47          | 10:50          | 10:52               | 10:55          |
| 11:30        | 11:36          | 11:38          | 11:41          | 11:44        | 11:47          | 11:50          | 11:52               | 11:55          |
| 12:30        | 12:36          | 12:38          | 12:41          | 12:44        | 12:47          | 12:50          | 12:52               | 12:55          |
| 1:30         | 1:36           | 1:38           | 1:41           | 1:44         | 1:47           | 1:50           | 1:52                | 1:55           |
| 2:30         | 2:36           | 2:38           | 2:41           | 2:44         | 2:47           | 2:50           | 2:52                | 2:55           |
| 3:00         | 3:06           | 3:08           | 3:11           | 3:14         | 3:17           | 3:20           | 3:22                | 3:25           |
| 3:30<br>4:00 | 3:36<br>4:06   | 3:38<br>4:08   | 3:41<br>4:11   | 3:44<br>4:14 | 3:47<br>4:17   | 3:50<br>4:20   | 3:52<br>4:22        | 3:55<br>4:25   |
| 4:30         | 4:36           | 4:38           | 4:41           | 4:44         | 4:47           | 4:50           | 4:52                | 4:55           |
| 5:00         | 5:06           | 5:08           | 5:11           | 5:14         | 5:17           | 5:20           | 5:22                | 5:25           |
| 5:30         | 5:36           | 5:38           | 5:41           | 5:44         | 5:47           | 5:50           | 5:52                | 5:55           |
| 6:30         | 6:36           | 6:38           | 6:41           | 6:44         | 6:47           | 6:50           | 6:52                | 6:55           |
| 7:30         | 7:36           | 7:38           | 7:41           | 7:44         | 7:47           | 7:50           | 7:52                | 7:55           |
| 8:30         | 8:36           | 8:38           | 8:41           | 8:44         | 8:47           | 8:50           | 8:52                | 8:55           |
|              |                |                | S              | aturda       | y              |                |                     |                |
| 7:00         | 7:06           | 7:08           | 7:11           | 7:14         | 7:17           | 7:20           | 7:22                | 7:25           |
| 7:30         | 7:36           | 7:38           | 7:41           | 7:44         | 7:47           | 7:50           | 7:52                | 7:55           |
| 8:00         | 8:06           | 8:08           | 8:11           | 8:14         | 8:17           | 8:20           | 8:22                | 8:25           |
| 8:30         | 8:36           | 8:38           | 8:41           | 8:44         | 8:47           | 8:50           | 8:52                | 8:55           |
| 9:00         | 9:06           | 9:08           | 9:11           | 9:14         | 9:17           | 9:20           | 9:22                | 9:25           |
| 9:30         | 9:36           | 9:38           | 9:41           | 9:44         | 9:47           | 9:50           | 9:52                | 9:55           |
| 10:00        | 10:06<br>10:36 | 10:08<br>10:38 | 10:11<br>10:41 | 10:14        | 10:17<br>10:47 | 10:20<br>10:50 | 10:22<br>10:52      | 10:25<br>10:55 |
| 11:00        | 11:06          | 11:08          | 11:11          | 11:14        | 11:17          | 11:20          | 11:22               | 11:25          |
| 11:30        | 11:36          | 11:38          | 11:41          | 11:44        | 11:47          | 11:50          | 11:52               | 11:55          |
| 12:00        | 12:06          | 12:08          | 12:11          | 12:14        | 12:17          | 12:20          | 12:22               | 12:25          |
| 12:30        | 12:36          | 12:38          | 12:41          | 12:44        | 12:47          | 12:50          | 12:52               | 12:55          |
| 1:00         | 1:06           | 1:08           | 1:11           | 1:14         | 1:17           | 1:20           | 1:22                | 1:25           |
| 1:30         | 1:36           | 1:38           | 1:41           | 1:44         | 1:47           | 1:50           | 1:52                | 1:55           |
| 2:00         | 2:06           | 2:08           | 2:11           | 2:14         | 2:17           | 2:20           | 2:22                | 2:25           |
| 2:30         | 2:36           | 2:38           | 2:41           | 2:44         | 2:47           | 2:50           | 2:52                | 2:55           |
| 3:00         | 3:06           | 3:08           | 3:11           | 3:14         | 3:17           | 3:20           | 3:22                | 3:25           |
| 3:30         | 3:36           | 3:38           | 3:41           | 3:44         | 3:47           | 3:50           | 3:52                | 3:55           |
| 4:00         | 4:06           | 4:08           | 4:11<br>4:41   | 4:14         | 4:17           | 4:20           | 4:22                | 4:25           |
| 4:30<br>5:00 | 4:36<br>5:06   | 4:38<br>5:08   | 5:11           | 4:44<br>5:14 | 4:47<br>5:17   | 4:50<br>5:20   | 4:52<br>5:22        | 4:55<br>5:25   |
| 5:30         | 5:36           | 5:38           | 5:41           | 5:44         | 5:47           | 5:50           | 5:52                | 5:55           |
| 0.00         | 0.00           | 0.00           |                | Sunday       |                | 0.00           | 0.02                | 0.00           |
| 9:00         | 9:06           | 9:08           | 9:11           | 9:14         | 9:17           | 9:20           | 9:22                | 9:25           |
| 9:30         | 9:36           | 9:38           | 9:41           | 9:44         | 9:47           | 9:50           | 9:52                | 9:55           |
| 10:00        | 10:06          | 10:08          | 10:11          | 10:14        | 10:17          | 10:20          | 10:22               | 10:25          |
| 10:30        | 10:36          | 10:38          | 10:41          | 10:44        | 10:47          | 10:50          | 10:52               | 10:55          |
| 11:00        | 11:06          | 11:08          | 11:11          | 11:14        | 11:17          | 11:20          | 11:22               | 11:25          |
| 11:30        | 11:36          | 11:38          | 11:41          | 11:44        | 11:47          | 11:50          | 11:52               | 11:55          |
| 12:30        | 12:36          | 12:38          | 12:41          | 12:44        | 12:47          | 12:50          | 12:52               | 12:55          |
| 1:30         | 1:36           | 1:38           | 1:41           | 1:44         | 1:47           | 1:50           | 1:52                | 1:55           |
| 2:30         | 2:36           | 2:38           | 2:41           | 2:44         | 2:47           | 2:50           | 2:52                | 2:55           |
|              |                |                |                |              |                |                |                     |                |
| 3:30<br>4:30 | 3:36<br>4:36   | 3:38<br>4:38   | 3:41<br>4:41   | 3:44<br>4:44 | 3:47<br>4:47   | 3:50<br>4:50   | 3:52<br>4:52        | 3:55<br>4:55   |

| Ŀ            |               | ٧             | Vest          | Rout          | е             |               |               |
|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|              |               |               |               |               |               |               |               |
| Terminal     | Mall          | WalMart       | Eighth & Oak  | Tenth & High  | Oak & Cameron | CCI           | Terminal      |
| ·            |               |               | Monday        | /-Friday      | /             |               | •             |
| 6:30         | 6:36          | 6:38          | 6:43          | 6:45          | 6:49          | 6:51          | 6:55          |
| 7:00         | 7:06          | 7:08          | 7:13          | 7:15          | 7:19          | 7:21          | 7:25          |
| 7:30         | 7:36          | 7:38          | 7:43          | 7:45          | 7:49          | 7:51          | 7:55          |
| 8:00         | 8:06          | 8:08          | 8:13          | 8:15          | 8:19          | 8:21          | 8:25          |
| 8:30         | 8:36          | 8:38          | 8:43          | 8:45          | 8:49          | 8:51          | 8:55          |
| 9:00         | 9:06          | 9:08          | 9:13          | 9:15          | 9:19          | 9:21          | 9:25          |
| 10:00        | 10:06         | 10:08         | 10:13         | 10:15         | 10:19         | 10:21         | 10:25         |
| 11:00        | 11:06         | 11:08         | 11:13         | 11:15         | 11:19         | 11:21         | 11:25         |
| 12:00        | 12:06         | 12:08         | 12:13         | 12:15         | 12:19         | 12:21         | 12:25         |
| 1:00         | 1:06<br>2:06  | 1:08<br>2:08  | 1:13<br>2:13  | 1:15<br>2:15  | 1:19<br>2:19  | 1:21<br>2:21  | 1:25<br>2:25  |
| 2:30         | 2:36          | 2:38          | 2:43          | 2:45          | 2:49          | 2:51          | 2:55          |
| 3:00         | 3:06          | 3:08          | 3:13          | 3:15          | 3:19          | 3:21          | 3:25          |
| 3:30         | 3:36          | 3:38          | 3:43          | 3:45          | 3:49          | 3:51          | 3:55          |
| 4:00         | 4:06          | 4:08          | 4:13          | 4:15          | 4:19          | 4:21          | 4:25          |
| 4:30         | 4:36          | 4:38          | 4:43          | 4:45          | 4:49          | 4:51          | 4:55          |
| 5:00         | 5:06          | 5:08          | 5:13          | 5:15          | 5:19          | 5:21          | 5:25          |
| 5:30         | 5:36          | 5:38          | 5:43          | 5:45          | 5:49          | 5:51          | 5:55          |
| 6:00         | 6:06          | 6:08          | 6:13          | 6:15          | 6:19          | 6:21          | 6:25          |
| 7:00         | 7:06          | 7:08          | 7:13          | 7:15          | 7:19          | 7:21          | 7:25          |
| 8:00         | 8:06          | 8:08          | 8:13          | 8:15          | 8:19          | 8:21          | 8:25          |
|              |               |               | Satu          | rday          |               |               |               |
| 7:00         | 7:06          | 7:08          | 7:13          | 7:15          | 7:19          | 7:21          | 7:25          |
| 7:30         | 7:36          | 7:38          | 7:43          | 7:45          | 7:49          | 7:51          | <b>7</b> :55  |
| 8:00         | 8:06          | 8:08          | 8:13          | 8:15          | 8:19          | 8:21          | 8:25          |
| 8:30         | 8:36          | 8:38          | 8:43          | 8:45          | 8:49          | 8:51          | 8:55          |
| 9:00<br>9:30 | 9:06          | 9:08          | 9:13          | 9:15          | 9:19          | 9:21          | 9:25          |
| 10:00        | 9:36<br>10:06 | 9:38<br>10:08 | 9:43<br>10:13 | 9:45<br>10:15 | 9:49<br>10:19 | 9:51<br>10:21 | 9:55<br>10:25 |
| 10:30        | 10:36         | 10:38         | 10:43         | 10:45         | 10:49         | 10:51         | 10:55         |
| 11:00        | 11:06         | 11:08         | 11:13         | 11:15         | 11:19         | 11:21         | 11:25         |
| 11:30        | 11:36         | 11:38         | 11:43         | 11:45         | 11:49         | 11:51         | 11:55         |
| 12:00        | 12:06         | 12:08         | 12:13         | 12:15         | 12:19         | 12:21         | 12:25         |
| 12:30        | 12:36         | 12:38         | 12:43         | 12:45         | 12:49         | 12:51         | <b>12</b> :55 |
| 1:00         | 1:06          | 1:08          | 1:13          | 1:15          | 1:19          | 1:21          | 1:25          |
| 1:30         | 1:36          | 1:38          | 1:43          | 1:45          | 1:49          | 1:51          | 1:55          |
| 2:00         | 2:06          | 2:08          | 2:13          | 2:15          | 2:19          | 2:21          | 2:25          |
| 2:30         | 2:36          | 2:38          | 2:43          | 2:45          | 2:49          | 2:51          | 2:55          |
| 3:00         | 3:06          | 3:08          | 3:13          | 3:15          | 3:19          | 3:21          | 3:25          |
| 3:30         | 3:36          | 3:38          | 3:43<br>4:13  | 3:45<br>4:15  | 3:49          | 3:51<br>4:21  | 3:55<br>4:25  |
| 4:00<br>4:30 | 4:06<br>4:36  | 4:08<br>4:38  | 4:43          | 4:45          | 4:19<br>4:49  | 4:51          | 4:55          |
| 5:00         | 5:06          | 5:08          | 5:13          | 5:15          | 5:19          | 5:21          | 5:25          |
| 5:30         | 5:36          | 5:38          | 5:43          | 5:45          | 5:49          | 5:51          | 5:55          |
|              |               |               | Sun           |               |               |               |               |
| 9:00         | 9:06          | 9:08          | 9:13          | 9:15          | 9:19          | 9:21          | 9:25          |
| 9:30         | 9:36          | 9:38          | 9:43          | 9:45          | 9:49          | 9:51          | 9:55          |
| 10:00        | 10:06         | 10:08         | 10:13         | 10:15         | 10:19         | 10:21         | 10:25         |
| 10:30        | 10:36         | 10:38         | 10:43         | 10:45         | 10:49         | 10:51         | 10:55         |
| 11:00        | 11:06         | 11:08         | 11:13         | 11:15         | 11:19         | 11:21         | 11:25         |
| 12:00        | 12:06         | 12:08         | 12:13         | 12:15         | 12:19         | 12:21         | 12:25         |
| 1.00         | 1.07          | 1.00          | 4 4 2         | 4 4 5         | 1 10          | 1 01          | 4 0 5         |



# APPENDIX D

Traffic Data



Location Name: HIGHWAY 26 & SILVER GLEN BLVD
Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis



Crozier & Associates

### Turning Movement Count (1 . HIGHWAY 26 & SILVER GLEN BLVD)

| Start Time           |             |             |               | oroach<br>WAY 2 |                | S Approach SILVER GLEN BLVD |             |               |                |                | <b>W Approach</b><br>HIGHWAY 26 |             |               |            |                | Int. Total<br>(15 min) | Int. Tota<br>(1 hr) |
|----------------------|-------------|-------------|---------------|-----------------|----------------|-----------------------------|-------------|---------------|----------------|----------------|---------------------------------|-------------|---------------|------------|----------------|------------------------|---------------------|
| Start Time           | Thru<br>E:W | Left<br>E:S | U-Turn<br>E:E | Peds<br>E:      | Approach Total | Right<br>S:E                | Left<br>S:W | U-Turn<br>S:S | Peds<br>S:     | Approach Total | Right<br>W:S                    | Thru<br>W:E | U-Turn<br>W:W | Peds<br>W: | Approach Total |                        |                     |
| 06:00:00             | 24          | 0           | 0             | 0               | 24             | 1                           | 0           | 0             | 0              | 1              | 0                               | 20          | 0             | 0          | 20             | 45                     |                     |
| 06:15:00             | 21          | 0           | 0             | 0               | 21             | 0                           | 1           | 0             | 0              | 1              | 0                               | 22          | 0             | 0          | 22             | 44                     |                     |
| 06:30:00             | 30          | 0           | 0             | 0               | 30             | 1                           | 1           | 0             | 0              | 2              | 1                               | 41          | 0             | 0          | 42             | 74                     |                     |
| 06:45:00             | 42          | 0           | 0             | 0               | 42             | 2                           | 0           | 0             | 0              | 2              | 0                               | 45          | 0             | 0          | 45             | 89                     | 252                 |
| 07:00:00             | 60          | 1           | 0             | 0               | 61             | 0                           | 0           | 0             | 0              | 0              | 1                               | 50          | 0             | 0          | 51             | 112                    | 319                 |
| 07:15:00             | 96          | 3           | 0             | 0               | 99             | 2                           | 0           | 0             | 0              | 2              | 3                               | 41          | 0             | 0          | 44             | 145                    | 420                 |
| 07:30:00             | 92          | 0           | 0             | 0               | 92             | 3                           | 3           | 0             | 0              | 6              | 1                               | 65          | 0             | 0          | 66             | 164                    | 510                 |
| 07:45:00             | 112         | 6           | 0             | 0               | 118            | 4                           | 0           | 0             | 0              | 4              | 2                               | 86          | 0             | 0          | 88             | 210                    | 631                 |
| 08:00:00             | 99          | 4           | 0             | 0               | 103            | 7                           | 3           | 1             | 0              | 11             | 3                               | 101         | 0             | 0          | 104            | 218                    | 737                 |
| 08:15:00             | 86          | 7           | 0             | 0               | 93             | 6                           | 4           | 0             | 0              | 10             | 3                               | 102         | 0             | 0          | 105            | 208                    | 800                 |
| 08:30:00             | 113         | 2           | 0             | 0               | 115            | 4                           | 1           | 0             | 0              | 5              | 2                               | 97          | 0             | 0          | 99             | 219                    | 855                 |
| 08:45:00             | 91          | 2           | 0             | 0               | 93             | 6                           | 1           | 0             | 1              | 7              | 0                               | 107         | 0             | 0          | 107            | 207                    | 852                 |
| 09:00:00             | 93          | 4           | 0             | 0               | 97             | 5                           | 2           | 0             | 0              | 7              | 1                               | 82          | 0             | 0          | 83             | 187                    | 821                 |
| 09:15:00             | 78          | 4           | 0             | 0               | 82             | 6                           | 2           | 0             | 0              | 8              | 1                               | 92          | 0             | 0          | 93             | 183                    | 796                 |
| 09:30:00             | 89          | 3           | 0             | 0               | 92             | 7                           | 3           | 0             | 2              | 10             | 0                               | 86          | 0             | 0          | 86             | 188                    | 765                 |
| 09:45:00<br>***BREAK | 77          | 2           | 0             | 0               | 79             | 2                           | 2           | 0             | 0              | 4              | 1                               | 90          | 0             | 0          | 91             | 174                    | 732                 |
| 15:00:00             | 103         | 7           | 0             | 0               | 110            | 4                           | 2           | 0             | 0              | 6              | 0                               | 84          | 0             | 0          | 84             | 200                    |                     |
| 15:15:00             | 84          | 6           | 0             | 0               | 90             | 3                           | 1           | 0             | 0              | 4              | 5                               | 105         | 0             | 0          | 110            | 204                    |                     |
| 15:30:00             | 104         | 4           | 0             | 1               | 108            | 5                           | 0           | 0             | 0              | 5              | 0                               | 137         | 0             | 0          | 137            | 250                    |                     |
| 15:45:00             | 131         | 2           | 0             | 0               | 133            | 5                           | 0           | 0             | 2              | 5              | 2                               | 113         | 0             | 0          | 115            | 253                    | 907                 |
| 16:00:00             | 145         | 4           | 0             | 0               | 149            | 4                           | 4           | 1             | 0              | 9              | 3                               | 105         | 0             | 0          | 108            | 266                    | 973                 |
| 16:15:00             | 129         | 6           | 0             | 0               | 135            | 5                           | 0           | 0             | 0              | 5              | 1                               | 120         | 0             | 0          | 121            | 261                    | 1030                |
| 16:30:00             | 144         | 4           | 0             | 0               | 148            | 2                           | 2           | 0             | 2<br>Page 1 of | 4              | 2                               | 120         | 0             | 0          | 122            | 274                    | 1054<br>CRA18B42    |



Bicycles
Bicycle %

# Turning Movement Count Location Name: HIGHWAY 26 & SILVER GLEN BLVD Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

Crozier & Associates

16:45:00 17:00:00 17:15:00 17:30:00 17:45:00 18:00:00 18:15:00 18:30:00 18:45:00 **Grand Total** Approach% 96.5% 3.4% 0.1% 70% 28.1% 1.9% 1.5% 98.4% 0% Totals % 51.1% 1.8% 0% 53% 1.8% 0.7% 0% 2.6% 0.7% 43.7% 0% 44.4% Heavy Heavy % 3.2% 3.6% 0% 4.5% 4.4% 0% 11.9% 3.2% 0%



Crozier & Associates



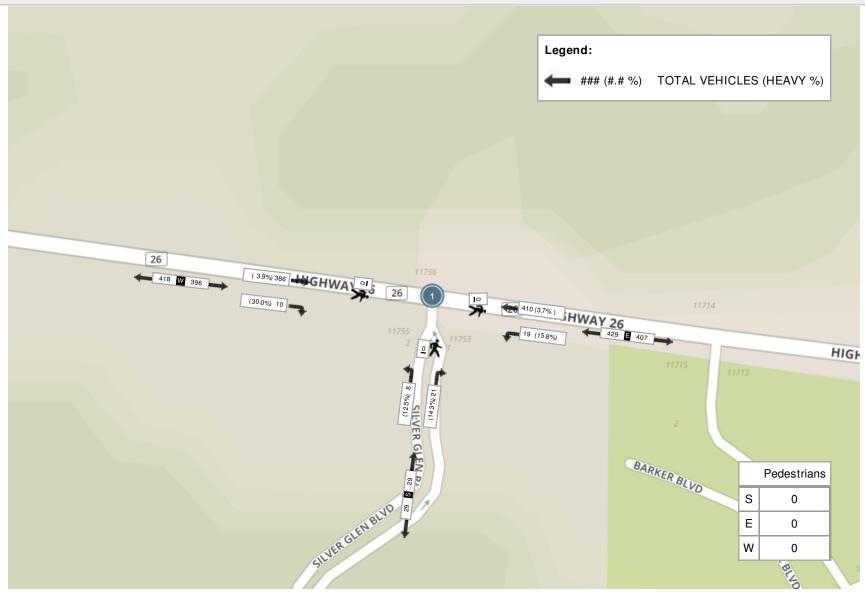
# Turning Movement Count Location Name: HIGHWAY 26 & SILVER GLEN BLVD Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

|                           |       |       |                | Peak | Hour: 07:45 A  | M - 08: | 45 AM | Wea                     | ther: | Mostly Cloudy  | (0.7° | C)    |                        |      |                |     |
|---------------------------|-------|-------|----------------|------|----------------|---------|-------|-------------------------|-------|----------------|-------|-------|------------------------|------|----------------|-----|
| Start Time                |       |       | E App<br>HIGHV |      | ;              |         | S     | <b>S App</b><br>ILVER G |       | LVD            |       |       | Int. Total<br>(15 min) |      |                |     |
|                           | Thru  | Left  | U-Turn         | Peds | Approach Total | Right   | Left  | U-Turn                  | Peds  | Approach Total | Right | Thru  | U-Turn                 | Peds | Approach Total |     |
| 07:45:00                  | 112   | 6     | 0              | 0    | 118            | 4       | 0     | 0                       | 0     | 4              | 2     | 86    | 0                      | 0    | 88             | 210 |
| 08:00:00                  | 99    | 4     | 0              | 0    | 103            | 7       | 3     | 1                       | 0     | 11             | 3     | 101   | 0                      | 0    | 104            | 218 |
| 08:15:00                  | 86    | 7     | 0              | 0    | 93             | 6       | 4     | 0                       | 0     | 10             | 3     | 102   | 0                      | 0    | 105            | 208 |
| 08:30:00                  | 113   | 2     | 0              | 0    | 115            | 4       | 1     | 0                       | 0     | 5              | 2     | 97    | 0                      | 0    | 99             | 219 |
| Grand Total               | 410   | 19    | 0              | 0    | 429            | 21      | 8     | 1                       | 0     | 30             | 10    | 386   | 0                      | 0    | 396            | 855 |
| Approach%                 | 95.6% | 4.4%  | 0%             |      | -              | 70%     | 26.7% | 3.3%                    |       | -              | 2.5%  | 97.5% | 0%                     |      | -              | -   |
| Totals %                  | 48%   | 2.2%  | 0%             |      | 50.2%          | 2.5%    | 0.9%  | 0.1%                    |       | 3.5%           | 1.2%  | 45.1% | 0%                     |      | 46.3%          | -   |
| PHF                       | 0.91  | 0.68  | 0              |      | 0.91           | 0.75    | 0.5   | 0.25                    |       | 0.68           | 0.83  | 0.95  | 0                      |      | 0.94           | -   |
| Heavy                     | 15    | 3     | 0              |      | 18             | 3       | 1     | 0                       |       | 4              | 3     | 15    | 0                      |      | 18             | -   |
| Heavy %                   | 3.7%  | 15.8% | 0%             |      | 4.2%           | 14.3%   | 12.5% | 0%                      |       | 13.3%          | 30%   | 3.9%  | 0%                     |      | 4.5%           | -   |
| Lights                    | 395   | 16    | 0              |      | 411            | 18      | 7     | 1                       |       | 26             | 7     | 371   | 0                      |      | 378            | -   |
| Lights %                  | 96.3% | 84.2% | 0%             |      | 95.8%          | 85.7%   | 87.5% | 100%                    |       | 86.7%          | 70%   | 96.1% | 0%                     |      | 95.5%          | -   |
| Single-Unit Trucks        | 11    | 3     | 0              |      | 14             | 3       | 0     | 0                       |       | 3              | 2     | 6     | 0                      |      | 8              | -   |
| Single-Unit Trucks %      | 2.7%  | 15.8% | 0%             |      | 3.3%           | 14.3%   | 0%    | 0%                      |       | 10%            | 20%   | 1.6%  | 0%                     |      | 2%             | -   |
| Buses                     | 2     | 0     | 0              |      | 2              | 0       | 1     | 0                       |       | 1              | 1     | 5     | 0                      |      | 6              | -   |
| Buses %                   | 0.5%  | 0%    | 0%             |      | 0.5%           | 0%      | 12.5% | 0%                      |       | 3.3%           | 10%   | 1.3%  | 0%                     |      | 1.5%           | -   |
| <b>Articulated Trucks</b> | 2     | 0     | 0              |      | 2              | 0       | 0     | 0                       |       | 0              | 0     | 4     | 0                      |      | 4              | -   |
| Articulated Trucks %      | 0.5%  | 0%    | 0%             |      | 0.5%           | 0%      | 0%    | 0%                      |       | 0%             | 0%    | 1%    | 0%                     |      | 1%             | -   |
| Pedestrians               | -     | -     | -              | 0    | -              | -       | -     | -                       | 0     | -              | -     | -     | -                      | 0    | -              | -   |
| Pedestrians%              | -     | -     | -              | 0%   |                | -       | -     | -                       | 0%    |                | -     | -     | -                      | 0%   |                | -   |

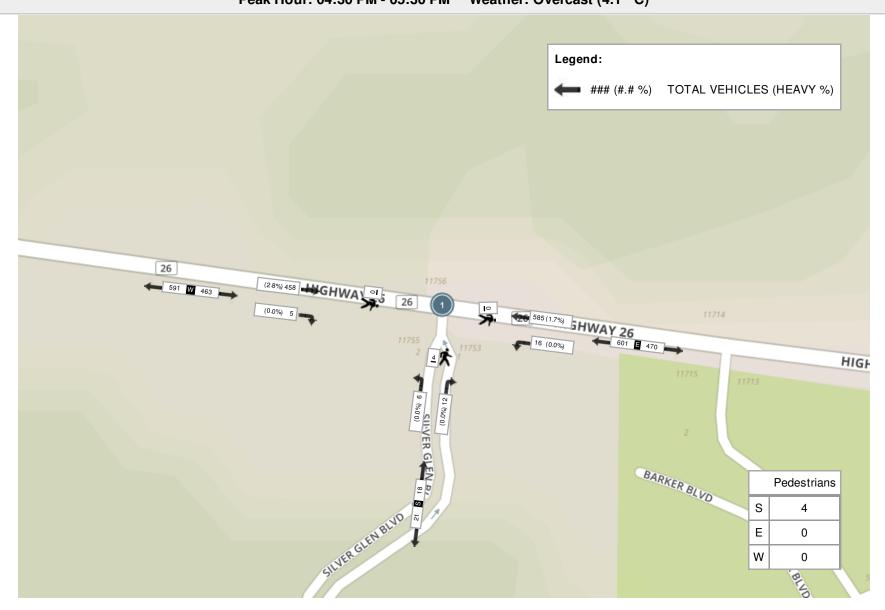




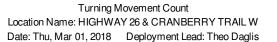

Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

|                      |                                        |      |        | F    | Peak Hour: 04:3 | 30 PM - | 05:30 | PM V   | Veathe | er: Overcast (4. | 1 °C) |                        |        |      |                |          |
|----------------------|----------------------------------------|------|--------|------|-----------------|---------|-------|--------|--------|------------------|-------|------------------------|--------|------|----------------|----------|
| Start Time           | E Approach HIGHWAY 26 SILVER GLEN BLVD |      |        |      |                 |         |       |        |        |                  |       | Int. Total<br>(15 min) |        |      |                |          |
|                      | Thru                                   | Left | U-Turn | Peds | Approach Total  | Right   | Left  | U-Turn | Peds   | Approach Total   | Right | Thru                   | U-Turn | Peds | Approach Total |          |
| 16:30:00             | 144                                    | 4    | 0      | 0    | 148             | 2       | 2     | 0      | 2      | 4                | 2     | 120                    | 0      | 0    | 122            | 274      |
| 16:45:00             | 137                                    | 5    | 0      | 0    | 142             | 2       | 3     | 0      | 0      | 5                | 1     | 126                    | 0      | 0    | 127            | 274      |
| 17:00:00             | 142                                    | 3    | 1      | 0    | 146             | 5       | 1     | 1      | 2      | 7                | 2     | 115                    | 0      | 0    | 117            | 270      |
| 17:15:00             | 162                                    | 4    | 0      | 0    | 166             | 3       | 0     | 0      | 0      | 3                | 0     | 97                     | 0      | 0    | 97             | 266      |
| Grand Total          | 585                                    | 16   | 1      | 0    | 602             | 12      | 6     | 1      | 4      | 19               | 5     | 458                    | 0      | 0    | 463            | 1084     |
| Approach%            | 97.2%                                  | 2.7% | 0.2%   |      | -               | 63.2%   | 31.6% | 5.3%   |        | -                | 1.1%  | 98.9%                  | 0%     |      | -              | -        |
| Totals %             | 54%                                    | 1.5% | 0.1%   |      | 55.5%           | 1.1%    | 0.6%  | 0.1%   |        | 1.8%             | 0.5%  | 42.3%                  | 0%     |      | 42.7%          | -        |
| PHF                  | 0.9                                    | 0.8  | 0.25   |      | 0.91            | 0.6     | 0.5   | 0.25   |        | 0.68             | 0.63  | 0.91                   | 0      |      | 0.91           | <b>-</b> |
| Heavy                | 10                                     | 0    | 0      |      | 10              | 0       | 0     | 0      |        | 0                | 0     | 13                     | 0      |      | 13             | -        |
| Heavy %              | 1.7%                                   | 0%   | 0%     |      | 1.7%            | 0%      | 0%    | 0%     |        | 0%               | 0%    | 2.8%                   | 0%     |      | 2.8%           | -        |
| Lights               | 575                                    | 16   | 1      |      | 592             | 12      | 6     | 1      |        | 19               | 5     | 445                    | 0      |      | 450            |          |
| Lights %             | 98.3%                                  | 100% | 100%   |      | 98.3%           | 100%    | 100%  | 100%   |        | 100%             | 100%  | 97.2%                  | 0%     |      | 97.2%          | -        |
| Single-Unit Trucks   | 9                                      | 0    | 0      |      | 9               | 0       | 0     | 0      |        | 0                | 0     | 9                      | 0      |      | 9              | -        |
| Single-Unit Trucks % | 1.5%                                   | 0%   | 0%     |      | 1.5%            | 0%      | 0%    | 0%     |        | 0%               | 0%    | 2%                     | 0%     |      | 1.9%           | -        |
| Buses                | 0                                      | 0    | 0      |      | 0               | 0       | 0     | 0      |        | 0                | 0     | 2                      | 0      |      | 2              | -        |
| Buses %              | 0%                                     | 0%   | 0%     |      | 0%              | 0%      | 0%    | 0%     |        | 0%               | 0%    | 0.4%                   | 0%     |      | 0.4%           | -        |
| Articulated Trucks   | 1                                      | 0    | 0      |      | 1               | 0       | 0     | 0      |        | 0                | 0     | 2                      | 0      |      | 2              | -        |
| Articulated Trucks % | 0.2%                                   | 0%   | 0%     |      | 0.2%            | 0%      | 0%    | 0%     |        | 0%               | 0%    | 0.4%                   | 0%     |      | 0.4%           | -        |
| Pedestrians          | -                                      | -    | -      | 0    | -               | -       | -     | -      | 4      | -                | -     | -                      | -      | 0    | -              | -        |
| Pedestrians%         | -                                      | -    | -      | 0%   |                 | -       | -     | -      | 100%   |                  | -     | -                      | -      | 0%   |                | -        |




# Turning Movement Count Location Name: HIGHWAY 26 & SILVER GLEN BLVD Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

Peak Hour: 07:45 AM - 08:45 AM Weather: Mostly Cloudy (0.7 °C)




# Turning Movement Count Location Name: HIGHWAY 26 & SILVER GLEN BLVD Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

Peak Hour: 04:30 PM - 05:30 PM Weather: Overcast (4.1 °C)







Spectrum

Turning Movement Count (2. HIGHWAY 26 & CRANBERRY TRAIL W)

|                      |             |             |               |                 |                | vemer        | ii Cou      |                         |            | VAY 26 & CHA   | NDERF        | ii in/      |                        | proach              |                |     |      |
|----------------------|-------------|-------------|---------------|-----------------|----------------|--------------|-------------|-------------------------|------------|----------------|--------------|-------------|------------------------|---------------------|----------------|-----|------|
|                      |             |             |               | proach<br>WAY 2 |                |              | CF          | <b>S App</b><br>RANBERF |            | AIL W          |              |             | Int. Total<br>(15 min) | Int. Tota<br>(1 hr) |                |     |      |
|                      | Thru<br>E:W | Left<br>E:S | U-Turn<br>E:E | Peds<br>E:      | Approach Total | Right<br>S:E | Left<br>S:W | U-Turn<br>S:S           | Peds<br>S: | Approach Total | Right<br>W:S | Thru<br>W:E | U-Turn<br>W:W          | Peds<br>W:          | Approach Total |     |      |
| 06:00:00             | 25          | 0           | 0             | 0               | 25             | 1            | 0           | 0                       | 0          | 1              | 0            | 21          | 0                      | 0                   | 21             | 47  |      |
| 06:15:00             | 21          | 0           | 0             | 0               | 21             | 2            | 0           | 0                       | 0          | 2              | 0            | 21          | 0                      | 0                   | 21             | 44  |      |
| 06:30:00             | 31          | 1           | 0             | 0               | 32             | 4            | 0           | 0                       | 0          | 4              | 1            | 41          | 0                      | 0                   | 42             | 78  |      |
| 06:45:00             | 40          | 2           | 0             | 0               | 42             | 0            | 0           | 0                       | 0          | 0              | 0            | 47          | 0                      | 0                   | 47             | 89  | 258  |
| 07:00:00             | 62          | 0           | 0             | 0               | 62             | 0            | 1           | 0                       | 0          | 1              | 0            | 50          | 0                      | 0                   | 50             | 113 | 324  |
| 07:15:00             | 93          | 0           | 0             | 0               | 93             | 1            | 1           | 0                       | 0          | 2              | 0            | 43          | 0                      | 0                   | 43             | 138 | 418  |
| 07:30:00             | 95          | 4           | 0             | 0               | 99             | 2            | 1           | 0                       | 0          | 3              | 0            | 67          | 0                      | 0                   | 67             | 169 | 509  |
| 07:45:00             | 115         | 1           | 0             | 0               | 116            | 6            | 1           | 0                       | 0          | 7              | 1            | 92          | 0                      | 0                   | 93             | 216 | 636  |
| 08:00:00             | 104         | 0           | 0             | 0               | 104            | 4            | 2           | 0                       | 0          | 6              | 2            | 104         | 0                      | 0                   | 106            | 216 | 739  |
| 08:15:00             | 89          | 3           | 0             | 0               | 92             | 1            | 2           | 0                       | 0          | 3              | 3            | 108         | 0                      | 0                   | 111            | 206 | 807  |
| 08:30:00             | 116         | 4           | 0             | 0               | 120            | 12           | 3           | 0                       | 0          | 15             | 4            | 93          | 0                      | 0                   | 97             | 232 | 870  |
| 08:45:00             | 88          | 1           | 0             | 0               | 89             | 9            | 1           | 0                       | 0          | 10             | 1            | 113         | 0                      | 0                   | 114            | 213 | 867  |
| 09:00:00             | 95          | 2           | 0             | 0               | 97             | 2            | 3           | 0                       | 0          | 5              | 1            | 88          | 0                      | 0                   | 89             | 191 | 842  |
| 09:15:00             | 83          | 0           | 0             | 0               | 83             | 4            | 1           | 0                       | 0          | 5              | 1            | 95          | 0                      | 0                   | 96             | 184 | 820  |
| 09:30:00             | 92          | 1           | 0             | 0               | 93             | 5            | 3           | 0                       | 0          | 8              | 2            | 91          | 0                      | 0                   | 93             | 194 | 782  |
| 09:45:00<br>***BREAK | 74          | 4           | 0             | 0               | 78             | 2            | 2           | 0                       | 0          | 4              | 1            | 90          | 0                      | 0                   | 91             | 173 | 742  |
| 15:00:00             | 106         | 9           | 0             | 0               | 115            | 4            | 1           | 0                       | 0          | 5              | 1            | 97          | 0                      | 0                   | 98             | 218 |      |
| 15:15:00             | 91          | 5           | 0             | 0               | 96             | 3            | 1           | 0                       | 0          | 4              | 3            | 109         | 0                      | 0                   | 112            | 212 |      |
| 15:30:00             | 105         | 11          | 0             | 0               | 116            | 5            | 2           | 0                       | 0          | 7              | 1            | 145         | 0                      | 0                   | 146            | 269 |      |
| 15:45:00             | 130         | 4           | 0             | 0               | 134            | 6            | 3           | 0                       | 2          | 9              | 1            | 123         | 0                      | 0                   | 124            | 267 | 966  |
| 16:00:00             | 148         | 8           | 0             | 0               | 156            | 4            | 1           | 0                       | 0          | 5              | 3            | 106         | 0                      | 0                   | 109            | 270 | 1018 |
| 16:15:00             | 130         | 5           | 0             | 0               | 135            | 7            | 1           | 0                       | 0          | 8              | 3            | 119         | 0                      | 0                   | 122            | 265 | 1071 |
| 16:30:00             | 157         | 14          | 0             | 0               | 171            | 6            | 2           | 0                       | 2          | 8              | 4            | 118         | 0                      | 0                   | 122            | 301 | 1103 |



Crozier & Associates



16:45:00 17:00:00 17:15:00 17:30:00 17:45:00 18:00:00 18:15:00 18:30:00 18:45:00 **Grand Total** Approach% 96.1% 3.9% 0% -73.1% 26.9% 0% 1.6% 98.4% 0% Totals % 50.8% 2% 0% 52.8% 1.8% 0.7% 0% 2.5% 0.7% 44% 0% 44.7% Heavy Heavy % 3.3% 8.6% 0% 9.6% 4.8% 0% 4.3% 3.5% 0% **Bicycles** Bicycle % 0.1% 0% 0% 0% 0% 0% 0% 0% 0%

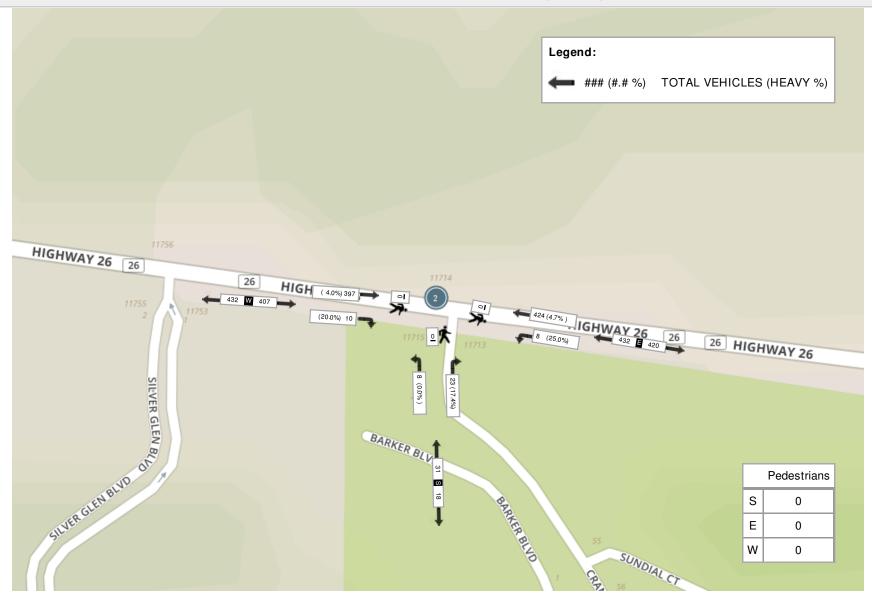


# Turning Movement Count Location Name: HIGHWAY 26 & CRANBERRY TRAIL W Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

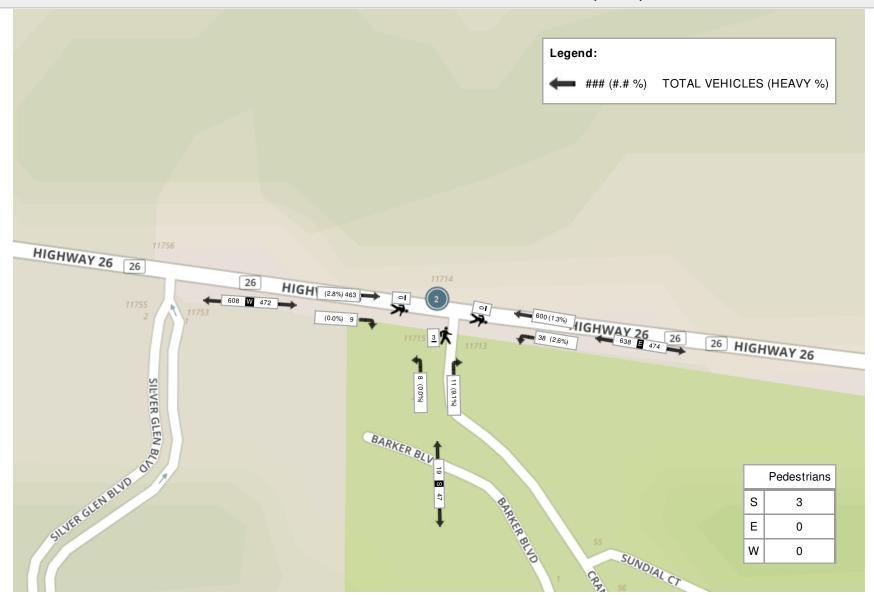
Peak Hour: 07:45 AM - 08:45 AM Weather: Mostly Cloudy (0.7 °C)

|                           |       |       |                | rean | 110ul. 07.43 A | (IVI - UO. | 45 AIV | vvca                    | uici. | wostry Cloudy  | (0.7  | C)    |        |                  |                |                        |
|---------------------------|-------|-------|----------------|------|----------------|------------|--------|-------------------------|-------|----------------|-------|-------|--------|------------------|----------------|------------------------|
| Start Time                |       |       | E App<br>HIGHV |      | 6              |            | CF     | <b>S App</b><br>RANBERF |       | AIL W          |       |       |        | proach<br>WAY 20 |                | Int. Total<br>(15 min) |
|                           | Thru  | Left  | U-Turn         | Peds | Approach Total | Right      | Left   | U-Turn                  | Peds  | Approach Total | Right | Thru  | U-Turn | Peds             | Approach Total |                        |
| 07:45:00                  | 115   | 1     | 0              | 0    | 116            | 6          | 1      | 0                       | 0     | 7              | 1     | 92    | 0      | 0                | 93             | 216                    |
| 08:00:00                  | 104   | 0     | 0              | 0    | 104            | 4          | 2      | 0                       | 0     | 6              | 2     | 104   | 0      | 0                | 106            | 216                    |
| 08:15:00                  | 89    | 3     | 0              | 0    | 92             | 1          | 2      | 0                       | 0     | 3              | 3     | 108   | 0      | 0                | 111            | 206                    |
| 08:30:00                  | 116   | 4     | 0              | 0    | 120            | 12         | 3      | 0                       | 0     | 15             | 4     | 93    | 0      | 0                | 97             | 232                    |
| Grand Total               | 424   | 8     | 0              | 0    | 432            | 23         | 8      | 0                       | 0     | 31             | 10    | 397   | 0      | 0                | 407            | 870                    |
| Approach%                 | 98.1% | 1.9%  | 0%             |      | -              | 74.2%      | 25.8%  | 0%                      |       | -              | 2.5%  | 97.5% | 0%     |                  | -              | -                      |
| Totals %                  | 48.7% | 0.9%  | 0%             |      | 49.7%          | 2.6%       | 0.9%   | 0%                      |       | 3.6%           | 1.1%  | 45.6% | 0%     |                  | 46.8%          | -                      |
| PHF                       | 0.91  | 0.5   | 0              |      | 0.9            | 0.48       | 0.67   | 0                       |       | 0.52           | 0.63  | 0.92  | 0      |                  | 0.92           | -                      |
| Heavy                     | 20    | 2     | 0              |      | 22             | 4          | 0      | 0                       |       | 4              | 2     | 16    | 0      |                  | 18             | -                      |
| Heavy %                   | 4.7%  | 25%   | 0%             |      | 5.1%           | 17.4%      | 0%     | 0%                      |       | 12.9%          | 20%   | 4%    | 0%     |                  | 4.4%           | -                      |
| Lights                    | 404   | 6     | 0              |      | 410            | 19         | 8      | 0                       |       | 27             | 8     | 381   | 0      |                  | 389            | -                      |
| Lights %                  | 95.3% | 75%   | 0%             |      | 94.9%          | 82.6%      | 100%   | 0%                      |       | 87.1%          | 80%   | 96%   | 0%     |                  | 95.6%          | -                      |
| Single-Unit Trucks        | 15    | 1     | 0              |      | 16             | 1          | 0      | 0                       |       | 1              | 0     | 8     | 0      |                  | 8              | -                      |
| Single-Unit Trucks %      | 3.5%  | 12.5% | 0%             |      | 3.7%           | 4.3%       | 0%     | 0%                      |       | 3.2%           | 0%    | 2%    | 0%     |                  | 2%             | -                      |
| Buses                     | 2     | 1     | 0              |      | 3              | 3          | 0      | 0                       |       | 3              | 1     | 3     | 0      |                  | 4              | -                      |
| Buses %                   | 0.5%  | 12.5% | 0%             |      | 0.7%           | 13%        | 0%     | 0%                      |       | 9.7%           | 10%   | 0.8%  | 0%     |                  | 1%             | -                      |
| <b>Articulated Trucks</b> | 3     | 0     | 0              |      | 3              | 0          | 0      | 0                       |       | 0              | 1     | 5     | 0      |                  | 6              | -                      |
| Articulated Trucks %      | 0.7%  | 0%    | 0%             |      | 0.7%           | 0%         | 0%     | 0%                      |       | 0%             | 10%   | 1.3%  | 0%     |                  | 1.5%           | -                      |
| Pedestrians               | -     | -     | -              | 0    | -              | -          | -      | -                       | 0     | -              | -     | -     | -      | 0                | -              | -                      |
| Pedestrians%              | -     | -     | -              | 0%   |                | -          | -      | -                       | 0%    |                | -     | -     | -      | 0%               |                | -                      |
| Bicycles on Road          | 0     | 0     | 0              | 0    | -              | 0          | 0      | 0                       | 0     | -              | 0     | 0     | 0      | 0                | -              | -                      |
| Bicycles on Road%         | -     | -     | -              | 0%   |                | -          | -      | -                       | 0%    |                | -     | -     | -      | 0%               |                | -                      |




# Turning Movement Count Location Name: HIGHWAY 26 & CRANBERRY TRAIL W Date: Thu, Mar 01, 2018 Deployment Lead: Theo Daglis

Peak Hour: 04:30 PM - 05:30 PM Weather: Overcast (4.1 °C)


|                      |       |       |                | P    | eak nour: 04:3 | SU PIVI - | 05:30 | PIVI V                  | veatne          | er: Overcasi (4. | 1 ·C) |       |        |                  |                |                        |
|----------------------|-------|-------|----------------|------|----------------|-----------|-------|-------------------------|-----------------|------------------|-------|-------|--------|------------------|----------------|------------------------|
| Start Time           |       |       | E App<br>HIGHV |      | <b>;</b>       |           | CF    | <b>S App</b><br>RANBERI | roach<br>RY TRA | AIL W            |       |       |        | proach<br>WAY 26 |                | Int. Total<br>(15 min) |
|                      | Thru  | Left  | U-Turn         | Peds | Approach Total | Right     | Left  | U-Turn                  | Peds            | Approach Total   | Right | Thru  | U-Turn | Peds             | Approach Total |                        |
| 16:30:00             | 157   | 14    | 0              | 0    | 171            | 6         | 2     | 0                       | 2               | 8                | 4     | 118   | 0      | 0                | 122            | 301                    |
| 16:45:00             | 134   | 8     | 0              | 0    | 142            | 0         | 2     | 0                       | 1               | 2                | 0     | 131   | 0      | 0                | 131            | 275                    |
| 17:00:00             | 144   | 4     | 0              | 0    | 148            | 4         | 1     | 0                       | 0               | 5                | 3     | 116   | 0      | 0                | 119            | 272                    |
| 17:15:00             | 165   | 12    | 0              | 0    | 177            | 1         | 3     | 0                       | 0               | 4                | 2     | 98    | 0      | 0                | 100            | 281                    |
| Grand Total          | 600   | 38    | 0              | 0    | 638            | 11        | 8     | 0                       | 3               | 19               | 9     | 463   | 0      | 0                | 472            | 1129                   |
| Approach%            | 94%   | 6%    | 0%             |      | -              | 57.9%     | 42.1% | 0%                      |                 | -                | 1.9%  | 98.1% | 0%     |                  | -              | -                      |
| Totals %             | 53.1% | 3.4%  | 0%             |      | 56.5%          | 1%        | 0.7%  | 0%                      |                 | 1.7%             | 0.8%  | 41%   | 0%     |                  | 41.8%          | -                      |
| PHF                  | 0.91  | 0.68  | 0              |      | 0.9            | 0.46      | 0.67  | 0                       |                 | 0.59             | 0.56  | 0.88  | 0      |                  | 0.9            | -                      |
| Heavy                | 8     | 1     | 0              |      | 9              | 1         | 0     | 0                       |                 | 1                | 0     | 13    | 0      |                  | 13             | -                      |
| Heavy %              | 1.3%  | 2.6%  | 0%             |      | 1.4%           | 9.1%      | 0%    | 0%                      |                 | 5.3%             | 0%    | 2.8%  | 0%     |                  | 2.8%           | -                      |
| Lights               | 592   | 37    | 0              |      | 629            | 10        | 8     | 0                       |                 | 18               | 9     | 450   | 0      |                  | 459            | -                      |
| Lights %             | 98.7% | 97.4% | 0%             |      | 98.6%          | 90.9%     | 100%  | 0%                      |                 | 94.7%            | 100%  | 97.2% | 0%     |                  | 97.2%          | -                      |
| Single-Unit Trucks   | 8     | 0     | 0              |      | 8              | 0         | 0     | 0                       |                 | 0                | 0     | 9     | 0      |                  | 9              | -                      |
| Single-Unit Trucks % | 1.3%  | 0%    | 0%             |      | 1.3%           | 0%        | 0%    | 0%                      |                 | 0%               | 0%    | 1.9%  | 0%     |                  | 1.9%           | -                      |
| Buses                | 0     | 1     | 0              |      | 1              | 1         | 0     | 0                       |                 | 1                | 0     | 2     | 0      |                  | 2              | -                      |
| Buses %              | 0%    | 2.6%  | 0%             |      | 0.2%           | 9.1%      | 0%    | 0%                      |                 | 5.3%             | 0%    | 0.4%  | 0%     |                  | 0.4%           | -                      |
| Articulated Trucks   | 0     | 0     | 0              |      | 0              | 0         | 0     | 0                       |                 | 0                | 0     | 2     | 0      |                  | 2              | -                      |
| Articulated Trucks % | 0%    | 0%    | 0%             |      | 0%             | 0%        | 0%    | 0%                      |                 | 0%               | 0%    | 0.4%  | 0%     |                  | 0.4%           | -                      |
| Pedestrians          | -     | -     | -              | 0    | -              | -         | -     | -                       | 3               | -                | -     | -     | -      | 0                | -              | -                      |
| Pedestrians%         | -     | -     | -              | 0%   |                | -         | -     | -                       | 100%            |                  | -     | -     | -      | 0%               |                | -                      |
| Bicycles on Road     | 1     | 0     | 0              | 0    | -              | 0         | 0     | 0                       | 0               | -                | 0     | 0     | 0      | 0                | -              | -                      |
| Bicycles on Road%    | -     | -     | -              | 0%   |                | -         | -     | -                       | 0%              |                  | -     | -     | -      | 0%               |                | -                      |



Peak Hour: 07:45 AM - 08:45 AM Weather: Mostly Cloudy (0.7 °C)



#### Peak Hour: 04:30 PM - 05:30 PM Weather: Overcast (4.1 °C)



## APPENDIX E

LOS Definitions

#### Level of Service Definitions

#### Two-Way Stop Controlled Intersections

| Level of<br>Service | Control Delay per<br>Vehicle (seconds) | Interpretation                                                                                                                    |
|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| А                   | ≤ 10                                   | EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.                           |
| В                   | > 10 and ≤ 15                          | VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.                                |
| С                   | > 15 and ≤ 25                          | GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.                           |
| D                   | > 25 and ≤ 35                          | FAIR. Infrequent and shorter gaps in traffic on the main roadway.  Queue lengths develop on the minor street.                     |
| Е                   | > 35 and ≤ 50                          | POOR. Very infrequent gaps in traffic on the main roadway.  Queue lengths become noticeable.                                      |
| F                   | > 50                                   | UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queue lengths on the minor street. |

Adapted from Highway Capacity Manual 2000, Transportation Research Board

### Signalized Intersections

| Level of<br>Service | Control Delay per<br>Vehicle (seconds) | Interpretation                                                                                                                                                                                             |
|---------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                   | ≤ 10                                   | EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase.  Most vehicles do not stop and short cycle lengths may contribute to low delay.                            |
| В                   | > 10 and ≤ 20                          | VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.                                             |
| С                   | > 20 and ≤ 35                          | GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".                                                                                                |
| D                   | > 35 and ≤ 55                          | FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volumeto-capacity ratios and unfavourable progression.                             |
| E                   | > 55 and ≤ 80                          | POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common. |
| F                   | > 80                                   | UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.                                                                                |

Adapted from Highway Capacity Manual 2000, Transportation Research Board

## APPENDIX F

Detailed Capacity Analysis Worksheets

|                               | -        | $\rightarrow$ | •           | ←        | •          | ~          |
|-------------------------------|----------|---------------|-------------|----------|------------|------------|
| Movement                      | EBT      | EBR           | WBL         | WBT      | NBL        | NBR        |
| Lane Configurations           | <b>†</b> | 7             | ሻ           | <b>†</b> | ሻ          | 7          |
| Traffic Volume (veh/h)        | 552      | 15            | 28          | 587      | 12         | 31         |
| Future Volume (Veh/h)         | 552      | 15            | 28          | 587      | 12         | 31         |
| Sign Control                  | Free     |               |             | Free     | Stop       |            |
| Grade                         | 0%       |               |             | 0%       | 0%         |            |
| Peak Hour Factor              | 0.98     | 0.98          | 0.98        | 0.98     | 0.98       | 0.98       |
| Hourly flow rate (vph)        | 563      | 15            | 29          | 599      | 12         | 32         |
| Pedestrians                   |          |               |             |          |            |            |
| Lane Width (m)                |          |               |             |          |            |            |
| Walking Speed (m/s)           |          |               |             |          |            |            |
| Percent Blockage              |          |               |             |          |            |            |
| Right turn flare (veh)        |          |               |             |          |            | 2          |
| Median type                   | None     |               |             | TWLTL    |            |            |
| Median storage veh)           |          |               |             | 2        |            |            |
| Upstream signal (m)           |          |               |             |          |            |            |
| pX, platoon unblocked         |          |               |             |          |            |            |
| vC, conflicting volume        |          |               | 578         |          | 1220       | 563        |
| vC1, stage 1 conf vol         |          |               |             |          | 563        |            |
| vC2, stage 2 conf vol         |          |               |             |          | 657        |            |
| vCu, unblocked vol            |          |               | 578         |          | 1220       | 563        |
| tC, single (s)                |          |               | 4.1         |          | 6.5        | 6.3        |
| tC, 2 stage (s)               |          |               |             |          | 5.5        |            |
| tF (s)                        |          |               | 2.2         |          | 3.6        | 3.4        |
| p0 queue free %               |          |               | 97          |          | 97         | 94         |
| cM capacity (veh/h)           |          |               | 986         |          | 392        | 504        |
| Direction, Lane #             | EB 1     | EB 2          | WB 1        | WB 2     | NB 1       |            |
| Volume Total                  | 563      | 15            | 29          | 599      | 44         |            |
| Volume Left                   | 0        | 0             | 29          | 0        | 12         |            |
| Volume Right                  | 0        | 15            | 0           | 0        | 32         |            |
| cSH                           | 1700     | 1700          | 986         | 1700     | 692        |            |
| Volume to Capacity            | 0.33     | 0.01          | 0.03        | 0.35     | 0.06       |            |
| Queue Length 95th (m)         | 0.0      | 0.0           | 0.7         | 0.0      | 1.5        |            |
| Control Delay (s)             | 0.0      | 0.0           | 8.8         | 0.0      | 13.1       |            |
| Lane LOS                      |          | 7.0           | A           | 3.0      | В          |            |
| Approach Delay (s)            | 0.0      |               | 0.4         |          | 13.1       |            |
| Approach LOS                  | 0.0      |               | <b>V.</b> . |          | В          |            |
| Intersection Summary          |          |               |             |          |            |            |
| Average Delay                 |          |               | 0.7         |          |            |            |
| Intersection Capacity Utiliza | ation    |               | 40.9%       | IC       | U Level o  | f Service  |
| Analysis Period (min)         | 20011    |               | 15          | 10       | 75 E6761 0 | 1 OCI VICE |
| Alialysis Fellou (IIIIII)     |          |               | 13          |          |            |            |

|                              | -        | $\rightarrow$ | •     | <b>←</b> | •         | ~          |
|------------------------------|----------|---------------|-------|----------|-----------|------------|
| Movement                     | EBT      | EBR           | WBL   | WBT      | NBL       | NBR        |
| Lane Configurations          | <b>†</b> | 7             | ሻ     | <b></b>  | ሻ         | 7          |
| Traffic Volume (veh/h)       | 568      | 15            | 12    | 607      | 12        | 33         |
| Future Volume (Veh/h)        | 568      | 15            | 12    | 607      | 12        | 33         |
| Sign Control                 | Free     |               |       | Free     | Stop      |            |
| Grade                        | 0%       |               |       | 0%       | 0%        |            |
| Peak Hour Factor             | 0.94     | 0.94          | 0.94  | 0.94     | 0.94      | 0.94       |
| Hourly flow rate (vph)       | 604      | 16            | 13    | 646      | 13        | 35         |
| Pedestrians                  |          |               |       |          |           |            |
| Lane Width (m)               |          |               |       |          |           |            |
| Walking Speed (m/s)          |          |               |       |          |           |            |
| Percent Blockage             |          |               |       |          |           |            |
| Right turn flare (veh)       |          |               |       |          |           | 2          |
| Median type                  | TWLTL    |               |       | TWLTL    |           | _          |
| Median storage veh)          | 2        |               |       | 2        |           |            |
| Upstream signal (m)          | <b>_</b> |               |       | _        |           |            |
| pX, platoon unblocked        |          |               |       |          |           |            |
| vC, conflicting volume       |          |               | 620   |          | 1276      | 604        |
| vC1, stage 1 conf vol        |          |               | 020   |          | 604       | 004        |
| vC2, stage 2 conf vol        |          |               |       |          | 672       |            |
| vCu, unblocked vol           |          |               | 620   |          | 1276      | 604        |
| tC, single (s)               |          |               | 4.3   |          | 6.4       | 6.4        |
| tC, 2 stage (s)              |          |               | 4.5   |          | 5.4       | 0.4        |
| tF (s)                       |          |               | 2.4   |          | 3.5       | 3.5        |
| p0 queue free %              |          |               | 98    |          | 97        | 93         |
| cM capacity (veh/h)          |          |               | 859   |          | 401       | 472        |
|                              |          |               |       |          |           | 412        |
| Direction, Lane #            | EB 1     | EB 2          | WB 1  | WB 2     | NB 1      |            |
| Volume Total                 | 604      | 16            | 13    | 646      | 48        |            |
| Volume Left                  | 0        | 0             | 13    | 0        | 13        |            |
| Volume Right                 | 0        | 16            | 0     | 0        | 35        |            |
| cSH                          | 1700     | 1700          | 859   | 1700     | 647       |            |
| Volume to Capacity           | 0.36     | 0.01          | 0.02  | 0.38     | 0.07      |            |
| Queue Length 95th (m)        | 0.0      | 0.0           | 0.4   | 0.0      | 1.8       |            |
| Control Delay (s)            | 0.0      | 0.0           | 9.3   | 0.0      | 13.5      |            |
| Lane LOS                     |          |               | Α     |          | В         |            |
| Approach Delay (s)           | 0.0      |               | 0.2   |          | 13.5      |            |
| Approach LOS                 |          |               |       |          | В         |            |
| Intersection Summary         |          |               |       |          |           |            |
| Average Delay                |          |               | 0.6   |          |           |            |
| Intersection Capacity Utiliz | ation    |               | 41.9% | IC       | U Level c | f Service  |
| Analysis Period (min)        | audii    |               | 15    | 10       | O LOVOI C | 1 OCI VICE |
| Analysis i enou (IIIII)      |          |               | 10    |          |           |            |

|                               | -        | $\rightarrow$ | •     | •       | •         | <b>/</b>     |
|-------------------------------|----------|---------------|-------|---------|-----------|--------------|
| Movement                      | EBT      | EBR           | WBL   | WBT     | NBL       | NBR          |
| Lane Configurations           | <b>†</b> | 7             | ሻ     | <b></b> | ሻ         | 7            |
| Traffic Volume (veh/h)        | 655      | 8             | 23    | 837     | 9         | 18           |
| Future Volume (Veh/h)         | 655      | 8             | 23    | 837     | 9         | 18           |
| Sign Control                  | Free     |               |       | Free    | Stop      |              |
| Grade                         | 0%       |               |       | 0%      | 0%        |              |
| Peak Hour Factor              | 0.99     | 0.99          | 0.99  | 0.99    | 0.99      | 0.99         |
| Hourly flow rate (vph)        | 662      | 8             | 23    | 845     | 9         | 18           |
| Pedestrians                   | 4        |               |       | 4       | 4         |              |
| Lane Width (m)                | 3.5      |               |       | 3.5     | 3.2       |              |
| Walking Speed (m/s)           | 1.1      |               |       | 1.1     | 1.1       |              |
| Percent Blockage              | 0        |               |       | 0       | 0         |              |
| Right turn flare (veh)        |          |               |       |         |           | 2            |
| Median type                   | None     |               |       | TWLTL   |           | <del>-</del> |
| Median storage veh)           |          |               |       | 2       |           |              |
| Upstream signal (m)           |          |               |       |         |           |              |
| pX, platoon unblocked         |          |               |       |         |           |              |
| vC, conflicting volume        |          |               | 674   |         | 1561      | 670          |
| vC1, stage 1 conf vol         |          |               | J, 1  |         | 666       | 0.0          |
| vC2, stage 2 conf vol         |          |               |       |         | 895       |              |
| vCu, unblocked vol            |          |               | 674   |         | 1561      | 670          |
| tC, single (s)                |          |               | 4.1   |         | 6.4       | 6.2          |
| tC, 2 stage (s)               |          |               | 7.1   |         | 5.4       | ٧.٢          |
| tF (s)                        |          |               | 2.2   |         | 3.5       | 3.3          |
| p0 queue free %               |          |               | 98    |         | 97        | 96           |
| cM capacity (veh/h)           |          |               | 924   |         | 324       | 457          |
| Direction, Lane #             | EB 1     | EB 2          | WB 1  | WB 2    | NB 1      | 107          |
| Volume Total                  | 662      | 8             | 23    | 845     | 27        |              |
| Volume Left                   | 002      | 0             | 23    | 040     | 9         |              |
| Volume Right                  | 0        | 8             | 0     | 0       | 18        |              |
| cSH                           | 1700     | 1700          | 924   | 1700    | 686       |              |
|                               | 0.39     | 0.00          | 0.02  | 0.50    | 0.04      |              |
| Volume to Capacity            |          | 0.00          | 0.02  | 0.0     |           |              |
| Queue Length 95th (m)         | 0.0      |               |       |         | 0.9       |              |
| Control Delay (s)             | 0.0      | 0.0           | 9.0   | 0.0     | 14.3      |              |
| Lane LOS                      | 0.0      |               | A     |         | B         |              |
| Approach Delay (s)            | 0.0      |               | 0.2   |         | 14.3      |              |
| Approach LOS                  |          |               |       |         | В         |              |
| Intersection Summary          |          |               |       |         |           |              |
| Average Delay                 |          |               | 0.4   |         |           |              |
| Intersection Capacity Utiliza | ation    |               | 55.3% | IC      | U Level o | of Service   |
| Analysis Period (min)         |          |               | 15    |         |           |              |

|                              | -        | $\rightarrow$ | •     | <b>←</b> | •         | ~         |
|------------------------------|----------|---------------|-------|----------|-----------|-----------|
| Movement                     | EBT      | EBR           | WBL   | WBT      | NBL       | NBR       |
| Lane Configurations          | <b>†</b> | 7             | ሻ     | <b></b>  | ሻ         | 7         |
| Traffic Volume (veh/h)       | 663      | 13            | 55    | 858      | 12        | 16        |
| Future Volume (Veh/h)        | 663      | 13            | 55    | 858      | 12        | 16        |
| Sign Control                 | Free     |               |       | Free     | Stop      |           |
| Grade                        | 0%       |               |       | 0%       | 0%        |           |
| Peak Hour Factor             | 0.94     | 0.94          | 0.94  | 0.94     | 0.94      | 0.94      |
| Hourly flow rate (vph)       | 705      | 14            | 59    | 913      | 13        | 17        |
| Pedestrians                  | 3        |               |       | 3        | 3         |           |
| Lane Width (m)               | 3.5      |               |       | 3.5      | 3.5       |           |
| Walking Speed (m/s)          | 1.1      |               |       | 1.1      | 1.1       |           |
| Percent Blockage             | 0        |               |       | 0        | 0         |           |
| Right turn flare (veh)       |          |               |       |          |           | 2         |
| Median type                  | TWLTL    |               |       | TWLTL    |           |           |
| Median storage veh)          | 2        |               |       | 2        |           |           |
| Upstream signal (m)          |          |               |       |          |           |           |
| pX, platoon unblocked        |          |               |       |          |           |           |
| vC, conflicting volume       |          |               | 722   |          | 1742      | 711       |
| vC1, stage 1 conf vol        |          |               |       |          | 708       |           |
| vC2, stage 2 conf vol        |          |               |       |          | 1034      |           |
| vCu, unblocked vol           |          |               | 722   |          | 1742      | 711       |
| tC, single (s)               |          |               | 4.1   |          | 6.4       | 6.3       |
| tC, 2 stage (s)              |          |               |       |          | 5.4       |           |
| tF (s)                       |          |               | 2.2   |          | 3.5       | 3.4       |
| p0 queue free %              |          |               | 93    |          | 95        | 96        |
| cM capacity (veh/h)          |          |               | 873   |          | 274       | 419       |
| Direction, Lane #            | EB 1     | EB 2          | WB 1  | WB 2     | NB 1      |           |
| Volume Total                 | 705      | 14            | 59    | 913      | 30        |           |
| Volume Left                  | 0        | 0             | 59    | 0        | 13        |           |
| Volume Right                 | 0        | 14            | 0     | 0        | 17        |           |
| cSH                          | 1700     | 1700          | 873   | 1700     | 633       |           |
| Volume to Capacity           | 0.41     | 0.01          | 0.07  | 0.54     | 0.05      |           |
| Queue Length 95th (m)        | 0.0      | 0.0           | 1.6   | 0.0      | 1.1       |           |
| Control Delay (s)            | 0.0      | 0.0           | 9.4   | 0.0      | 16.0      |           |
| Lane LOS                     |          |               | Α     |          | С         |           |
| Approach Delay (s)           | 0.0      |               | 0.6   |          | 16.0      |           |
| Approach LOS                 |          |               |       |          | С         |           |
| Intersection Summary         |          |               |       |          |           |           |
| Average Delay                |          |               | 0.6   |          |           |           |
| Intersection Capacity Utiliz | ation    |               | 56.1% | IC       | U Level c | f Service |
| Analysis Period (min)        |          |               | 15    |          |           |           |
| rangolo i onod (ilili)       |          |               | 10    |          |           |           |

|                                 | -           | •           | •     | ←            | •         | ~         |
|---------------------------------|-------------|-------------|-------|--------------|-----------|-----------|
| Movement                        | EBT         | EBR         | WBL   | WBT          | NBL       | NBR       |
| Lane Configurations             | <b>†</b>    | 7           | *     | <b></b>      | ች         | 7         |
| Traffic Volume (veh/h)          | 613         | 17          | 33    | 651          | 15        | 40        |
| Future Volume (Veh/h)           | 613         | 17          | 33    | 651          | 15        | 40        |
| Sign Control                    | Free        |             |       | Free         | Stop      |           |
| Grade                           | 0%          |             |       | 0%           | 0%        |           |
| Peak Hour Factor                | 0.98        | 0.98        | 0.98  | 0.98         | 0.98      | 0.98      |
| Hourly flow rate (vph)          | 626         | 17          | 34    | 664          | 15        | 41        |
| Pedestrians                     |             |             |       |              |           |           |
| Lane Width (m)                  |             |             |       |              |           |           |
| Walking Speed (m/s)             |             |             |       |              |           |           |
| Percent Blockage                |             |             |       |              |           |           |
| Right turn flare (veh)          |             |             |       |              |           | 2         |
| Median type                     | None        |             |       | TWLTL        |           |           |
| Median storage veh)             |             |             |       | 2            |           |           |
| Upstream signal (m)             |             |             |       | <del>-</del> |           |           |
| pX, platoon unblocked           |             |             |       |              |           |           |
| vC, conflicting volume          |             |             | 643   |              | 1358      | 626       |
| vC1, stage 1 conf vol           |             |             | 0.0   |              | 626       | 020       |
| vC2, stage 2 conf vol           |             |             |       |              | 732       |           |
| vCu, unblocked vol              |             |             | 643   |              | 1358      | 626       |
| tC, single (s)                  |             |             | 4.1   |              | 6.5       | 6.3       |
| tC, 2 stage (s)                 |             |             |       |              | 5.5       | 0.0       |
| tF (s)                          |             |             | 2.2   |              | 3.6       | 3.4       |
| p0 queue free %                 |             |             | 96    |              | 96        | 91        |
| cM capacity (veh/h)             |             |             | 932   |              | 355       | 463       |
|                                 | <b>55</b> 4 | <b>ED</b> 0 |       | 14/5.0       |           | 100       |
| Direction, Lane #               | EB 1        | EB 2        | WB 1  | WB 2         | NB 1      |           |
| Volume Total                    | 626         | 17          | 34    | 664          | 56        |           |
| Volume Left                     | 0           | 0           | 34    | 0            | 15        |           |
| Volume Right                    | 0           | 17          | 0     | 0            | 41        |           |
| cSH                             | 1700        | 1700        | 932   | 1700         | 633       |           |
| Volume to Capacity              | 0.37        | 0.01        | 0.04  | 0.39         | 0.09      |           |
| Queue Length 95th (m)           | 0.0         | 0.0         | 0.9   | 0.0          | 2.2       |           |
| Control Delay (s)               | 0.0         | 0.0         | 9.0   | 0.0          | 14.1      |           |
| Lane LOS                        |             |             | Α     |              | В         |           |
| Approach Delay (s)              | 0.0         |             | 0.4   |              | 14.1      |           |
| Approach LOS                    |             |             |       |              | В         |           |
| Intersection Summary            |             |             |       |              |           |           |
| Average Delay                   |             |             | 0.8   |              |           |           |
| Intersection Capacity Utilizati | ion         |             | 44.3% | IC           | U Level o | f Service |
| Analysis Period (min)           |             |             | 15    |              |           |           |

|                               | -        | $\rightarrow$ | •     | •       | <b>1</b>  | ~         |
|-------------------------------|----------|---------------|-------|---------|-----------|-----------|
| Movement                      | EBT      | EBR           | WBL   | WBT     | NBL       | NBR       |
| Lane Configurations           | <b>†</b> | 7             | ሻ     | <b></b> | ሻ         | 7         |
| Traffic Volume (veh/h)        | 636      | 17            | 13    | 676     | 13        | 37        |
| Future Volume (Veh/h)         | 636      | 17            | 13    | 676     | 13        | 37        |
| Sign Control                  | Free     |               |       | Free    | Stop      |           |
| Grade                         | 0%       |               |       | 0%      | 0%        |           |
| Peak Hour Factor              | 0.94     | 0.94          | 0.94  | 0.94    | 0.94      | 0.94      |
| Hourly flow rate (vph)        | 677      | 18            | 14    | 719     | 14        | 39        |
| Pedestrians                   |          |               |       |         |           |           |
| Lane Width (m)                |          |               |       |         |           |           |
| Walking Speed (m/s)           |          |               |       |         |           |           |
| Percent Blockage              |          |               |       |         |           |           |
| Right turn flare (veh)        |          |               |       |         |           | 2         |
| Median type                   | TWLTL    |               |       | TWLTL   |           |           |
| Median storage veh)           | 2        |               |       | 2       |           |           |
| Upstream signal (m)           |          |               |       |         |           |           |
| pX, platoon unblocked         |          |               |       |         |           |           |
| vC, conflicting volume        |          |               | 695   |         | 1424      | 677       |
| vC1, stage 1 conf vol         |          |               |       |         | 677       |           |
| vC2, stage 2 conf vol         |          |               |       |         | 747       |           |
| vCu, unblocked vol            |          |               | 695   |         | 1424      | 677       |
| tC, single (s)                |          |               | 4.3   |         | 6.4       | 6.4       |
| tC, 2 stage (s)               |          |               |       |         | 5.4       |           |
| tF (s)                        |          |               | 2.4   |         | 3.5       | 3.5       |
| p0 queue free %               |          |               | 98    |         | 96        | 91        |
| cM capacity (veh/h)           |          |               | 803   |         | 363       | 428       |
| Direction, Lane#              | EB 1     | EB 2          | WB 1  | WB 2    | NB 1      |           |
| Volume Total                  | 677      | 18            | 14    | 719     | 53        |           |
| Volume Left                   | 0        | 0             | 14    | 0       | 14        |           |
| Volume Right                  | 0        | 18            | 0     | 0       | 39        |           |
| cSH                           | 1700     | 1700          | 803   | 1700    | 581       |           |
| Volume to Capacity            | 0.40     | 0.01          | 0.02  | 0.42    | 0.09      |           |
| Queue Length 95th (m)         | 0.0      | 0.0           | 0.4   | 0.0     | 2.3       |           |
| Control Delay (s)             | 0.0      | 0.0           | 9.6   | 0.0     | 14.5      |           |
| Lane LOS                      |          |               | Α     |         | В         |           |
| Approach Delay (s)            | 0.0      |               | 0.2   |         | 14.5      |           |
| Approach LOS                  |          |               |       |         | В         |           |
| Intersection Summary          |          |               |       |         |           |           |
| Average Delay                 |          |               | 0.6   |         |           |           |
| Intersection Capacity Utiliza | ation    |               | 45.6% | IC      | U Level c | f Service |
| Analysis Period (min)         |          |               | 15    |         |           |           |

|                               | -        | •    | •     | ←        | •         | ~         |  |
|-------------------------------|----------|------|-------|----------|-----------|-----------|--|
| Movement                      | EBT      | EBR  | WBL   | WBT      | NBL       | NBR       |  |
| Lane Configurations           | <b>†</b> | 7    | *     | <b>*</b> | *         | #         |  |
| Traffic Volume (veh/h)        | 727      | 12   | 32    | 929      | 12        | 23        |  |
| Future Volume (Veh/h)         | 727      | 12   | 32    | 929      | 12        | 23        |  |
| Sign Control                  | Free     |      |       | Free     | Stop      |           |  |
| Grade                         | 0%       |      |       | 0%       | 0%        |           |  |
| Peak Hour Factor              | 0.99     | 0.99 | 0.99  | 0.99     | 0.99      | 0.99      |  |
| Hourly flow rate (vph)        | 734      | 12   | 32    | 938      | 12        | 23        |  |
| Pedestrians                   | 4        |      |       | 4        | 4         |           |  |
| Lane Width (m)                | 3.5      |      |       | 3.5      | 3.2       |           |  |
| Walking Speed (m/s)           | 1.1      |      |       | 1.1      | 1.1       |           |  |
| Percent Blockage              | 0        |      |       | 0        | 0         |           |  |
| Right turn flare (veh)        |          |      |       |          |           | 2         |  |
| Median type                   | None     |      |       | TWLTL    |           |           |  |
| Median storage veh)           |          |      |       | 2        |           |           |  |
| Upstream signal (m)           |          |      |       |          |           |           |  |
| pX, platoon unblocked         |          |      |       |          |           |           |  |
| vC, conflicting volume        |          |      | 750   |          | 1744      | 742       |  |
| vC1, stage 1 conf vol         |          |      |       |          | 738       |           |  |
| vC2, stage 2 conf vol         |          |      |       |          | 1006      |           |  |
| vCu, unblocked vol            |          |      | 750   |          | 1744      | 742       |  |
| tC, single (s)                |          |      | 4.1   |          | 6.4       | 6.2       |  |
| tC, 2 stage (s)               |          |      |       |          | 5.4       |           |  |
| tF (s)                        |          |      | 2.2   |          | 3.5       | 3.3       |  |
| p0 queue free %               |          |      | 96    |          | 96        | 94        |  |
| cM capacity (veh/h)           |          |      | 865   |          | 284       | 416       |  |
| Direction, Lane #             | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |           |  |
| Volume Total                  | 734      | 12   | 32    | 938      | 35        |           |  |
| Volume Left                   | 0        | 0    | 32    | 0        | 12        |           |  |
| Volume Right                  | 0        | 12   | 0     | 0        | 23        |           |  |
| cSH                           | 1700     | 1700 | 865   | 1700     | 633       |           |  |
| Volume to Capacity            | 0.43     | 0.01 | 0.04  | 0.55     | 0.06      |           |  |
| Queue Length 95th (m)         | 0.0      | 0.0  | 0.9   | 0.0      | 1.3       |           |  |
| Control Delay (s)             | 0.0      | 0.0  | 9.3   | 0.0      | 15.6      |           |  |
| Lane LOS                      |          |      | Α     |          | С         |           |  |
| Approach Delay (s)            | 0.0      |      | 0.3   |          | 15.6      |           |  |
| Approach LOS                  |          |      |       |          | С         |           |  |
| Intersection Summary          |          |      |       |          |           |           |  |
| Average Delay                 |          |      | 0.5   |          |           |           |  |
| Intersection Capacity Utiliza | ition    |      | 60.1% | IC       | U Level o | f Service |  |
| Analysis Period (min)         |          |      | 15    |          |           |           |  |

|                              | -            | $\rightarrow$ | •     | •            | •         | <b>/</b>   |
|------------------------------|--------------|---------------|-------|--------------|-----------|------------|
| Movement                     | EBT          | EBR           | WBL   | WBT          | NBL       | NBR        |
| Lane Configurations          | <b>†</b>     | 7             | ች     | <b></b>      | ች         | #          |
| Traffic Volume (veh/h)       | 739          | 14            | 61    | 958          | 13        | 18         |
| Future Volume (Veh/h)        | 739          | 14            | 61    | 958          | 13        | 18         |
| Sign Control                 | Free         |               |       | Free         | Stop      |            |
| Grade                        | 0%           |               |       | 0%           | 0%        |            |
| Peak Hour Factor             | 0.94         | 0.94          | 0.94  | 0.94         | 0.94      | 0.94       |
| Hourly flow rate (vph)       | 786          | 15            | 65    | 1019         | 14        | 19         |
| Pedestrians                  | 3            |               |       | 3            | 3         |            |
| Lane Width (m)               | 3.5          |               |       | 3.5          | 3.5       |            |
| Walking Speed (m/s)          | 1.1          |               |       | 1.1          | 1.1       |            |
| Percent Blockage             | 0            |               |       | 0            | 0         |            |
| Right turn flare (veh)       | •            |               |       |              |           | 2          |
| Median type                  | TWLTL        |               |       | TWLTL        |           |            |
| Median storage veh)          | 2            |               |       | 2            |           |            |
| Upstream signal (m)          | <del>-</del> |               |       | <del>-</del> |           |            |
| pX, platoon unblocked        |              |               |       |              |           |            |
| vC, conflicting volume       |              |               | 804   |              | 1941      | 792        |
| vC1, stage 1 conf vol        |              |               | 001   |              | 789       | 102        |
| vC2, stage 2 conf vol        |              |               |       |              | 1152      |            |
| vCu, unblocked vol           |              |               | 804   |              | 1941      | 792        |
| tC, single (s)               |              |               | 4.1   |              | 6.4       | 6.3        |
| tC, 2 stage (s)              |              |               | 7.1   |              | 5.4       | 0.0        |
| tF (s)                       |              |               | 2.2   |              | 3.5       | 3.4        |
| p0 queue free %              |              |               | 92    |              | 94        | 95         |
| cM capacity (veh/h)          |              |               | 814   |              | 238       | 376        |
| Direction, Lane #            | EB 1         | EB 2          | WB 1  | WB 2         | NB 1      | 0.0        |
| Volume Total                 | 786          | 15            | 65    | 1019         | 33        |            |
| Volume Left                  |              | 0             | 65    | 0            | 33<br>14  |            |
|                              | 0            | 15            | 00    | 0            | 19        |            |
| Volume Right                 |              |               |       |              |           |            |
| cSH                          | 1700         | 1700          | 814   | 1700         | 561       |            |
| Volume to Capacity           | 0.46         | 0.01          | 0.08  | 0.60         | 0.06      |            |
| Queue Length 95th (m)        | 0.0          | 0.0           | 2.0   | 0.0          | 1.4       |            |
| Control Delay (s)            | 0.0          | 0.0           | 9.8   | 0.0          | 17.6      |            |
| Lane LOS                     | 0.0          |               | A     |              | C         |            |
| Approach Delay (s)           | 0.0          |               | 0.6   |              | 17.6      |            |
| Approach LOS                 |              |               |       |              | С         |            |
| Intersection Summary         |              |               |       |              |           |            |
| Average Delay                |              |               | 0.6   |              |           |            |
| Intersection Conscitut Hili- |              |               |       |              |           |            |
| Intersection Capacity Utiliz | zation       |               | 61.4% | IC           | U Level c | of Service |

|                               | <b>→</b> | $\rightarrow$ | •     | ←        | •         | ~         |
|-------------------------------|----------|---------------|-------|----------|-----------|-----------|
| Movement                      | EBT      | EBR           | WBL   | WBT      | NBL       | NBR       |
| Lane Configurations           | <b>†</b> | 7             | ሻ     | <b>†</b> | ሻ         | 7         |
| Traffic Volume (veh/h)        | 660      | 18            | 35    | 701      | 16        | 43        |
| Future Volume (Veh/h)         | 660      | 18            | 35    | 701      | 16        | 43        |
| Sign Control                  | Free     |               |       | Free     | Stop      |           |
| Grade                         | 0%       |               |       | 0%       | 0%        |           |
| Peak Hour Factor              | 0.98     | 0.98          | 0.98  | 0.98     | 0.98      | 0.98      |
| Hourly flow rate (vph)        | 673      | 18            | 36    | 715      | 16        | 44        |
| Pedestrians                   |          |               |       |          |           |           |
| Lane Width (m)                |          |               |       |          |           |           |
| Walking Speed (m/s)           |          |               |       |          |           |           |
| Percent Blockage              |          |               |       |          |           |           |
| Right turn flare (veh)        |          |               |       |          |           | 2         |
| Median type                   | None     |               |       | TWLTL    |           |           |
| Median storage veh)           |          |               |       | 2        |           |           |
| Upstream signal (m)           |          |               |       |          |           |           |
| pX, platoon unblocked         |          |               |       |          |           |           |
| vC, conflicting volume        |          |               | 691   |          | 1460      | 673       |
| vC1, stage 1 conf vol         |          |               |       |          | 673       |           |
| vC2, stage 2 conf vol         |          |               |       |          | 787       |           |
| vCu, unblocked vol            |          |               | 691   |          | 1460      | 673       |
| tC, single (s)                |          |               | 4.1   |          | 6.5       | 6.3       |
| tC, 2 stage (s)               |          |               |       |          | 5.5       |           |
| tF (s)                        |          |               | 2.2   |          | 3.6       | 3.4       |
| p0 queue free %               |          |               | 96    |          | 95        | 90        |
| cM capacity (veh/h)           |          |               | 895   |          | 331       | 435       |
| Direction, Lane #             | EB 1     | EB 2          | WB 1  | WB 2     | NB 1      |           |
| Volume Total                  | 673      | 18            | 36    | 715      | 60        |           |
| Volume Left                   | 0        | 0             | 36    | 0        | 16        |           |
| Volume Right                  | 0        | 18            | 0     | 0        | 44        |           |
| cSH                           | 1700     | 1700          | 895   | 1700     | 593       |           |
| Volume to Capacity            | 0.40     | 0.01          | 0.04  | 0.42     | 0.10      |           |
| Queue Length 95th (m)         | 0.0      | 0.0           | 1.0   | 0.0      | 2.6       |           |
| Control Delay (s)             | 0.0      | 0.0           | 9.2   | 0.0      | 14.8      |           |
| Lane LOS                      |          |               | Α     |          | В         |           |
| Approach Delay (s)            | 0.0      |               | 0.4   |          | 14.8      |           |
| Approach LOS                  |          |               |       |          | В         |           |
| Intersection Summary          |          |               |       |          |           |           |
| Average Delay                 |          |               | 0.8   |          |           |           |
| Intersection Capacity Utiliza | tion     |               | 46.9% | IC       | U Level o | f Service |
| Analysis Period (min)         |          |               | 15    |          |           |           |

|                               | -        | $\rightarrow$ | •     | ←        | •         | ~         |
|-------------------------------|----------|---------------|-------|----------|-----------|-----------|
| Movement                      | EBT      | EBR           | WBL   | WBT      | NBL       | NBR       |
| Lane Configurations           | <b>†</b> | 1             | ሻ     | <b>†</b> | ሻ         | 7         |
| Traffic Volume (veh/h)        | 685      | 18            | 14    | 728      | 14        | 40        |
| Future Volume (Veh/h)         | 685      | 18            | 14    | 728      | 14        | 40        |
| Sign Control                  | Free     |               |       | Free     | Stop      |           |
| Grade                         | 0%       |               |       | 0%       | 0%        |           |
| Peak Hour Factor              | 0.94     | 0.94          | 0.94  | 0.94     | 0.94      | 0.94      |
| Hourly flow rate (vph)        | 729      | 19            | 15    | 774      | 15        | 43        |
| Pedestrians                   |          |               |       |          |           |           |
| Lane Width (m)                |          |               |       |          |           |           |
| Walking Speed (m/s)           |          |               |       |          |           |           |
| Percent Blockage              |          |               |       |          |           |           |
| Right turn flare (veh)        |          |               |       |          |           | 2         |
| Median type                   | TWLTL    |               |       | TWLTL    |           |           |
| Median storage veh)           | 2        |               |       | 2        |           |           |
| Upstream signal (m)           |          |               |       |          |           |           |
| pX, platoon unblocked         |          |               |       |          |           |           |
| vC, conflicting volume        |          |               | 748   |          | 1533      | 729       |
| vC1, stage 1 conf vol         |          |               |       |          | 729       | . = -     |
| vC2, stage 2 conf vol         |          |               |       |          | 804       |           |
| vCu, unblocked vol            |          |               | 748   |          | 1533      | 729       |
| tC, single (s)                |          |               | 4.3   |          | 6.4       | 6.4       |
| tC, 2 stage (s)               |          |               |       |          | 5.4       | <b>V</b>  |
| tF (s)                        |          |               | 2.4   |          | 3.5       | 3.5       |
| p0 queue free %               |          |               | 98    |          | 96        | 89        |
| cM capacity (veh/h)           |          |               | 765   |          | 338       | 399       |
|                               | ED 4     | ED 0          |       | MD 0     |           |           |
| Direction, Lane #             | EB 1     | EB 2          | WB 1  | WB 2     | NB 1      |           |
| Volume Total                  | 729      | 19            | 15    | 774      | 58        |           |
| Volume Left                   | 0        | 0             | 15    | 0        | 15        |           |
| Volume Right                  | 0        | 19            | 0     | 0        | 43        |           |
| cSH                           | 1700     | 1700          | 765   | 1700     | 538       |           |
| Volume to Capacity            | 0.43     | 0.01          | 0.02  | 0.46     | 0.11      |           |
| Queue Length 95th (m)         | 0.0      | 0.0           | 0.5   | 0.0      | 2.7       |           |
| Control Delay (s)             | 0.0      | 0.0           | 9.8   | 0.0      | 15.4      |           |
| Lane LOS                      |          |               | Α     |          | С         |           |
| Approach Delay (s)            | 0.0      |               | 0.2   |          | 15.4      |           |
| Approach LOS                  |          |               |       |          | С         |           |
| Intersection Summary          |          |               |       |          |           |           |
| Average Delay                 |          |               | 0.7   |          |           |           |
| Intersection Capacity Utiliza | ition    |               | 48.3% | IC       | U Level o | f Service |
| Analysis Period (min)         |          |               | 15    |          |           |           |

|                              | -        | $\rightarrow$ | •     | •       | <b>^</b>  | ~          |
|------------------------------|----------|---------------|-------|---------|-----------|------------|
| Movement                     | EBT      | EBR           | WBL   | WBT     | NBL       | NBR        |
| Lane Configurations          | <b>↑</b> | 7             | *     | <b></b> | ሻ         | 7          |
| Traffic Volume (veh/h)       | 783      | 13            | 34    | 1001    | 13        | 25         |
| Future Volume (Veh/h)        | 783      | 13            | 34    | 1001    | 13        | 25         |
| Sign Control                 | Free     |               |       | Free    | Stop      |            |
| Grade                        | 0%       |               |       | 0%      | 0%        |            |
| Peak Hour Factor             | 0.99     | 0.99          | 0.99  | 0.99    | 0.99      | 0.99       |
| Hourly flow rate (vph)       | 791      | 13            | 34    | 1011    | 13        | 25         |
| Pedestrians                  | 4        |               |       | 4       | 4         |            |
| Lane Width (m)               | 3.5      |               |       | 3.5     | 3.2       |            |
| Walking Speed (m/s)          | 1.1      |               |       | 1.1     | 1.1       |            |
| Percent Blockage             | 0        |               |       | 0       | 0         |            |
| Right turn flare (veh)       |          |               |       |         |           | 2          |
| Median type                  | None     |               |       | TWLTL   |           |            |
| Median storage veh)          |          |               |       | 2       |           |            |
| Upstream signal (m)          |          |               |       |         |           |            |
| pX, platoon unblocked        |          |               |       |         |           |            |
| vC, conflicting volume       |          |               | 808   |         | 1878      | 799        |
| vC1, stage 1 conf vol        |          |               |       |         | 795       |            |
| vC2, stage 2 conf vol        |          |               |       |         | 1083      |            |
| vCu, unblocked vol           |          |               | 808   |         | 1878      | 799        |
| tC, single (s)               |          |               | 4.1   |         | 6.4       | 6.2        |
| tC, 2 stage (s)              |          |               |       |         | 5.4       |            |
| tF (s)                       |          |               | 2.2   |         | 3.5       | 3.3        |
| p0 queue free %              |          |               | 96    |         | 95        | 94         |
| cM capacity (veh/h)          |          |               | 823   |         | 259       | 386        |
| Direction, Lane #            | EB 1     | EB 2          | WB 1  | WB 2    | NB 1      |            |
| Volume Total                 | 791      | 13            | 34    | 1011    | 38        |            |
| Volume Left                  | 0        | 0             | 34    | 0       | 13        |            |
| Volume Right                 | 0        | 13            | 0     | 0       | 25        |            |
| cSH                          | 1700     | 1700          | 823   | 1700    | 587       |            |
| Volume to Capacity           | 0.47     | 0.01          | 0.04  | 0.59    | 0.06      |            |
| Queue Length 95th (m)        | 0.0      | 0.0           | 1.0   | 0.0     | 1.6       |            |
| Control Delay (s)            | 0.0      | 0.0           | 9.6   | 0.0     | 16.6      |            |
| Lane LOS                     |          |               | А     |         | С         |            |
| Approach Delay (s)           | 0.0      |               | 0.3   |         | 16.6      |            |
| Approach LOS                 |          |               |       |         | С         |            |
| Intersection Summary         |          |               |       |         |           |            |
| Average Delay                |          |               | 0.5   |         |           |            |
| Intersection Capacity Utiliz | ation    |               | 63.9% | IC      | U Level o | of Service |
| Analysis Period (min)        |          |               | 15    | .0      |           |            |
| , that you i onou (iiiii)    |          |               | 10    |         |           |            |

|                              | -        | $\rightarrow$ | •     | •       | •         | ~         |
|------------------------------|----------|---------------|-------|---------|-----------|-----------|
| Movement                     | EBT      | EBR           | WBL   | WBT     | NBL       | NBR       |
| Lane Configurations          | <b>†</b> | 7             | *     | <b></b> | ች         | 7         |
| Traffic Volume (veh/h)       | 796      | 15            | 66    | 1032    | 14        | 19        |
| Future Volume (Veh/h)        | 796      | 15            | 66    | 1032    | 14        | 19        |
| Sign Control                 | Free     |               |       | Free    | Stop      |           |
| Grade                        | 0%       |               |       | 0%      | 0%        |           |
| Peak Hour Factor             | 0.94     | 0.94          | 0.94  | 0.94    | 0.94      | 0.94      |
| Hourly flow rate (vph)       | 847      | 16            | 70    | 1098    | 15        | 20        |
| Pedestrians                  | 3        |               |       | 3       | 3         |           |
| Lane Width (m)               | 3.5      |               |       | 3.5     | 3.5       |           |
| Walking Speed (m/s)          | 1.1      |               |       | 1.1     | 1.1       |           |
| Percent Blockage             | 0        |               |       | 0       | 0         |           |
| Right turn flare (veh)       |          |               |       |         |           | 2         |
| Median type                  | TWLTL    |               |       | TWLTL   |           |           |
| Median storage veh)          | 2        |               |       | 2       |           |           |
| Upstream signal (m)          |          |               |       |         |           |           |
| pX, platoon unblocked        |          |               |       |         |           |           |
| vC, conflicting volume       |          |               | 866   |         | 2091      | 853       |
| vC1, stage 1 conf vol        |          |               |       |         | 850       |           |
| vC2, stage 2 conf vol        |          |               |       |         | 1241      |           |
| vCu, unblocked vol           |          |               | 866   |         | 2091      | 853       |
| tC, single (s)               |          |               | 4.1   |         | 6.4       | 6.3       |
| tC, 2 stage (s)              |          |               |       |         | 5.4       |           |
| tF (s)                       |          |               | 2.2   |         | 3.5       | 3.4       |
| p0 queue free %              |          |               | 91    |         | 93        | 94        |
| cM capacity (veh/h)          |          |               | 771   |         | 214       | 347       |
| Direction, Lane #            | EB 1     | EB 2          | WB 1  | WB 2    | NB 1      |           |
| Volume Total                 | 847      | 16            | 70    | 1098    | 35        |           |
| Volume Left                  | 0        | 0             | 70    | 0       | 15        |           |
| Volume Right                 | 0        | 16            | 0     | 0       | 20        |           |
| cSH                          | 1700     | 1700          | 771   | 1700    | 498       |           |
| Volume to Capacity           | 0.50     | 0.01          | 0.09  | 0.65    | 0.07      |           |
| Queue Length 95th (m)        | 0.0      | 0.0           | 2.3   | 0.0     | 1.7       |           |
| Control Delay (s)            | 0.0      | 0.0           | 10.1  | 0.0     | 19.1      |           |
| Lane LOS                     |          |               | В     |         | С         |           |
| Approach Delay (s)           | 0.0      |               | 0.6   |         | 19.1      |           |
| Approach LOS                 |          |               |       |         | С         |           |
| Intersection Summary         |          |               |       |         |           |           |
| Average Delay                |          |               | 0.7   |         |           |           |
| Intersection Capacity Utiliz | ation    |               | 65.3% | IC      | U Level c | f Service |
| Analysis Period (min)        |          |               | 15    |         |           |           |
| J = = = ( · · · · · )        |          |               |       |         |           |           |

|                                | -        | $\rightarrow$ | •        | ←        | •         | ~         |
|--------------------------------|----------|---------------|----------|----------|-----------|-----------|
| Movement                       | EBT      | EBR           | WBL      | WBT      | NBL       | NBR       |
| Lane Configurations            | <b>†</b> | 7             | ሻ        | <b>†</b> | ሻ         | 7         |
| Traffic Volume (veh/h)         | 711      | 19            | 38       | 755      | 17        | 46        |
| Future Volume (Veh/h)          | 711      | 19            | 38       | 755      | 17        | 46        |
| Sign Control                   | Free     |               |          | Free     | Stop      |           |
| Grade                          | 0%       |               |          | 0%       | 0%        |           |
| Peak Hour Factor               | 0.98     | 0.98          | 0.98     | 0.98     | 0.98      | 0.98      |
| Hourly flow rate (vph)         | 726      | 19            | 39       | 770      | 17        | 47        |
| Pedestrians                    |          |               |          |          |           |           |
| Lane Width (m)                 |          |               |          |          |           |           |
| Walking Speed (m/s)            |          |               |          |          |           |           |
| Percent Blockage               |          |               |          |          |           |           |
| Right turn flare (veh)         |          |               |          |          |           | 2         |
| Median type                    | None     |               |          | TWLTL    |           |           |
| Median storage veh)            |          |               |          | 2        |           |           |
| Upstream signal (m)            |          |               |          |          |           |           |
| pX, platoon unblocked          |          |               |          |          |           |           |
| vC, conflicting volume         |          |               | 745      |          | 1574      | 726       |
| vC1, stage 1 conf vol          |          |               |          |          | 726       |           |
| vC2, stage 2 conf vol          |          |               |          |          | 848       |           |
| vCu, unblocked vol             |          |               | 745      |          | 1574      | 726       |
| tC, single (s)                 |          |               | 4.1      |          | 6.5       | 6.3       |
| tC, 2 stage (s)                |          |               |          |          | 5.5       |           |
| tF (s)                         |          |               | 2.2      |          | 3.6       | 3.4       |
| p0 queue free %                |          |               | 95       |          | 94        | 88        |
| cM capacity (veh/h)            |          |               | 854      |          | 306       | 405       |
| Direction, Lane #              | EB 1     | EB 2          | WB 1     | WB 2     | NB 1      |           |
| Volume Total                   | 726      |               |          | 770      | 64        |           |
|                                |          | 19            | 39<br>39 |          | 17        |           |
| Volume Left                    | 0        | 0<br>19       |          | 0        | 47        |           |
| Volume Right                   |          |               | 0<br>854 | 1700     | 552       |           |
| Valuma ta Camacitu             | 1700     | 1700          |          |          |           |           |
| Volume to Capacity             | 0.43     | 0.01          | 0.05     | 0.45     | 0.12      |           |
| Queue Length 95th (m)          | 0.0      | 0.0           | 1.1      | 0.0      | 3.0       |           |
| Control Delay (s)              | 0.0      | 0.0           | 9.4      | 0.0      | 15.7      |           |
| Lane LOS                       | 0.0      |               | A        |          | C         |           |
| Approach Delay (s)             | 0.0      |               | 0.5      |          | 15.7      |           |
| Approach LOS                   |          |               |          |          | С         |           |
| Intersection Summary           |          |               |          |          |           |           |
| Average Delay                  |          |               | 0.8      |          |           |           |
| Intersection Capacity Utilizat | tion     |               | 49.7%    | IC       | U Level o | f Service |
| Analysis Period (min)          |          |               | 15       |          |           |           |

|                               | -        | $\rightarrow$ | •     | •            | •         | ~         |
|-------------------------------|----------|---------------|-------|--------------|-----------|-----------|
| Movement                      | EBT      | EBR           | WBL   | WBT          | NBL       | NBR       |
| Lane Configurations           | <b>†</b> | 7             | ሻ     | <b>^</b>     | ሻ         | 7         |
| Traffic Volume (veh/h)        | 737      | 19            | 15    | 784          | 15        | 43        |
| Future Volume (Veh/h)         | 737      | 19            | 15    | 784          | 15        | 43        |
| Sign Control                  | Free     |               |       | Free         | Stop      |           |
| Grade                         | 0%       |               |       | 0%           | 0%        |           |
| Peak Hour Factor              | 0.94     | 0.94          | 0.94  | 0.94         | 0.94      | 0.94      |
| Hourly flow rate (vph)        | 784      | 20            | 16    | 834          | 16        | 46        |
| Pedestrians                   |          |               |       |              |           |           |
| Lane Width (m)                |          |               |       |              |           |           |
| Walking Speed (m/s)           |          |               |       |              |           |           |
| Percent Blockage              |          |               |       |              |           |           |
| Right turn flare (veh)        |          |               |       |              |           | 2         |
| Median type                   | TWLTL    |               |       | TWLTL        |           |           |
| Median storage veh)           | 2        |               |       | 2            |           |           |
| Upstream signal (m)           | _        |               |       | <del>-</del> |           |           |
| pX, platoon unblocked         |          |               |       |              |           |           |
| vC, conflicting volume        |          |               | 804   |              | 1650      | 784       |
| vC1, stage 1 conf vol         |          |               | 00.   |              | 784       |           |
| vC2, stage 2 conf vol         |          |               |       |              | 866       |           |
| vCu, unblocked vol            |          |               | 804   |              | 1650      | 784       |
| tC, single (s)                |          |               | 4.3   |              | 6.4       | 6.4       |
| tC, 2 stage (s)               |          |               | 1.0   |              | 5.4       | 0.1       |
| tF (s)                        |          |               | 2.4   |              | 3.5       | 3.5       |
| p0 queue free %               |          |               | 98    |              | 95        | 88        |
| cM capacity (veh/h)           |          |               | 728   |              | 313       | 370       |
|                               |          |               |       |              |           | 010       |
| Direction, Lane #             | EB 1     | EB 2          | WB 1  | WB 2         | NB 1      |           |
| Volume Total                  | 784      | 20            | 16    | 834          | 62        |           |
| Volume Left                   | 0        | 0             | 16    | 0            | 16        |           |
| Volume Right                  | 0        | 20            | 0     | 0            | 46        |           |
| cSH                           | 1700     | 1700          | 728   | 1700         | 499       |           |
| Volume to Capacity            | 0.46     | 0.01          | 0.02  | 0.49         | 0.12      |           |
| Queue Length 95th (m)         | 0.0      | 0.0           | 0.5   | 0.0          | 3.2       |           |
| Control Delay (s)             | 0.0      | 0.0           | 10.1  | 0.0          | 16.4      |           |
| Lane LOS                      |          |               | В     |              | С         |           |
| Approach Delay (s)            | 0.0      |               | 0.2   |              | 16.4      |           |
| Approach LOS                  |          |               |       |              | С         |           |
| Intersection Summary          |          |               |       |              |           |           |
| Average Delay                 |          |               | 0.7   |              |           |           |
| Intersection Capacity Utiliza | ation    |               | 51.3% | IC           | U Level o | f Service |
| Analysis Period (min)         |          |               | 15    |              |           |           |

|                               | -        | $\rightarrow$ | •        | <b>←</b> | •         | ~         |
|-------------------------------|----------|---------------|----------|----------|-----------|-----------|
| Movement                      | EBT      | EBR           | WBL      | WBT      | NBL       | NBR       |
| Lane Configurations           | <b>↑</b> | 7             |          | <b></b>  | *         | 7         |
| Traffic Volume (veh/h)        | 844      | 14            | 36       | 1078     | 14        | 27        |
| Future Volume (Veh/h)         | 844      | 14            | 36       | 1078     | 14        | 27        |
| Sign Control                  | Free     |               |          | Free     | Stop      |           |
| Grade                         | 0%       |               |          | 0%       | 0%        |           |
| Peak Hour Factor              | 0.99     | 0.99          | 0.99     | 0.99     | 0.99      | 0.99      |
| Hourly flow rate (vph)        | 853      | 14            | 36       | 1089     | 14        | 27        |
| Pedestrians                   | 4        |               |          | 4        | 4         |           |
| Lane Width (m)                | 3.5      |               |          | 3.5      | 3.2       |           |
| Walking Speed (m/s)           | 1.1      |               |          | 1.1      | 1.1       |           |
| Percent Blockage              | 0        |               |          | 0        | 0         |           |
| Right turn flare (veh)        |          |               |          |          |           | 2         |
| Median type                   | None     |               |          | TWLTL    |           |           |
| Median storage veh)           |          |               |          | 2        |           |           |
| Upstream signal (m)           |          |               |          |          |           |           |
| pX, platoon unblocked         |          |               |          |          |           |           |
| vC, conflicting volume        |          |               | 871      |          | 2022      | 861       |
| vC1, stage 1 conf vol         |          |               |          |          | 857       |           |
| vC2, stage 2 conf vol         |          |               |          |          | 1165      |           |
| vCu, unblocked vol            |          |               | 871      |          | 2022      | 861       |
| tC, single (s)                |          |               | 4.1      |          | 6.4       | 6.2       |
| tC, 2 stage (s)               |          |               |          |          | 5.4       | <u> </u>  |
| tF (s)                        |          |               | 2.2      |          | 3.5       | 3.3       |
| p0 queue free %               |          |               | 95       |          | 94        | 92        |
| cM capacity (veh/h)           |          |               | 780      |          | 235       | 356       |
| Direction, Lane #             | EB 1     | EB 2          | WB 1     | WB 2     | NB 1      |           |
| Volume Total                  | 853      | 14            | 36       | 1089     | 41        |           |
| Volume Left                   | 0        | 0             | 36       | 0        | 14        |           |
| Volume Right                  | 0        | 14            | 0        | 0        | 27        |           |
| cSH                           | 1700     | 1700          | 780      | 1700     | 540       |           |
| Volume to Capacity            | 0.50     | 0.01          | 0.05     | 0.64     | 0.08      |           |
| Queue Length 95th (m)         | 0.0      | 0.0           | 1.1      | 0.0      | 1.9       |           |
| Control Delay (s)             | 0.0      | 0.0           | 9.8      | 0.0      | 17.8      |           |
| Lane LOS                      | 0.0      | 0.0           | 3.0<br>A | 0.0      | C         |           |
| Approach Delay (s)            | 0.0      |               | 0.3      |          | 17.8      |           |
| Approach LOS                  | 0.0      |               | 0.5      |          | 17.0      |           |
|                               |          |               |          |          | U         |           |
| Intersection Summary          |          |               |          |          |           |           |
| Average Delay                 |          |               | 0.5      |          |           |           |
| Intersection Capacity Utiliza | ation    |               | 68.0%    | IC       | U Level c | f Service |
| Analysis Period (min)         |          |               | 15       |          |           |           |

|                               | -        | •    | •     | <b>←</b> | •         | /          |
|-------------------------------|----------|------|-------|----------|-----------|------------|
| Movement                      | EBT      | EBR  | WBL   | WBT      | NBL       | NBR        |
| Lane Configurations           | <b>↑</b> | 7    | *     | <b>↑</b> | *         | 7          |
| Traffic Volume (veh/h)        | 857      | 16   | 71    | 1111     | 15        | 20         |
| Future Volume (Veh/h)         | 857      | 16   | 71    | 1111     | 15        | 20         |
| Sign Control                  | Free     |      |       | Free     | Stop      |            |
| Grade                         | 0%       |      |       | 0%       | 0%        |            |
| Peak Hour Factor              | 0.94     | 0.94 | 0.94  | 0.94     | 0.94      | 0.94       |
| Hourly flow rate (vph)        | 912      | 17   | 76    | 1182     | 16        | 21         |
| Pedestrians                   | 3        |      |       | 3        | 3         |            |
| Lane Width (m)                | 3.5      |      |       | 3.5      | 3.5       |            |
| Walking Speed (m/s)           | 1.1      |      |       | 1.1      | 1.1       |            |
| Percent Blockage              | 0        |      |       | 0        | 0         |            |
| Right turn flare (veh)        |          |      |       |          |           | 2          |
| Median type                   | TWLTL    |      |       | TWLTL    |           |            |
| Median storage veh)           | 2        |      |       | 2        |           |            |
| Upstream signal (m)           |          |      |       |          |           |            |
| pX, platoon unblocked         |          |      |       |          |           |            |
| vC, conflicting volume        |          |      | 932   |          | 2252      | 918        |
| vC1, stage 1 conf vol         |          |      |       |          | 915       | 0.0        |
| vC2, stage 2 conf vol         |          |      |       |          | 1337      |            |
| vCu, unblocked vol            |          |      | 932   |          | 2252      | 918        |
| tC, single (s)                |          |      | 4.1   |          | 6.4       | 6.3        |
| tC, 2 stage (s)               |          |      |       |          | 5.4       | <b>U.U</b> |
| tF (s)                        |          |      | 2.2   |          | 3.5       | 3.4        |
| p0 queue free %               |          |      | 90    |          | 92        | 93         |
| cM capacity (veh/h)           |          |      | 728   |          | 190       | 318        |
| Direction, Lane #             | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |            |
| Volume Total                  | 912      | 17   | 76    | 1182     | 37        |            |
| Volume Left                   | 0        | 0    | 76    | 0        | 16        |            |
| Volume Right                  | 0        | 17   | 0     | 0        | 21        |            |
| cSH                           | 1700     | 1700 | 728   | 1700     | 439       |            |
| Volume to Capacity            | 0.54     | 0.01 | 0.10  | 0.70     | 0.08      |            |
| Queue Length 95th (m)         | 0.0      | 0.0  | 2.6   | 0.70     | 2.1       |            |
| Control Delay (s)             | 0.0      | 0.0  | 10.5  | 0.0      | 20.8      |            |
| Lane LOS                      | 0.0      | 0.0  | В     | 0.0      | 20.0<br>C |            |
| Approach Delay (s)            | 0.0      |      | 0.6   |          | 20.8      |            |
| Approach LOS                  | 0.0      |      | 0.0   |          | 20.0<br>C |            |
|                               |          |      |       |          | U         |            |
| Intersection Summary          |          |      |       |          |           |            |
| Average Delay                 |          |      | 0.7   |          |           |            |
| Intersection Capacity Utiliza | ation    |      | 69.4% | IC       | U Level c | f Service  |
| Analysis Period (min)         |          |      | 15    |          |           |            |

|                        | ۶    | <b>→</b> | •    | •     | ←      | •    | •    | <b>†</b> | -    | ļ     |  |
|------------------------|------|----------|------|-------|--------|------|------|----------|------|-------|--|
| Lane Group             | EBL  | EBT      | EBR  | WBL   | WBT    | WBR  | NBL  | NBT      | SBL  | SBT   |  |
| Lane Group Flow (vph)  | 21   | 626      | 17   | 34    | 664    | 49   | 15   | 41       | 161  | 70    |  |
| v/c Ratio              | 0.05 | 0.53     | 0.02 | 0.08  | 0.62   | 0.05 | 0.06 | 0.08     | 0.51 | 0.13  |  |
| Control Delay          | 6.7  | 10.0     | 3.5  | 6.9   | 12.7   | 2.5  | 17.2 | 0.3      | 25.3 | 0.5   |  |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0   | 0.0    | 0.0  | 0.0  | 0.0      | 0.0  | 0.0   |  |
| Total Delay            | 6.7  | 10.0     | 3.5  | 6.9   | 12.7   | 2.5  | 17.2 | 0.3      | 25.3 | 0.5   |  |
| Queue Length 50th (m)  | 8.0  | 34.4     | 0.0  | 1.3   | 40.4   | 0.0  | 1.2  | 0.0      | 14.7 | 0.0   |  |
| Queue Length 95th (m)  | 3.9  | 76.7     | 2.3  | 5.4   | #100.9 | 3.7  | 4.9  | 0.0      | 29.4 | 0.0   |  |
| Internal Link Dist (m) |      | 364.2    |      |       | 111.3  |      |      | 77.4     |      | 109.3 |  |
| Turn Bay Length (m)    | 20.0 |          | 50.0 | 115.0 |        | 50.0 | 15.0 |          | 45.0 |       |  |
| Base Capacity (vph)    | 418  | 1185     | 812  | 439   | 1063   | 1044 | 418  | 651      | 493  | 698   |  |
| Starvation Cap Reductn | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0    | 0     |  |
| Reduced v/c Ratio      | 0.05 | 0.53     | 0.02 | 0.08  | 0.62   | 0.05 | 0.04 | 0.06     | 0.33 | 0.10  |  |
| Intersection Summary   |      |          |      |       |        |      |      |          |      |       |  |

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                               | •          | <b>→</b> | $\rightarrow$ | •    | <b>←</b>   | •          | •       | <b>†</b> | /    | <b>&gt;</b> | ļ    | 4    |
|-------------------------------|------------|----------|---------------|------|------------|------------|---------|----------|------|-------------|------|------|
| Movement                      | EBL        | EBT      | EBR           | WBL  | WBT        | WBR        | NBL     | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations           | ሻ          | <b>^</b> | 7             | ሻ    | <b>†</b>   | 7          | ሻ       | ĵ»       |      | ሻ           | ĵ»   |      |
| Traffic Volume (vph)          | 19         | 613      | 17            | 33   | 651        | 45         | 15      | 0        | 40   | 148         | 0    | 64   |
| Future Volume (vph)           | 19         | 613      | 17            | 33   | 651        | 45         | 15      | 0        | 40   | 148         | 0    | 64   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900          | 1900 | 1900       | 1900       | 1900    | 1900     | 1900 | 1900        | 1900 | 1900 |
| Lane Width                    | 3.5        | 3.5      | 3.5           | 3.5  | 3.5        | 3.5        | 3.2     | 3.5      | 3.2  | 3.5         | 3.5  | 3.5  |
| Total Lost time (s)           | 7.0        | 7.0      | 7.0           | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |      | 4.0         | 4.0  |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00          | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |      | 1.00        | 1.00 |      |
| Frt                           | 1.00       | 1.00     | 0.85          | 1.00 | 1.00       | 0.85       | 1.00    | 0.85     |      | 1.00        | 0.85 |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00          | 0.95 | 1.00       | 1.00       | 0.95    | 1.00     |      | 0.95        | 1.00 |      |
| Satd. Flow (prot)             | 1750       | 1807     | 1229          | 1716 | 1620       | 1566       | 1526    | 1401     |      | 1750        | 1566 |      |
| Flt Permitted                 | 0.35       | 1.00     | 1.00          | 0.37 | 1.00       | 1.00       | 0.71    | 1.00     |      | 0.73        | 1.00 |      |
| Satd. Flow (perm)             | 637        | 1807     | 1229          | 671  | 1620       | 1566       | 1143    | 1401     |      | 1345        | 1566 |      |
| Peak-hour factor, PHF         | 0.92       | 0.98     | 0.98          | 0.98 | 0.98       | 0.92       | 0.98    | 0.92     | 0.98 | 0.92        | 0.92 | 0.92 |
| Adj. Flow (vph)               | 21         | 626      | 17            | 34   | 664        | 49         | 15      | 0        | 41   | 161         | 0    | 70   |
| RTOR Reduction (vph)          | 0          | 0        | 6             | 0    | 0          | 19         | 0       | 33       | 0    | 0           | 57   | 0    |
| Lane Group Flow (vph)         | 21         | 626      | 11            | 34   | 664        | 30         | 15      | 8        | 0    | 161         | 13   | 0    |
| Heavy Vehicles (%)            | 2%         | 4%       | 30%           | 4%   | 16%        | 2%         | 13%     | 2%       | 14%  | 2%          | 2%   | 2%   |
| Turn Type                     | Perm       | NA       | Perm          | Perm | NA         | Perm       | Perm    | NA       |      | Perm        | NA   |      |
| Protected Phases              |            | 2        |               |      | 6          |            |         | 8        |      |             | 4    |      |
| Permitted Phases              | 2          |          | 2             | 6    |            | 6          | 8       |          |      | 4           |      |      |
| Actuated Green, G (s)         | 36.2       | 36.2     | 36.2          | 36.2 | 36.2       | 36.2       | 11.0    | 11.0     |      | 11.0        | 11.0 |      |
| Effective Green, g (s)        | 36.2       | 36.2     | 36.2          | 36.2 | 36.2       | 36.2       | 11.0    | 11.0     |      | 11.0        | 11.0 |      |
| Actuated g/C Ratio            | 0.62       | 0.62     | 0.62          | 0.62 | 0.62       | 0.62       | 0.19    | 0.19     |      | 0.19        | 0.19 |      |
| Clearance Time (s)            | 7.0        | 7.0      | 7.0           | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |      | 4.0         | 4.0  |      |
| Vehicle Extension (s)         | 3.0        | 3.0      | 3.0           | 3.0  | 3.0        | 3.0        | 3.0     | 3.0      |      | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)            | 396        | 1123     | 764           | 417  | 1007       | 974        | 216     | 264      |      | 254         | 295  |      |
| v/s Ratio Prot                |            | 0.35     |               |      | c0.41      |            |         | 0.01     |      |             | 0.01 |      |
| v/s Ratio Perm                | 0.03       |          | 0.01          | 0.05 |            | 0.02       | 0.01    |          |      | c0.12       |      |      |
| v/c Ratio                     | 0.05       | 0.56     | 0.01          | 0.08 | 0.66       | 0.03       | 0.07    | 0.03     |      | 0.63        | 0.04 |      |
| Uniform Delay, d1             | 4.3        | 6.4      | 4.2           | 4.4  | 7.0        | 4.2        | 19.4    | 19.2     |      | 21.7        | 19.3 |      |
| Progression Factor            | 1.00       | 1.00     | 1.00          | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |      | 1.00        | 1.00 |      |
| Incremental Delay, d2         | 0.3        | 2.0      | 0.0           | 0.4  | 3.4        | 0.1        | 0.1     | 0.0      |      | 5.1         | 0.1  |      |
| Delay (s)                     | 4.6        | 8.4      | 4.2           | 4.8  | 10.4       | 4.3        | 19.5    | 19.3     |      | 26.8        | 19.4 |      |
| Level of Service              | А          | Α        | Α             | Α    | В          | Α          | В       | В        |      | С           | В    |      |
| Approach Delay (s)            |            | 8.1      |               |      | 9.8        |            |         | 19.4     |      |             | 24.6 |      |
| Approach LOS                  |            | Α        |               |      | Α          |            |         | В        |      |             | С    |      |
| Intersection Summary          |            |          |               |      |            |            |         |          |      |             |      |      |
| HCM 2000 Control Delay        |            |          | 11.5          | Н    | CM 2000    | Level of   | Service |          | В    |             |      |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.65          |      |            |            |         |          |      |             |      |      |
| Actuated Cycle Length (s)     |            |          | 58.2          | S    | um of lost | time (s)   |         |          | 11.0 |             |      |      |
| Intersection Capacity Utiliza | ition      |          | 58.3%         | IC   | CU Level   | of Service |         |          | В    |             |      |      |
| Analysis Period (min)         |            |          | 15            |      |            |            |         |          |      |             |      |      |
| c Critical Lane Group         |            |          |               |      |            |            |         |          |      |             |      |      |

| → <b>→ ← ← ← ←</b>                                           |
|--------------------------------------------------------------|
| Movement EBT EBR WBL WBT NBL NBR                             |
| Lane Configurations † † † † †                                |
| Traffic Volume (veh/h) 784 17 13 721 13 37                   |
| Future Volume (Veh/h) 784 17 13 721 13 37                    |
| Sign Control Free Free Stop                                  |
| Grade 0% 0% 0%                                               |
| Peak Hour Factor 0.94 0.94 0.94 0.94 0.94                    |
| Hourly flow rate (vph) 834 18 14 767 14 39                   |
| Pedestrians                                                  |
| Lane Width (m)                                               |
| Walking Speed (m/s)                                          |
| Percent Blockage                                             |
| Right turn flare (veh) 2                                     |
| Median type None TWLTL                                       |
| Median storage veh) 2                                        |
| Upstream signal (m) 135                                      |
| pX, platoon unblocked 0.73 0.73 0.73                         |
| vC, conflicting volume 852 1629 834                          |
| vC1, stage 1 conf vol 834                                    |
| vC2, stage 2 conf vol 795                                    |
| vCu, unblocked vol 611 1677 587                              |
| tC, single (s) 4.3 6.4 6.4                                   |
| tC, 2 stage (s) 5.4                                          |
| tF (s) 2.4 3.5 3.5                                           |
| p0 queue free % 98 95 89                                     |
| cM capacity (veh/h) 631 299 352                              |
| Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1                   |
| Volume Total 834 18 14 767 53                                |
| Volume Left 0 0 14 0 14                                      |
| Volume Right 0 18 0 0 39                                     |
| cSH 1700 1700 631 1700 478                                   |
| Volume to Capacity 0.49 0.01 0.02 0.45 0.11                  |
| Queue Length 95th (m) 0.0 0.0 0.5 0.0 2.8                    |
| Control Delay (s) 0.0 0.0 10.8 0.0 16.8                      |
| Lane LOS B C                                                 |
| Approach Delay (s) 0.0 0.2 16.8                              |
| Approach LOS C                                               |
| Intersection Summary                                         |
| Average Delay 0.6                                            |
| Intersection Capacity Utilization 51.3% ICU Level of Service |
| Analysis Period (min) 15                                     |

#### 1: Silver Glen Blvd & Highway 26

|                        | ၨ    | <b>→</b> | •    | •     | ←     | •    | •    | <b>†</b> | <b>\</b> | ļ    |  |
|------------------------|------|----------|------|-------|-------|------|------|----------|----------|------|--|
| Lane Group             | EBL  | EBT      | EBR  | WBL   | WBT   | WBR  | NBL  | NBT      | SBL      | SBT  |  |
| Lane Group Flow (vph)  | 64   | 734      | 12   | 32    | 938   | 151  | 12   | 23       | 90       | 38   |  |
| v/c Ratio              | 0.19 | 0.52     | 0.01 | 0.07  | 0.66  | 0.12 | 0.06 | 0.05     | 0.43     | 0.10 |  |
| Control Delay          | 6.0  | 7.0      | 2.2  | 4.3   | 9.5   | 1.2  | 29.9 | 0.2      | 38.4     | 0.5  |  |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0   | 0.0   | 0.0  | 0.0  | 0.0      | 0.0      | 0.0  |  |
| Total Delay            | 6.0  | 7.0      | 2.2  | 4.3   | 9.5   | 1.2  | 29.9 | 0.2      | 38.4     | 0.5  |  |
| Queue Length 50th (m)  | 2.7  | 44.1     | 0.0  | 1.2   | 68.6  | 0.5  | 1.6  | 0.0      | 12.8     | 0.0  |  |
| Queue Length 95th (m)  | 8.4  | 80.6     | 1.4  | 4.2   | 128.9 | 5.5  | 6.1  | 0.0      | 26.4     | 0.0  |  |
| Internal Link Dist (m) |      | 364.2    |      |       | 111.3 |      |      | 77.4     |          | 83.8 |  |
| Turn Bay Length (m)    | 20.0 |          | 50.0 | 115.0 |       | 50.0 | 15.0 |          | 45.0     |      |  |
| Base Capacity (vph)    | 334  | 1404     | 1200 | 489   | 1418  | 1237 | 334  | 575      | 347      | 518  |  |
| Starvation Cap Reductn | 0    | 0        | 0    | 0     | 0     | 0    | 0    | 0        | 0        | 0    |  |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0     | 0     | 0    | 0    | 0        | 0        | 0    |  |
| Storage Cap Reductn    | 0    | 0        | 0    | 0     | 0     | 0    | 0    | 0        | 0        | 0    |  |
| Reduced v/c Ratio      | 0.19 | 0.52     | 0.01 | 0.07  | 0.66  | 0.12 | 0.04 | 0.04     | 0.26     | 0.07 |  |
| Intersection Summary   |      |          |      |       |       |      |      |          |          |      |  |

|                               | ۶          | <b>→</b> | •     | •    | +          | •          | •       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | -√   |
|-------------------------------|------------|----------|-------|------|------------|------------|---------|----------|------|----------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations           | , J        | <b>†</b> | 7     | ¥    | <b>†</b>   | 7          | ¥       | f)       |      | , A      | f)       |      |
| Traffic Volume (vph)          | 59         | 727      | 12    | 32   | 929        | 139        | 12      | 0        | 23   | 83       | 0        | 35   |
| Future Volume (vph)           | 59         | 727      | 12    | 32   | 929        | 139        | 12      | 0        | 23   | 83       | 0        | 35   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900  | 1900 | 1900       | 1900       | 1900    | 1900     | 1900 | 1900     | 1900     | 1900 |
| Lane Width                    | 3.5        | 3.5      | 3.5   | 3.5  | 3.5        | 3.5        | 3.2     | 3.5      | 3.2  | 3.5      | 3.5      | 3.5  |
| Total Lost time (s)           | 7.0        | 7.0      | 7.0   | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frpb, ped/bikes               | 1.00       | 1.00     | 0.97  | 1.00 | 1.00       | 1.00       | 1.00    | 0.97     |      | 1.00     | 1.00     |      |
| Flpb, ped/bikes               | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 0.99    | 1.00     |      | 1.00     | 1.00     |      |
| Frt                           | 1.00       | 1.00     | 0.85  | 1.00 | 1.00       | 0.85       | 1.00    | 0.85     |      | 1.00     | 0.85     |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00  | 0.95 | 1.00       | 1.00       | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1750       | 1824     | 1556  | 1782 | 1842       | 1566       | 1712    | 1553     |      | 1750     | 1566     |      |
| Flt Permitted                 | 0.24       | 1.00     | 1.00  | 0.34 | 1.00       | 1.00       | 0.73    | 1.00     |      | 0.74     | 1.00     |      |
| Satd. Flow (perm)             | 435        | 1824     | 1556  | 635  | 1842       | 1566       | 1320    | 1553     |      | 1367     | 1566     |      |
| Peak-hour factor, PHF         | 0.92       | 0.99     | 0.99  | 0.99 | 0.99       | 0.92       | 0.99    | 0.92     | 0.99 | 0.92     | 0.92     | 0.92 |
| Adj. Flow (vph)               | 64         | 734      | 12    | 32   | 938        | 151        | 12      | 0        | 23   | 90       | 0        | 38   |
| RTOR Reduction (vph)          | 0          | 0        | 3     | 0    | 0          | 35         | 0       | 20       | 0    | 0        | 33       | 0    |
| Lane Group Flow (vph)         | 64         | 734      | 9     | 32   | 938        | 116        | 12      | 3        | 0    | 90       | 5        | 0    |
| Confl. Peds. (#/hr)           |            |          | 4     | 4    |            |            | 4       |          | 4    |          |          |      |
| Heavy Vehicles (%)            | 2%         | 3%       | 0%    | 0%   | 2%         | 2%         | 0%      | 2%       | 0%   | 2%       | 2%       | 2%   |
| Turn Type                     | Perm       | NA       | Perm  | Perm | NA         | Perm       | Perm    | NA       |      | Perm     | NA       |      |
| Protected Phases              |            | 2        |       |      | 6          |            |         | 8        |      |          | 4        |      |
| Permitted Phases              | 2          |          | 2     | 6    |            | 6          | 8       |          |      | 4        |          |      |
| Actuated Green, G (s)         | 62.2       | 62.2     | 62.2  | 62.2 | 62.2       | 62.2       | 10.3    | 10.3     |      | 10.3     | 10.3     |      |
| Effective Green, g (s)        | 62.2       | 62.2     | 62.2  | 62.2 | 62.2       | 62.2       | 10.3    | 10.3     |      | 10.3     | 10.3     |      |
| Actuated g/C Ratio            | 0.74       | 0.74     | 0.74  | 0.74 | 0.74       | 0.74       | 0.12    | 0.12     |      | 0.12     | 0.12     |      |
| Clearance Time (s)            | 7.0        | 7.0      | 7.0   | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)         | 3.0        | 3.0      | 3.0   | 3.0  | 3.0        | 3.0        | 3.0     | 3.0      |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)            | 324        | 1358     | 1159  | 473  | 1372       | 1166       | 162     | 191      |      | 168      | 193      |      |
| v/s Ratio Prot                |            | 0.40     |       |      | c0.51      |            |         | 0.00     |      |          | 0.00     |      |
| v/s Ratio Perm                | 0.15       |          | 0.01  | 0.05 |            | 0.07       | 0.01    |          |      | c0.07    |          |      |
| v/c Ratio                     | 0.20       | 0.54     | 0.01  | 0.07 | 0.68       | 0.10       | 0.07    | 0.01     |      | 0.54     | 0.02     |      |
| Uniform Delay, d1             | 3.2        | 4.5      | 2.7   | 2.9  | 5.5        | 2.9        | 32.4    | 32.1     |      | 34.4     | 32.2     |      |
| Progression Factor            | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 1.4        | 1.5      | 0.0   | 0.3  | 2.8        | 0.2        | 0.2     | 0.0      |      | 3.3      | 0.1      |      |
| Delay (s)                     | 4.5        | 6.1      | 2.7   | 3.1  | 8.3        | 3.1        | 32.6    | 32.2     |      | 37.6     | 32.2     |      |
| Level of Service              | Α          | Α        | Α     | Α    | Α          | Α          | С       | С        |      | D        | С        |      |
| Approach Delay (s)            |            | 5.9      |       |      | 7.5        |            |         | 32.3     |      |          | 36.0     |      |
| Approach LOS                  |            | Α        |       |      | Α          |            |         | С        |      |          | D        |      |
| Intersection Summary          |            |          |       |      |            |            |         |          |      |          |          |      |
| HCM 2000 Control Delay        |            |          | 9.0   | Н    | CM 2000    | Level of S | Service |          | Α    |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.66  |      |            |            |         |          |      |          |          |      |
| Actuated Cycle Length (s)     |            |          | 83.5  | S    | um of lost | time (s)   |         |          | 11.0 |          |          |      |
| Intersection Capacity Utiliza | tion       |          | 69.5% | IC   | U Level    | of Service |         |          | С    |          |          |      |
| Analysis Period (min)         |            |          | 15    |      |            |            |         |          |      |          |          |      |
| c Critical Lane Group         |            |          |       |      |            |            |         |          |      |          |          |      |

|                                 | <b>→</b> | •    | •     | ←        | 4         | <b>/</b>   |
|---------------------------------|----------|------|-------|----------|-----------|------------|
| Movement                        | EBT      | EBR  | WBL   | WBT      | NBL       | NBR        |
| Lane Configurations             | <b>†</b> | 7    | *     | <b>†</b> | *         | 7          |
| Traffic Volume (veh/h)          | 822      | 14   | 61    | 1097     | 13        | 18         |
| Future Volume (Veh/h)           | 822      | 14   | 61    | 1097     | 13        | 18         |
| Sign Control                    | Free     |      |       | Free     | Stop      |            |
| Grade                           | 0%       |      |       | 0%       | 0%        |            |
| Peak Hour Factor                | 0.94     | 0.94 | 0.94  | 0.94     | 0.94      | 0.94       |
| Hourly flow rate (vph)          | 874      | 15   | 65    | 1167     | 14        | 19         |
| Pedestrians                     | 3        |      |       | 3        | 3         |            |
| Lane Width (m)                  | 3.5      |      |       | 3.5      | 3.5       |            |
| Walking Speed (m/s)             | 1.1      |      |       | 1.1      | 1.1       |            |
| Percent Blockage                | 0        |      |       | 0        | 0         |            |
| Right turn flare (veh)          |          |      |       |          |           | 2          |
| Median type                     | None     |      |       | TWLTL    |           |            |
| Median storage veh)             |          |      |       | 2        |           |            |
| Upstream signal (m)             | 135      |      |       |          |           |            |
| pX, platoon unblocked           |          |      | 0.78  |          | 0.78      | 0.78       |
| vC, conflicting volume          |          |      | 892   |          | 2177      | 880        |
| vC1, stage 1 conf vol           |          |      |       |          | 877       |            |
| vC2, stage 2 conf vol           |          |      |       |          | 1300      |            |
| vCu, unblocked vol              |          |      | 723   |          | 2365      | 708        |
| tC, single (s)                  |          |      | 4.1   |          | 6.4       | 6.3        |
| tC, 2 stage (s)                 |          |      |       |          | 5.4       |            |
| tF (s)                          |          |      | 2.2   |          | 3.5       | 3.4        |
| p0 queue free %                 |          |      | 90    |          | 93        | 94         |
| cM capacity (veh/h)             |          |      | 683   |          | 193       | 329        |
| Direction, Lane #               | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |            |
| Volume Total                    | 874      | 15   | 65    | 1167     | 33        |            |
| Volume Left                     | 0        | 0    | 65    | 0        | 14        |            |
| Volume Right                    | 0        | 15   | 0     | 0        | 19        |            |
| cSH                             | 1700     | 1700 | 683   | 1700     | 454       |            |
| Volume to Capacity              | 0.51     | 0.01 | 0.10  | 0.69     | 0.07      |            |
| Queue Length 95th (m)           | 0.0      | 0.0  | 2.4   | 0.0      | 1.8       |            |
| Control Delay (s)               | 0.0      | 0.0  | 10.8  | 0.0      | 20.2      |            |
| Lane LOS                        |          |      | В     |          | С         |            |
| Approach Delay (s)              | 0.0      |      | 0.6   |          | 20.2      |            |
| Approach LOS                    |          |      |       |          | С         |            |
| Intersection Summary            |          |      |       |          |           |            |
| Average Delay                   |          |      | 0.6   |          |           |            |
| Intersection Capacity Utilizati | ion      |      | 68.7% | IC       | U Level c | of Service |
| Analysis Period (min)           |          |      | 15    |          |           |            |

|                        | •    | <b>→</b> | •    | •     | ←      | •    | •    | <b>†</b> | <b>\</b> | ļ     |  |
|------------------------|------|----------|------|-------|--------|------|------|----------|----------|-------|--|
| Lane Group             | EBL  | EBT      | EBR  | WBL   | WBT    | WBR  | NBL  | NBT      | SBL      | SBT   |  |
| Lane Group Flow (vph)  | 21   | 673      | 18   | 36    | 715    | 49   | 16   | 44       | 161      | 70    |  |
| v/c Ratio              | 0.06 | 0.57     | 0.02 | 0.09  | 0.67   | 0.05 | 0.06 | 0.09     | 0.51     | 0.14  |  |
| Control Delay          | 6.8  | 10.7     | 3.5  | 7.1   | 14.3   | 2.5  | 17.2 | 0.4      | 25.4     | 0.6   |  |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0   | 0.0    | 0.0  | 0.0  | 0.0      | 0.0      | 0.0   |  |
| Total Delay            | 6.8  | 10.7     | 3.5  | 7.1   | 14.3   | 2.5  | 17.2 | 0.4      | 25.4     | 0.6   |  |
| Queue Length 50th (m)  | 0.8  | 38.6     | 0.0  | 1.4   | 46.0   | 0.0  | 1.3  | 0.0      | 14.7     | 0.0   |  |
| Queue Length 95th (m)  | 3.9  | 86.3     | 2.3  | 5.8   | #125.4 | 3.7  | 5.0  | 0.0      | 29.5     | 0.0   |  |
| Internal Link Dist (m) |      | 364.2    |      |       | 111.3  |      |      | 77.4     |          | 109.3 |  |
| Turn Bay Length (m)    | 20.0 |          | 50.0 | 115.0 |        | 50.0 | 15.0 |          | 45.0     |       |  |
| Base Capacity (vph)    | 377  | 1185     | 812  | 402   | 1063   | 1044 | 418  | 635      | 491      | 682   |  |
| Starvation Cap Reductn | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0        | 0     |  |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0        | 0     |  |
| Storage Cap Reductn    | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0        | 0     |  |
| Reduced v/c Ratio      | 0.06 | 0.57     | 0.02 | 0.09  | 0.67   | 0.05 | 0.04 | 0.07     | 0.33     | 0.10  |  |
| Intersection Summary   |      |          |      |       |        |      |      |          |          |       |  |

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                               | ۶          | <b>→</b> | •     | •    | •          | •          | 4       | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b> | 4    |
|-------------------------------|------------|----------|-------|------|------------|------------|---------|----------|----------|----------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations           | Ť          | <b>†</b> | 7     | J.   | <b>†</b>   | 7          | ¥       | f)       |          | ¥        | f)       |      |
| Traffic Volume (vph)          | 19         | 660      | 18    | 35   | 701        | 45         | 16      | 0        | 43       | 148      | 0        | 64   |
| Future Volume (vph)           | 19         | 660      | 18    | 35   | 701        | 45         | 16      | 0        | 43       | 148      | 0        | 64   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900  | 1900 | 1900       | 1900       | 1900    | 1900     | 1900     | 1900     | 1900     | 1900 |
| Lane Width                    | 3.5        | 3.5      | 3.5   | 3.5  | 3.5        | 3.5        | 3.2     | 3.5      | 3.2      | 3.5      | 3.5      | 3.5  |
| Total Lost time (s)           | 7.0        | 7.0      | 7.0   | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |          | 4.0      | 4.0      |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Frt                           | 1.00       | 1.00     | 0.85  | 1.00 | 1.00       | 0.85       | 1.00    | 0.85     |          | 1.00     | 0.85     |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00  | 0.95 | 1.00       | 1.00       | 0.95    | 1.00     |          | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1750       | 1807     | 1229  | 1716 | 1620       | 1566       | 1526    | 1401     |          | 1750     | 1566     |      |
| Flt Permitted                 | 0.31       | 1.00     | 1.00  | 0.34 | 1.00       | 1.00       | 0.71    | 1.00     |          | 0.73     | 1.00     |      |
| Satd. Flow (perm)             | 575        | 1807     | 1229  | 614  | 1620       | 1566       | 1143    | 1401     |          | 1342     | 1566     |      |
| Peak-hour factor, PHF         | 0.92       | 0.98     | 0.98  | 0.98 | 0.98       | 0.92       | 0.98    | 0.92     | 0.98     | 0.92     | 0.92     | 0.92 |
| Adj. Flow (vph)               | 21         | 673      | 18    | 36   | 715        | 49         | 16      | 0        | 44       | 161      | 0        | 70   |
| RTOR Reduction (vph)          | 0          | 0        | 7     | 0    | 0          | 19         | 0       | 36       | 0        | 0        | 57       | 0    |
| Lane Group Flow (vph)         | 21         | 673      | 11    | 36   | 715        | 30         | 16      | 8        | 0        | 161      | 13       | 0    |
| Heavy Vehicles (%)            | 2%         | 4%       | 30%   | 4%   | 16%        | 2%         | 13%     | 2%       | 14%      | 2%       | 2%       | 2%   |
| Turn Type                     | Perm       | NA       | Perm  | Perm | NA         | Perm       | Perm    | NA       |          | Perm     | NA       |      |
| Protected Phases              |            | 2        |       |      | 6          |            |         | 8        |          |          | 4        |      |
| Permitted Phases              | 2          |          | 2     | 6    |            | 6          | 8       |          |          | 4        |          |      |
| Actuated Green, G (s)         | 36.2       | 36.2     | 36.2  | 36.2 | 36.2       | 36.2       | 11.0    | 11.0     |          | 11.0     | 11.0     |      |
| Effective Green, g (s)        | 36.2       | 36.2     | 36.2  | 36.2 | 36.2       | 36.2       | 11.0    | 11.0     |          | 11.0     | 11.0     |      |
| Actuated g/C Ratio            | 0.62       | 0.62     | 0.62  | 0.62 | 0.62       | 0.62       | 0.19    | 0.19     |          | 0.19     | 0.19     |      |
| Clearance Time (s)            | 7.0        | 7.0      | 7.0   | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |          | 4.0      | 4.0      |      |
| Vehicle Extension (s)         | 3.0        | 3.0      | 3.0   | 3.0  | 3.0        | 3.0        | 3.0     | 3.0      |          | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)            | 357        | 1123     | 764   | 381  | 1007       | 974        | 216     | 264      |          | 253      | 295      |      |
| v/s Ratio Prot                |            | 0.37     |       |      | c0.44      |            |         | 0.01     |          |          | 0.01     |      |
| v/s Ratio Perm                | 0.04       |          | 0.01  | 0.06 |            | 0.02       | 0.01    |          |          | c0.12    |          |      |
| v/c Ratio                     | 0.06       | 0.60     | 0.01  | 0.09 | 0.71       | 0.03       | 0.07    | 0.03     |          | 0.64     | 0.04     |      |
| Uniform Delay, d1             | 4.3        | 6.6      | 4.2   | 4.4  | 7.4        | 4.2        | 19.4    | 19.3     |          | 21.8     | 19.3     |      |
| Progression Factor            | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 0.3        | 2.4      | 0.0   | 0.5  | 4.2        | 0.1        | 0.1     | 0.0      |          | 5.2      | 0.1      |      |
| Delay (s)                     | 4.6        | 9.0      | 4.2   | 4.9  | 11.7       | 4.3        | 19.6    | 19.3     |          | 26.9     | 19.4     |      |
| Level of Service              | Α          | A        | Α     | Α    | В          | Α          | В       | В        |          | С        | В        |      |
| Approach Delay (s)            |            | 8.7      |       |      | 10.9       |            |         | 19.4     |          |          | 24.6     |      |
| Approach LOS                  |            | Α        |       |      | В          |            |         | В        |          |          | С        |      |
| Intersection Summary          |            |          |       |      |            |            |         |          |          |          |          |      |
| HCM 2000 Control Delay        |            |          | 12.1  | Н    | CM 2000    | Level of   | Service |          | В        |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.69  |      |            |            |         |          |          |          |          |      |
| Actuated Cycle Length (s)     |            |          | 58.2  |      | um of lost |            |         |          | 11.0     |          |          |      |
| Intersection Capacity Utiliza | ation      |          | 60.9% | IC   | CU Level   | of Service |         |          | В        |          |          |      |
| Analysis Period (min)         |            |          | 15    |      |            |            |         |          |          |          |          |      |

|                               | -        | •    | •     | •        | 1         | <b>/</b>  |
|-------------------------------|----------|------|-------|----------|-----------|-----------|
| Movement                      | EBT      | EBR  | WBL   | WBT      | NBL       | NBR       |
| Lane Configurations           | <b>↑</b> | 7    | *     | <b>†</b> | ች         | 7         |
| Traffic Volume (veh/h)        | 833      | 18   | 14    | 773      | 14        | 40        |
| Future Volume (Veh/h)         | 833      | 18   | 14    | 773      | 14        | 40        |
| Sign Control                  | Free     |      |       | Free     | Stop      |           |
| Grade                         | 0%       |      |       | 0%       | 0%        |           |
| Peak Hour Factor              | 0.94     | 0.94 | 0.94  | 0.94     | 0.94      | 0.94      |
| Hourly flow rate (vph)        | 886      | 19   | 15    | 822      | 15        | 43        |
| Pedestrians                   |          |      |       |          |           |           |
| Lane Width (m)                |          |      |       |          |           |           |
| Walking Speed (m/s)           |          |      |       |          |           |           |
| Percent Blockage              |          |      |       |          |           |           |
| Right turn flare (veh)        |          |      |       |          |           | 2         |
| Median type                   | None     |      |       | TWLTL    |           |           |
| Median storage veh)           |          |      |       | 2        |           |           |
| Upstream signal (m)           | 135      |      |       |          |           |           |
| pX, platoon unblocked         |          |      | 0.70  |          | 0.70      | 0.70      |
| vC, conflicting volume        |          |      | 905   |          | 1738      | 886       |
| vC1, stage 1 conf vol         |          |      |       |          | 886       |           |
| vC2, stage 2 conf vol         |          |      |       |          | 852       |           |
| vCu, unblocked vol            |          |      | 651   |          | 1840      | 624       |
| tC, single (s)                |          |      | 4.3   |          | 6.4       | 6.4       |
| tC, 2 stage (s)               |          |      |       |          | 5.4       |           |
| tF(s)                         |          |      | 2.4   |          | 3.5       | 3.5       |
| p0 queue free %               |          |      | 97    |          | 95        | 87        |
| cM capacity (veh/h)           |          |      | 585   |          | 274       | 322       |
| Direction, Lane #             | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |           |
| Volume Total                  | 886      | 19   | 15    | 822      | 58        |           |
| Volume Left                   | 0        | 0    | 15    | 0        | 15        |           |
| Volume Right                  | 0        | 19   | 0     | 0        | 43        |           |
| cSH                           | 1700     | 1700 | 585   | 1700     | 434       |           |
| Volume to Capacity            | 0.52     | 0.01 | 0.03  | 0.48     | 0.13      |           |
| Queue Length 95th (m)         | 0.0      | 0.0  | 0.6   | 0.0      | 3.5       |           |
| Control Delay (s)             | 0.0      | 0.0  | 11.3  | 0.0      | 18.2      |           |
| Lane LOS                      |          |      | В     |          | С         |           |
| Approach Delay (s)            | 0.0      |      | 0.2   |          | 18.2      |           |
| Approach LOS                  |          |      |       |          | С         |           |
| Intersection Summary          |          |      |       |          |           |           |
| Average Delay                 |          |      | 0.7   |          |           |           |
| Intersection Capacity Utiliza | ation    |      | 53.8% | IC       | U Level o | f Service |
| Analysis Period (min)         |          |      | 15    |          |           |           |
| , ( )                         |          |      |       |          |           |           |

|                        | ۶    | <b>→</b> | •    | •     | <b>←</b> | •    | •    | <b>†</b> | <b>\</b> | <b>↓</b> |  |
|------------------------|------|----------|------|-------|----------|------|------|----------|----------|----------|--|
| Lane Group             | EBL  | EBT      | EBR  | WBL   | WBT      | WBR  | NBL  | NBT      | SBL      | SBT      |  |
| Lane Group Flow (vph)  | 64   | 791      | 13   | 34    | 1011     | 151  | 13   | 25       | 90       | 38       |  |
| v/c Ratio              | 0.23 | 0.56     | 0.01 | 0.08  | 0.71     | 0.12 | 0.06 | 0.06     | 0.43     | 0.11     |  |
| Control Delay          | 6.8  | 7.6      | 2.1  | 4.4   | 11.0     | 1.4  | 30.1 | 0.3      | 38.3     | 0.6      |  |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      |  |
| Total Delay            | 6.8  | 7.6      | 2.1  | 4.4   | 11.0     | 1.4  | 30.1 | 0.3      | 38.3     | 0.6      |  |
| Queue Length 50th (m)  | 2.8  | 50.4     | 0.0  | 1.3   | 80.6     | 0.9  | 1.8  | 0.0      | 12.8     | 0.0      |  |
| Queue Length 95th (m)  | 9.2  | 92.3     | 1.5  | 4.4   | 155.2    | 6.0  | 6.5  | 0.0      | 26.4     | 0.0      |  |
| Internal Link Dist (m) |      | 364.2    |      |       | 111.3    |      |      | 77.4     |          | 83.8     |  |
| Turn Bay Length (m)    | 20.0 |          | 50.0 | 115.0 |          | 50.0 | 15.0 |          | 45.0     |          |  |
| Base Capacity (vph)    | 284  | 1403     | 1199 | 446   | 1417     | 1234 | 335  | 556      | 347      | 501      |  |
| Starvation Cap Reductn | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0        | 0        | 0        |  |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0        | 0        | 0        |  |
| Storage Cap Reductn    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0        | 0        | 0        |  |
| Reduced v/c Ratio      | 0.23 | 0.56     | 0.01 | 0.08  | 0.71     | 0.12 | 0.04 | 0.04     | 0.26     | 0.08     |  |
| Intersection Summary   |      |          |      |       |          |      |      |          |          |          |  |

|                               | ۶          | <b>→</b> | •        | •        | +          | •           | •         | <b>†</b>  | ~    | <b>/</b>  | <b>+</b>  | -√   |
|-------------------------------|------------|----------|----------|----------|------------|-------------|-----------|-----------|------|-----------|-----------|------|
| Movement                      | EBL        | EBT      | EBR      | WBL      | WBT        | WBR         | NBL       | NBT       | NBR  | SBL       | SBT       | SBR  |
| Lane Configurations           | ¥          | <b>†</b> | 7        | ¥        | <b>†</b>   | 7           | , A       | f)        |      | , A       | f)        |      |
| Traffic Volume (vph)          | 59         | 783      | 13       | 34       | 1001       | 139         | 13        | 0         | 25   | 83        | 0         | 35   |
| Future Volume (vph)           | 59         | 783      | 13       | 34       | 1001       | 139         | 13        | 0         | 25   | 83        | 0         | 35   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900     | 1900     | 1900       | 1900        | 1900      | 1900      | 1900 | 1900      | 1900      | 1900 |
| Lane Width                    | 3.5        | 3.5      | 3.5      | 3.5      | 3.5        | 3.5         | 3.2       | 3.5       | 3.2  | 3.5       | 3.5       | 3.5  |
| Total Lost time (s)           | 7.0        | 7.0      | 7.0      | 7.0      | 7.0        | 7.0         | 4.0       | 4.0       |      | 4.0       | 4.0       |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00     | 1.00     | 1.00       | 1.00        | 1.00      | 1.00      |      | 1.00      | 1.00      |      |
| Frpb, ped/bikes               | 1.00       | 1.00     | 0.97     | 1.00     | 1.00       | 1.00        | 1.00      | 0.97      |      | 1.00      | 1.00      |      |
| Flpb, ped/bikes               | 1.00       | 1.00     | 1.00     | 1.00     | 1.00       | 1.00        | 0.99      | 1.00      |      | 1.00      | 1.00      |      |
| Frt                           | 1.00       | 1.00     | 0.85     | 1.00     | 1.00       | 0.85        | 1.00      | 0.85      |      | 1.00      | 0.85      |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00     | 0.95     | 1.00       | 1.00        | 0.95      | 1.00      |      | 0.95      | 1.00      |      |
| Satd. Flow (prot)             | 1750       | 1824     | 1556     | 1782     | 1842       | 1566        | 1712      | 1553      |      | 1750      | 1566      |      |
| Flt Permitted                 | 0.20       | 1.00     | 1.00     | 0.31     | 1.00       | 1.00        | 0.73      | 1.00      |      | 0.74      | 1.00      |      |
| Satd. Flow (perm)             | 370        | 1824     | 1556     | 580      | 1842       | 1566        | 1320      | 1553      |      | 1365      | 1566      |      |
| Peak-hour factor, PHF         | 0.92       | 0.99     | 0.99     | 0.99     | 0.99       | 0.92        | 0.99      | 0.92      | 0.99 | 0.92      | 0.92      | 0.92 |
| Adj. Flow (vph)               | 64         | 791      | 13       | 34       | 1011       | 151         | 13        | 0         | 25   | 90        | 0         | 38   |
| RTOR Reduction (vph)          | 0          | 0        | 3        | 0        | 0          | 32          | 0         | 22        | 0    | 0         | 33        | 0    |
| Lane Group Flow (vph)         | 64         | 791      | 10       | 34       | 1011       | 119         | 13        | 3         | 0    | 90        | 5         | 0    |
| Confl. Peds. (#/hr)           |            |          | 4        | 4        |            |             | 4         |           | 4    |           |           |      |
| Heavy Vehicles (%)            | 2%         | 3%       | 0%       | 0%       | 2%         | 2%          | 0%        | 2%        | 0%   | 2%        | 2%        | 2%   |
| Turn Type                     | Perm       | NA       | Perm     | Perm     | NA         | Perm        | Perm      | NA        |      | Perm      | NA        |      |
| Protected Phases              |            | 2        |          |          | 6          |             |           | 8         |      |           | 4         |      |
| Permitted Phases              | 2          | _        | 2        | 6        |            | 6           | 8         |           |      | 4         | •         |      |
| Actuated Green, G (s)         | 62.1       | 62.1     | 62.1     | 62.1     | 62.1       | 62.1        | 10.3      | 10.3      |      | 10.3      | 10.3      |      |
| Effective Green, g (s)        | 62.1       | 62.1     | 62.1     | 62.1     | 62.1       | 62.1        | 10.3      | 10.3      |      | 10.3      | 10.3      |      |
| Actuated g/C Ratio            | 0.74       | 0.74     | 0.74     | 0.74     | 0.74       | 0.74        | 0.12      | 0.12      |      | 0.12      | 0.12      |      |
| Clearance Time (s)            | 7.0        | 7.0      | 7.0      | 7.0      | 7.0        | 7.0         | 4.0       | 4.0       |      | 4.0       | 4.0       |      |
| Vehicle Extension (s)         | 3.0        | 3.0      | 3.0      | 3.0      | 3.0        | 3.0         | 3.0       | 3.0       |      | 3.0       | 3.0       |      |
| Lane Grp Cap (vph)            | 275        | 1358     | 1158     | 431      | 1371       | 1166        | 163       | 191       |      | 168       | 193       |      |
| v/s Ratio Prot                | 210        | 0.43     | 1100     | 101      | c0.55      | 1100        | 100       | 0.00      |      | 100       | 0.00      |      |
| v/s Ratio Perm                | 0.17       | 0.40     | 0.01     | 0.06     | 00.00      | 0.08        | 0.01      | 0.00      |      | c0.07     | 0.00      |      |
| v/c Ratio                     | 0.23       | 0.58     | 0.01     | 0.08     | 0.74       | 0.10        | 0.08      | 0.02      |      | 0.54      | 0.02      |      |
| Uniform Delay, d1             | 3.3        | 4.8      | 2.7      | 2.9      | 6.0        | 2.9         | 32.4      | 32.1      |      | 34.3      | 32.1      |      |
| Progression Factor            | 1.00       | 1.00     | 1.00     | 1.00     | 1.00       | 1.00        | 1.00      | 1.00      |      | 1.00      | 1.00      |      |
| Incremental Delay, d2         | 2.0        | 1.8      | 0.0      | 0.4      | 3.6        | 0.2         | 0.2       | 0.0       |      | 3.3       | 0.1       |      |
| Delay (s)                     | 5.3        | 6.6      | 2.8      | 3.2      | 9.6        | 3.1         | 32.6      | 32.1      |      | 37.6      | 32.2      |      |
| Level of Service              | 3.5<br>A   | Α        | 2.0<br>A | 3.2<br>A | 3.0<br>A   | A           | 02.0<br>C | 02.1<br>C |      | 57.0<br>D | 02.2<br>C |      |
| Approach Delay (s)            | Λ          | 6.5      | Α        |          | 8.6        |             |           | 32.3      |      |           | 36.0      |      |
| Approach LOS                  |            | Α        |          |          | Α          |             |           | 02.0<br>C |      |           | D         |      |
| Intersection Summary          |            |          |          |          |            |             |           |           |      |           |           |      |
| HCM 2000 Control Delay        |            |          | 9.8      | Н        | CM 2000    | Level of S  | Service   |           | A    |           |           |      |
| HCM 2000 Volume to Capac      | city ratio |          | 0.71     | 11       | J.11 2000  | _0,0,0,0    | 50, 1100  |           |      |           |           |      |
| Actuated Cycle Length (s)     | only ratio |          | 83.4     | Si       | um of lost | time (s)    |           |           | 11.0 |           |           |      |
| Intersection Capacity Utiliza | tion       |          | 73.1%    |          |            | of Service  |           |           | D    |           |           |      |
| Analysis Period (min)         | aon -      |          | 15       | ic       | O LOVOI (  | J. OUI VIOL |           |           | D    |           |           |      |
| c Critical Lane Group         |            |          | 10       |          |            |             |           |           |      |           |           |      |

|                               | -        | •    | •     | •        | <b>1</b>  |           |  |
|-------------------------------|----------|------|-------|----------|-----------|-----------|--|
| Movement                      | EBT      | EBR  | WBL   | WBT      | NBL       | NBR       |  |
| Lane Configurations           | <b>†</b> | 1    | ሻ     | <b>↑</b> | ሻ         | 7         |  |
| Traffic Volume (veh/h)        | 879      | 15   | 66    | 1171     | 14        | 19        |  |
| Future Volume (Veh/h)         | 879      | 15   | 66    | 1171     | 14        | 19        |  |
| Sign Control                  | Free     |      |       | Free     | Stop      |           |  |
| Grade                         | 0%       |      |       | 0%       | 0%        |           |  |
| Peak Hour Factor              | 0.94     | 0.94 | 0.94  | 0.94     | 0.94      | 0.94      |  |
| Hourly flow rate (vph)        | 935      | 16   | 70    | 1246     | 15        | 20        |  |
| Pedestrians                   | 3        |      |       | 3        | 3         |           |  |
| Lane Width (m)                | 3.5      |      |       | 3.5      | 3.5       |           |  |
| Walking Speed (m/s)           | 1.1      |      |       | 1.1      | 1.1       |           |  |
| Percent Blockage              | 0        |      |       | 0        | 0         |           |  |
| Right turn flare (veh)        |          |      |       |          |           | 2         |  |
| Median type                   | None     |      |       | TWLTL    |           |           |  |
| Median storage veh)           |          |      |       | 2        |           |           |  |
| Upstream signal (m)           | 135      |      |       |          |           |           |  |
| pX, platoon unblocked         |          |      | 0.75  |          | 0.75      | 0.75      |  |
| vC, conflicting volume        |          |      | 954   |          | 2327      | 941       |  |
| vC1, stage 1 conf vol         |          |      |       |          | 938       |           |  |
| vC2, stage 2 conf vol         |          |      |       |          | 1389      |           |  |
| vCu, unblocked vol            |          |      | 775   |          | 2598      | 758       |  |
| tC, single (s)                |          |      | 4.1   |          | 6.4       | 6.3       |  |
| tC, 2 stage (s)               |          |      |       |          | 5.4       |           |  |
| tF (s)                        |          |      | 2.2   |          | 3.5       | 3.4       |  |
| p0 queue free %               |          |      | 89    |          | 91        | 93        |  |
| cM capacity (veh/h)           |          |      | 628   |          | 171       | 297       |  |
| Direction, Lane #             | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |           |  |
| Volume Total                  | 935      | 16   | 70    | 1246     | 35        |           |  |
| Volume Left                   | 0        | 0    | 70    | 0        | 15        |           |  |
| Volume Right                  | 0        | 16   | 0     | 0        | 20        |           |  |
| cSH                           | 1700     | 1700 | 628   | 1700     | 399       |           |  |
| Volume to Capacity            | 0.55     | 0.01 | 0.11  | 0.73     | 0.09      |           |  |
| Queue Length 95th (m)         | 0.0      | 0.0  | 2.8   | 0.0      | 2.2       |           |  |
| Control Delay (s)             | 0.0      | 0.0  | 11.4  | 0.0      | 22.3      |           |  |
| Lane LOS                      |          |      | В     |          | С         |           |  |
| Approach Delay (s)            | 0.0      |      | 0.6   |          | 22.3      |           |  |
| Approach LOS                  |          |      |       |          | С         |           |  |
| Intersection Summary          |          |      |       |          |           |           |  |
| Average Delay                 |          |      | 0.7   |          |           |           |  |
| Intersection Capacity Utiliza | ation    |      | 72.6% | IC       | U Level o | f Service |  |
| Analysis Period (min)         |          |      | 15    |          |           |           |  |
| , ,                           |          |      |       |          |           |           |  |

|                        | •    | <b>→</b> | •    | •     | ←      | •    | 4    | <b>†</b> | -    | <b>↓</b> |  |
|------------------------|------|----------|------|-------|--------|------|------|----------|------|----------|--|
| Lane Group             | EBL  | EBT      | EBR  | WBL   | WBT    | WBR  | NBL  | NBT      | SBL  | SBT      |  |
| Lane Group Flow (vph)  | 21   | 726      | 19   | 39    | 770    | 49   | 17   | 47       | 161  | 70       |  |
| v/c Ratio              | 0.06 | 0.61     | 0.02 | 0.11  | 0.73   | 0.05 | 0.06 | 0.10     | 0.51 | 0.15     |  |
| Control Delay          | 7.1  | 11.8     | 3.4  | 7.4   | 16.3   | 2.5  | 17.3 | 0.5      | 25.4 | 0.8      |  |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0   | 0.0    | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      |  |
| Total Delay            | 7.1  | 11.8     | 3.4  | 7.4   | 16.3   | 2.5  | 17.3 | 0.5      | 25.4 | 0.8      |  |
| Queue Length 50th (m)  | 0.8  | 43.6     | 0.0  | 1.5   | 52.8   | 0.0  | 1.4  | 0.0      | 14.7 | 0.0      |  |
| Queue Length 95th (m)  | 4.0  | 98.6     | 2.4  | 6.3   | #140.5 | 3.8  | 5.3  | 0.0      | 29.5 | 0.8      |  |
| Internal Link Dist (m) |      | 364.2    |      |       | 111.3  |      |      | 77.4     |      | 109.3    |  |
| Turn Bay Length (m)    | 20.0 |          | 50.0 | 115.0 |        | 50.0 | 15.0 |          | 45.0 |          |  |
| Base Capacity (vph)    | 333  | 1184     | 812  | 361   | 1062   | 1043 | 418  | 619      | 489  | 667      |  |
| Starvation Cap Reductn | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0    | 0        |  |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0    | 0        |  |
| Storage Cap Reductn    | 0    | 0        | 0    | 0     | 0      | 0    | 0    | 0        | 0    | 0        |  |
| Reduced v/c Ratio      | 0.06 | 0.61     | 0.02 | 0.11  | 0.73   | 0.05 | 0.04 | 0.08     | 0.33 | 0.10     |  |
| Intersection Summary   |      |          |      |       |        |      |      |          |      |          |  |

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                               | ۶          | <b>→</b> | •     | •    | <b>←</b>   | •        | •       | <b>†</b> | /    | <b>&gt;</b> | ļ    | 4    |
|-------------------------------|------------|----------|-------|------|------------|----------|---------|----------|------|-------------|------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT        | WBR      | NBL     | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations           | Ŋ          | <b>†</b> | 7     | J.   | <b>†</b>   | 7        | ¥       | f)       |      | ¥           | f)   |      |
| Traffic Volume (vph)          | 19         | 711      | 19    | 38   | 755        | 45       | 17      | 0        | 46   | 148         | 0    | 64   |
| Future Volume (vph)           | 19         | 711      | 19    | 38   | 755        | 45       | 17      | 0        | 46   | 148         | 0    | 64   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900  | 1900 | 1900       | 1900     | 1900    | 1900     | 1900 | 1900        | 1900 | 1900 |
| Lane Width                    | 3.5        | 3.5      | 3.5   | 3.5  | 3.5        | 3.5      | 3.2     | 3.5      | 3.2  | 3.5         | 3.5  | 3.5  |
| Total Lost time (s)           | 7.0        | 7.0      | 7.0   | 7.0  | 7.0        | 7.0      | 4.0     | 4.0      |      | 4.0         | 4.0  |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00     | 1.00    | 1.00     |      | 1.00        | 1.00 |      |
| Frt                           | 1.00       | 1.00     | 0.85  | 1.00 | 1.00       | 0.85     | 1.00    | 0.85     |      | 1.00        | 0.85 |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00  | 0.95 | 1.00       | 1.00     | 0.95    | 1.00     |      | 0.95        | 1.00 |      |
| Satd. Flow (prot)             | 1750       | 1807     | 1229  | 1716 | 1620       | 1566     | 1526    | 1401     |      | 1750        | 1566 |      |
| Flt Permitted                 | 0.28       | 1.00     | 1.00  | 0.30 | 1.00       | 1.00     | 0.71    | 1.00     |      | 0.73        | 1.00 |      |
| Satd. Flow (perm)             | 509        | 1807     | 1229  | 551  | 1620       | 1566     | 1143    | 1401     |      | 1338        | 1566 |      |
| Peak-hour factor, PHF         | 0.92       | 0.98     | 0.98  | 0.98 | 0.98       | 0.92     | 0.98    | 0.92     | 0.98 | 0.92        | 0.92 | 0.92 |
| Adj. Flow (vph)               | 21         | 726      | 19    | 39   | 770        | 49       | 17      | 0        | 47   | 161         | 0    | 70   |
| RTOR Reduction (vph)          | 0          | 0        | 7     | 0    | 0          | 19       | 0       | 38       | 0    | 0           | 57   | 0    |
| Lane Group Flow (vph)         | 21         | 726      | 12    | 39   | 770        | 30       | 17      | 9        | 0    | 161         | 13   | 0    |
| Heavy Vehicles (%)            | 2%         | 4%       | 30%   | 4%   | 16%        | 2%       | 13%     | 2%       | 14%  | 2%          | 2%   | 2%   |
| Turn Type                     | Perm       | NA       | Perm  | Perm | NA         | Perm     | Perm    | NA       |      | Perm        | NA   |      |
| Protected Phases              |            | 2        |       |      | 6          |          |         | 8        |      |             | 4    |      |
| Permitted Phases              | 2          |          | 2     | 6    |            | 6        | 8       |          |      | 4           |      |      |
| Actuated Green, G (s)         | 36.2       | 36.2     | 36.2  | 36.2 | 36.2       | 36.2     | 11.0    | 11.0     |      | 11.0        | 11.0 |      |
| Effective Green, g (s)        | 36.2       | 36.2     | 36.2  | 36.2 | 36.2       | 36.2     | 11.0    | 11.0     |      | 11.0        | 11.0 |      |
| Actuated g/C Ratio            | 0.62       | 0.62     | 0.62  | 0.62 | 0.62       | 0.62     | 0.19    | 0.19     |      | 0.19        | 0.19 |      |
| Clearance Time (s)            | 7.0        | 7.0      | 7.0   | 7.0  | 7.0        | 7.0      | 4.0     | 4.0      |      | 4.0         | 4.0  |      |
| Vehicle Extension (s)         | 3.0        | 3.0      | 3.0   | 3.0  | 3.0        | 3.0      | 3.0     | 3.0      |      | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)            | 316        | 1123     | 764   | 342  | 1007       | 974      | 216     | 264      |      | 252         | 295  |      |
| v/s Ratio Prot                |            | 0.40     |       |      | c0.48      |          |         | 0.01     |      |             | 0.01 |      |
| v/s Ratio Perm                | 0.04       |          | 0.01  | 0.07 |            | 0.02     | 0.01    |          |      | c0.12       |      |      |
| v/c Ratio                     | 0.07       | 0.65     | 0.02  | 0.11 | 0.76       | 0.03     | 0.08    | 0.03     |      | 0.64        | 0.04 |      |
| Uniform Delay, d1             | 4.3        | 7.0      | 4.2   | 4.5  | 7.9        | 4.2      | 19.4    | 19.3     |      | 21.8        | 19.3 |      |
| Progression Factor            | 1.00       | 1.00     | 1.00  | 1.00 | 1.00       | 1.00     | 1.00    | 1.00     |      | 1.00        | 1.00 |      |
| Incremental Delay, d2         | 0.4        | 2.9      | 0.0   | 0.7  | 5.5        | 0.1      | 0.2     | 0.1      |      | 5.2         | 0.1  |      |
| Delay (s)                     | 4.7        | 9.8      | 4.2   | 5.2  | 13.4       | 4.3      | 19.6    | 19.3     |      | 27.0        | 19.4 |      |
| Level of Service              | Α          | Α        | Α     | Α    | В          | Α        | В       | В        |      | С           | В    |      |
| Approach Delay (s)            |            | 9.6      |       |      | 12.5       |          |         | 19.4     |      |             | 24.7 |      |
| Approach LOS                  |            | Α        |       |      | В          |          |         | В        |      |             | С    |      |
| Intersection Summary          |            |          |       |      |            |          |         |          |      |             |      |      |
| HCM 2000 Control Delay        |            |          | 13.0  | Н    | CM 2000    | Level of | Service |          | В    |             |      |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.73  |      | 000        | _0.5.01  | 200     |          |      |             |      |      |
| Actuated Cycle Length (s)     | ,          |          | 58.2  | S    | um of lost | time (s) |         |          | 11.0 |             |      |      |
| Intersection Capacity Utiliza | ition      |          | 63.8% |      | CU Level   |          | !       |          | В    |             |      |      |
| Analysis Period (min)         |            |          | 15    |      |            |          |         |          |      |             |      |      |
| o Critical Lang Group         |            |          | 10    |      |            |          |         |          |      |             |      |      |

|                              | <b>→</b> | •    | •     | <b>←</b> | 4         | /         |   |
|------------------------------|----------|------|-------|----------|-----------|-----------|---|
| Movement                     | EBT      | EBR  | WBL   | WBT      | NBL       | NBR       |   |
| Lane Configurations          | <b>†</b> | 7    | *     | <b></b>  | *         | 7         |   |
| Traffic Volume (veh/h)       | 885      | 19   | 15    | 829      | 15        | 43        |   |
| Future Volume (Veh/h)        | 885      | 19   | 15    | 829      | 15        | 43        |   |
| Sign Control                 | Free     |      |       | Free     | Stop      |           |   |
| Grade                        | 0%       |      |       | 0%       | 0%        |           |   |
| Peak Hour Factor             | 0.94     | 0.94 | 0.94  | 0.94     | 0.94      | 0.94      |   |
| Hourly flow rate (vph)       | 941      | 20   | 16    | 882      | 16        | 46        |   |
| Pedestrians                  |          |      |       |          |           |           |   |
| Lane Width (m)               |          |      |       |          |           |           |   |
| Walking Speed (m/s)          |          |      |       |          |           |           |   |
| Percent Blockage             |          |      |       |          |           |           |   |
| Right turn flare (veh)       |          |      |       |          |           | 2         |   |
| Median type                  | None     |      |       | TWLTL    |           |           |   |
| Median storage veh)          |          |      |       | 2        |           |           |   |
| Upstream signal (m)          | 135      |      |       |          |           |           |   |
| pX, platoon unblocked        |          |      | 0.67  |          | 0.67      | 0.67      |   |
| vC, conflicting volume       |          |      | 961   |          | 1855      | 941       |   |
| vC1, stage 1 conf vol        |          |      |       |          | 941       |           |   |
| vC2, stage 2 conf vol        |          |      |       |          | 914       |           |   |
| vCu, unblocked vol           |          |      | 690   |          | 2034      | 660       |   |
| tC, single (s)               |          |      | 4.3   |          | 6.4       | 6.4       |   |
| tC, 2 stage (s)              |          |      |       |          | 5.4       |           |   |
| tF (s)                       |          |      | 2.4   |          | 3.5       | 3.5       |   |
| p0 queue free %              |          |      | 97    |          | 94        | 84        |   |
| cM capacity (veh/h)          |          |      | 537   |          | 249       | 291       |   |
| Direction, Lane #            | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |           |   |
| Volume Total                 | 941      | 20   | 16    | 882      | 62        |           |   |
| Volume Left                  | 0        | 0    | 16    | 0        | 16        |           |   |
| Volume Right                 | 0        | 20   | 0     | 0        | 46        |           |   |
| cSH                          | 1700     | 1700 | 537   | 1700     | 393       |           |   |
| Volume to Capacity           | 0.55     | 0.01 | 0.03  | 0.52     | 0.16      |           |   |
| Queue Length 95th (m)        | 0.0      | 0.0  | 0.7   | 0.0      | 4.2       |           |   |
| Control Delay (s)            | 0.0      | 0.0  | 11.9  | 0.0      | 19.9      |           |   |
| Lane LOS                     |          |      | В     |          | С         |           |   |
| Approach Delay (s)           | 0.0      |      | 0.2   |          | 19.9      |           |   |
| Approach LOS                 |          |      |       |          | С         |           |   |
| Intersection Summary         |          |      |       |          |           |           |   |
| Average Delay                |          |      | 0.7   |          |           |           |   |
| Intersection Capacity Utiliz | zation   |      | 56.6% | IC       | U Level c | f Service | е |
| Analysis Period (min)        |          |      | 15    |          |           |           |   |
|                              |          |      | - 10  |          |           |           |   |

|                        | •    | -     | •    | •     | <b>←</b> | •    | •    | <b>†</b> | <b>&gt;</b> | <b>↓</b> |  |
|------------------------|------|-------|------|-------|----------|------|------|----------|-------------|----------|--|
| Lane Group             | EBL  | EBT   | EBR  | WBL   | WBT      | WBR  | NBL  | NBT      | SBL         | SBT      |  |
| Lane Group Flow (vph)  | 64   | 853   | 14   | 36    | 1089     | 151  | 14   | 27       | 90          | 38       |  |
| v/c Ratio              | 0.28 | 0.61  | 0.01 | 0.09  | 0.77     | 0.12 | 0.07 | 0.07     | 0.43        | 0.11     |  |
| Control Delay          | 8.6  | 8.4   | 2.0  | 4.6   | 13.2     | 1.5  | 30.1 | 0.3      | 38.3        | 0.7      |  |
| Queue Delay            | 0.0  | 0.0   | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0         | 0.0      |  |
| Total Delay            | 8.6  | 8.4   | 2.0  | 4.6   | 13.2     | 1.5  | 30.1 | 0.3      | 38.3        | 0.7      |  |
| Queue Length 50th (m)  | 2.9  | 57.7  | 0.0  | 1.4   | 95.8     | 1.2  | 1.9  | 0.0      | 12.8        | 0.0      |  |
| Queue Length 95th (m)  | 10.7 | 107.0 | 1.6  | 4.7   | #226.6   | 6.5  | 6.8  | 0.0      | 26.4        | 0.0      |  |
| Internal Link Dist (m) |      | 364.2 |      |       | 111.3    |      |      | 77.4     |             | 83.8     |  |
| Turn Bay Length (m)    | 20.0 |       | 50.0 | 115.0 |          | 50.0 | 15.0 |          | 45.0        |          |  |
| Base Capacity (vph)    | 229  | 1402  | 1199 | 401   | 1416     | 1231 | 336  | 537      | 347         | 486      |  |
| Starvation Cap Reductn | 0    | 0     | 0    | 0     | 0        | 0    | 0    | 0        | 0           | 0        |  |
| Spillback Cap Reductn  | 0    | 0     | 0    | 0     | 0        | 0    | 0    | 0        | 0           | 0        |  |
| Storage Cap Reductn    | 0    | 0     | 0    | 0     | 0        | 0    | 0    | 0        | 0           | 0        |  |
| Reduced v/c Ratio      | 0.28 | 0.61  | 0.01 | 0.09  | 0.77     | 0.12 | 0.04 | 0.05     | 0.26        | 0.08     |  |
|                        |      |       |      |       |          |      |      |          |             |          |  |

Intersection Summary
# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                                 | ۶                                     | <b>→</b> | •     | •    | +          | •          | •       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | -√   |
|---------------------------------|---------------------------------------|----------|-------|------|------------|------------|---------|----------|------|----------|----------|------|
| Movement                        | EBL                                   | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations             | Ŋ                                     | <b>†</b> | 7     | , j  | <b>†</b>   | 7          | J.      | f)       |      | , A      | f)       |      |
| Traffic Volume (vph)            | 59                                    | 844      | 14    | 36   | 1078       | 139        | 14      | 0        | 27   | 83       | 0        | 35   |
| Future Volume (vph)             | 59                                    | 844      | 14    | 36   | 1078       | 139        | 14      | 0        | 27   | 83       | 0        | 35   |
| Ideal Flow (vphpl)              | 1900                                  | 1900     | 1900  | 1900 | 1900       | 1900       | 1900    | 1900     | 1900 | 1900     | 1900     | 1900 |
| Lane Width                      | 3.5                                   | 3.5      | 3.5   | 3.5  | 3.5        | 3.5        | 3.2     | 3.5      | 3.2  | 3.5      | 3.5      | 3.5  |
| Total Lost time (s)             | 7.0                                   | 7.0      | 7.0   | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor               | 1.00                                  | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frpb, ped/bikes                 | 1.00                                  | 1.00     | 0.97  | 1.00 | 1.00       | 1.00       | 1.00    | 0.97     |      | 1.00     | 1.00     |      |
| Flpb, ped/bikes                 | 1.00                                  | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 0.99    | 1.00     |      | 1.00     | 1.00     |      |
| Frt                             | 1.00                                  | 1.00     | 0.85  | 1.00 | 1.00       | 0.85       | 1.00    | 0.85     |      | 1.00     | 0.85     |      |
| Flt Protected                   | 0.95                                  | 1.00     | 1.00  | 0.95 | 1.00       | 1.00       | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)               | 1750                                  | 1824     | 1556  | 1782 | 1842       | 1566       | 1712    | 1553     |      | 1750     | 1566     |      |
| Flt Permitted                   | 0.16                                  | 1.00     | 1.00  | 0.28 | 1.00       | 1.00       | 0.73    | 1.00     |      | 0.74     | 1.00     |      |
| Satd. Flow (perm)               | 299                                   | 1824     | 1556  | 521  | 1842       | 1566       | 1320    | 1553     |      | 1362     | 1566     |      |
| Peak-hour factor, PHF           | 0.92                                  | 0.99     | 0.99  | 0.99 | 0.99       | 0.92       | 0.99    | 0.92     | 0.99 | 0.92     | 0.92     | 0.92 |
| Adj. Flow (vph)                 | 64                                    | 853      | 14    | 36   | 1089       | 151        | 14      | 0        | 27   | 90       | 0        | 38   |
| RTOR Reduction (vph)            | 0                                     | 0        | 4     | 0    | 0          | 30         | 0       | 24       | 0    | 0        | 33       | 0    |
| Lane Group Flow (vph)           | 64                                    | 853      | 10    | 36   | 1089       | 121        | 14      | 3        | 0    | 90       | 5        | 0    |
| Confl. Peds. (#/hr)             |                                       |          | 4     | 4    |            |            | 4       |          | 4    |          |          |      |
| Heavy Vehicles (%)              | 2%                                    | 3%       | 0%    | 0%   | 2%         | 2%         | 0%      | 2%       | 0%   | 2%       | 2%       | 2%   |
| Turn Type                       | Perm                                  | NA       | Perm  | Perm | NA         | Perm       | Perm    | NA       |      | Perm     | NA       |      |
| Protected Phases                |                                       | 2        |       |      | 6          |            |         | 8        |      |          | 4        |      |
| Permitted Phases                | 2                                     |          | 2     | 6    | -          | 6          | 8       | -        |      | 4        |          |      |
| Actuated Green, G (s)           | 61.9                                  | 61.9     | 61.9  | 61.9 | 61.9       | 61.9       | 10.3    | 10.3     |      | 10.3     | 10.3     |      |
| Effective Green, g (s)          | 61.9                                  | 61.9     | 61.9  | 61.9 | 61.9       | 61.9       | 10.3    | 10.3     |      | 10.3     | 10.3     |      |
| Actuated g/C Ratio              | 0.74                                  | 0.74     | 0.74  | 0.74 | 0.74       | 0.74       | 0.12    | 0.12     |      | 0.12     | 0.12     |      |
| Clearance Time (s)              | 7.0                                   | 7.0      | 7.0   | 7.0  | 7.0        | 7.0        | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)           | 3.0                                   | 3.0      | 3.0   | 3.0  | 3.0        | 3.0        | 3.0     | 3.0      |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)              | 222                                   | 1357     | 1157  | 387  | 1370       | 1165       | 163     | 192      |      | 168      | 193      |      |
| v/s Ratio Prot                  |                                       | 0.47     |       | 00.  | c0.59      |            | .00     | 0.00     |      | .00      | 0.00     |      |
| v/s Ratio Perm                  | 0.21                                  | 0.17     | 0.01  | 0.07 | 00.00      | 0.08       | 0.01    | 0.00     |      | c0.07    | 0.00     |      |
| v/c Ratio                       | 0.29                                  | 0.63     | 0.01  | 0.09 | 0.79       | 0.10       | 0.09    | 0.02     |      | 0.54     | 0.02     |      |
| Uniform Delay, d1               | 3.5                                   | 5.1      | 2.7   | 2.9  | 6.7        | 3.0        | 32.3    | 32.0     |      | 34.2     | 32.0     |      |
| Progression Factor              | 1.00                                  | 1.00     | 1.00  | 1.00 | 1.00       | 1.00       | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2           | 3.3                                   | 2.2      | 0.0   | 0.5  | 4.8        | 0.2        | 0.2     | 0.0      |      | 3.3      | 0.1      |      |
| Delay (s)                       | 6.7                                   | 7.3      | 2.8   | 3.4  | 11.5       | 3.1        | 32.5    | 32.0     |      | 37.5     | 32.1     |      |
| Level of Service                | A                                     | Α.       | Α     | A    | В          | A          | C       | C        |      | D        | C        |      |
| Approach Delay (s)              | , , , , , , , , , , , , , , , , , , , | 7.2      | ,,    | , ·  | 10.3       | ,,         |         | 32.2     |      |          | 35.9     |      |
| Approach LOS                    |                                       | Α        |       |      | В          |            |         | C        |      |          | D        |      |
| Intersection Summary            |                                       |          |       |      |            |            |         |          |      |          |          |      |
| HCM 2000 Control Delay          |                                       |          | 10.8  | Н    | CM 2000    | Level of S | Service |          | В    |          |          |      |
| HCM 2000 Volume to Capac        | ity ratio                             |          | 0.76  |      |            | 2.3.01     |         |          |      |          |          |      |
| Actuated Cycle Length (s)       | ., . <b></b>                          |          | 83.2  | Sı   | um of lost | time (s)   |         |          | 11.0 |          |          |      |
| Intersection Capacity Utilizati | ion                                   |          | 77.2% |      |            | of Service |         |          | D    |          |          |      |
| Analysis Period (min)           |                                       |          | 15    |      | S =3.01    |            |         |          |      |          |          |      |
| c Critical Lane Group           |                                       |          |       |      |            |            |         |          |      |          |          |      |

|                                | -        | •    | •     | <b>←</b> | 1         |           |  |
|--------------------------------|----------|------|-------|----------|-----------|-----------|--|
| Movement                       | EBT      | EBR  | WBL   | WBT      | NBL       | NBR       |  |
| Lane Configurations            | <b>†</b> | 7    | *     | <b>†</b> | ሻ         | 7         |  |
| Traffic Volume (veh/h)         | 940      | 16   | 71    | 1250     | 15        | 20        |  |
| Future Volume (Veh/h)          | 940      | 16   | 71    | 1250     | 15        | 20        |  |
| Sign Control                   | Free     |      |       | Free     | Stop      |           |  |
| Grade                          | 0%       |      |       | 0%       | 0%        |           |  |
| Peak Hour Factor               | 0.94     | 0.94 | 0.94  | 0.94     | 0.94      | 0.94      |  |
| Hourly flow rate (vph)         | 1000     | 17   | 76    | 1330     | 16        | 21        |  |
| Pedestrians                    | 3        |      |       | 3        | 3         |           |  |
| Lane Width (m)                 | 3.5      |      |       | 3.5      | 3.5       |           |  |
| Walking Speed (m/s)            | 1.1      |      |       | 1.1      | 1.1       |           |  |
| Percent Blockage               | 0        |      |       | 0        | 0         |           |  |
| Right turn flare (veh)         |          |      |       |          |           | 2         |  |
| Median type                    | None     |      |       | TWLTL    |           |           |  |
| Median storage veh)            |          |      |       | 2        |           |           |  |
| Upstream signal (m)            | 135      |      |       |          |           |           |  |
| pX, platoon unblocked          |          |      | 0.71  |          | 0.71      | 0.71      |  |
| vC, conflicting volume         |          |      | 1020  |          | 2488      | 1006      |  |
| vC1, stage 1 conf vol          |          |      |       |          | 1003      |           |  |
| vC2, stage 2 conf vol          |          |      |       |          | 1485      |           |  |
| vCu, unblocked vol             |          |      | 829   |          | 2882      | 809       |  |
| tC, single (s)                 |          |      | 4.1   |          | 6.4       | 6.3       |  |
| tC, 2 stage (s)                |          |      |       |          | 5.4       |           |  |
| tF (s)                         |          |      | 2.2   |          | 3.5       | 3.4       |  |
| p0 queue free %                |          |      | 87    |          | 89        | 92        |  |
| cM capacity (veh/h)            |          |      | 569   |          | 149       | 263       |  |
| Direction, Lane #              | EB 1     | EB 2 | WB 1  | WB 2     | NB 1      |           |  |
| Volume Total                   | 1000     | 17   | 76    | 1330     | 37        |           |  |
| Volume Left                    | 0        | 0    | 76    | 0        | 16        |           |  |
| Volume Right                   | 0        | 17   | 0     | 0        | 21        |           |  |
| cSH                            | 1700     | 1700 | 569   | 1700     | 345       |           |  |
| Volume to Capacity             | 0.59     | 0.01 | 0.13  | 0.78     | 0.11      |           |  |
| Queue Length 95th (m)          | 0.0      | 0.0  | 3.5   | 0.0      | 2.7       |           |  |
| Control Delay (s)              | 0.0      | 0.0  | 12.3  | 0.0      | 25.1      |           |  |
| Lane LOS                       |          |      | В     |          | D         |           |  |
| Approach Delay (s)             | 0.0      |      | 0.7   |          | 25.1      |           |  |
| Approach LOS                   |          |      |       |          | D         |           |  |
| Intersection Summary           |          |      |       |          |           |           |  |
| Average Delay                  |          |      | 8.0   |          |           |           |  |
| Intersection Capacity Utilizat | ion      |      | 76.7% | IC       | U Level o | f Service |  |
| Analysis Period (min)          |          |      | 15    |          |           |           |  |

## APPENDIX G

Growth Rate Analysis

#### **Environmental Study Report**

## HIGHWAY 26 WEST FROM 280 m WEST OF PRINCETON SHORES BOULEVARD TO HARBOUR STREET IMPROVEMENTS

## MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT

#### Prepared By:

R.J. Burnside & Associates Limited 3 Ronell Crescent, Collingwood, ON L9Y 4J6

Prepared for:

Town of Collingwood

**April 2014** 

File No: 300032131.0000

The material in this report reflects best judgement in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. R.J. Burnside & Associates Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



#### **Technical Memorandum**

Memorandum No.: Traffic Memo No. 1 File No.: 300032131

Class Environmental Assessment

Project: Highway 26 – Harbour Street to West of Princeton Shores

Boulevard

Town of Collingwood

Date: February 20, 2013 Revision Date:

Submitted To: Ron Kerr, P. Eng.

Submitted By: Henry Centen, P. Eng.

Reviewed By:

This technical memorandum considers the opportunities and constraints associated with the traffic and transportation operations along the Highway 26 corridor, from Harbour Street to west of Princeton Shores Boulevard, in the Town of Collingwood. This review is completed as part of a Class Environmental Assessment for improvements to Highway 26, in the study area.

#### 1.0 Class Environmental Assessment Considerations

The Town of Collingwood has identified the need to rehabilitate Highway 26 in the study area, due to its deteriorated condition and increasing traffic demands. This section of Highway 26 is a Highway Connecting Link, under the jurisdiction of the Town of Collingwood. Ongoing growth in background traffic, along with forecast development, requires the Town to consider traffic demands that are within the life cycle of the anticipated rehabilitation work. Therefore, for the purposes of establishing traffic constraints, the design requirements have been assessed for a fifteen year time horizon (year 2028). For comparative purposes, the existing traffic operations (2013) have also been analyzed, assuming existing lane configurations, existing traffic controls and existing development. Existing conditions are shown on Figure OV1 (aerial base drawing), attached to this technical memorandum, as well as on Figure TR1 (see Appendix A).

The Town's previous planning work (i.e. Five Year Needs Program), identifies the need to rehabilitate the existing pavement and widen the road to include a continuous centre left turn lane, at an estimated cost of \$3.5 M. Under the provisions of the Environmental Assessment Act, such a project requires environmental review as a Schedule C project, under the Class Environmental Assessment (Class EA) process. The requirements of the Class EA will be confirmed as part of the planning process.

This technical memorandum provides a preliminary assessment of the traffic and transportation operational issues along the corridor, from 280 metres west of Princeton Shores Boulevard to Harbour Street, which is the primary segment delineated by the Town's Terms of Reference (TOR), for review under the Class EA. The TOR also requests consideration of implementing a slip-by lane at the Silver Creek Drive intersection. Therefore some consideration has also been given to traffic operations in a secondary study area, from 280 metres west of Princeton Shores Boulevard to west of Silver Creek Drive. However the planning work in this secondary study area is considered to be outside of the Class EA.

This memo considers the technical environment associated with the proposed undertaking. Additional details pertaining to other environmental assessment considerations (e.g. natural, cultural, and economic environments) are not part of memo, but are dealt with under separate cover.

#### 2.0 Analysis of Traffic Operations

#### 2.1 Traffic Volume Forecasts

Traffic volumes along the corridor were forecast based on the following previous transportation studies:

- Transportation Study, Town of Collingwood; prepared for the Town of Collingwood by C.C. Tatham & Associates Ltd.; dated July 9, 2012.
- Comprehensive Transportation Strategic Plan; prepared for the Town of the Blue Mountains by C. C. Tatham & Associates Ltd and AECOM; dated March 2010.
- Technical Report, Traffic Operations Review, Highway 26 Planning Study; prepared for the Ministry of Transportation by McCormick Rankin Corporation; dated May 2004.
- Highway 26 Transportation Study, Georgian Triangle Area; Municipal Partners Meeting; prepared for the Ministry of Transportation by AECOM; dated December, 2011.

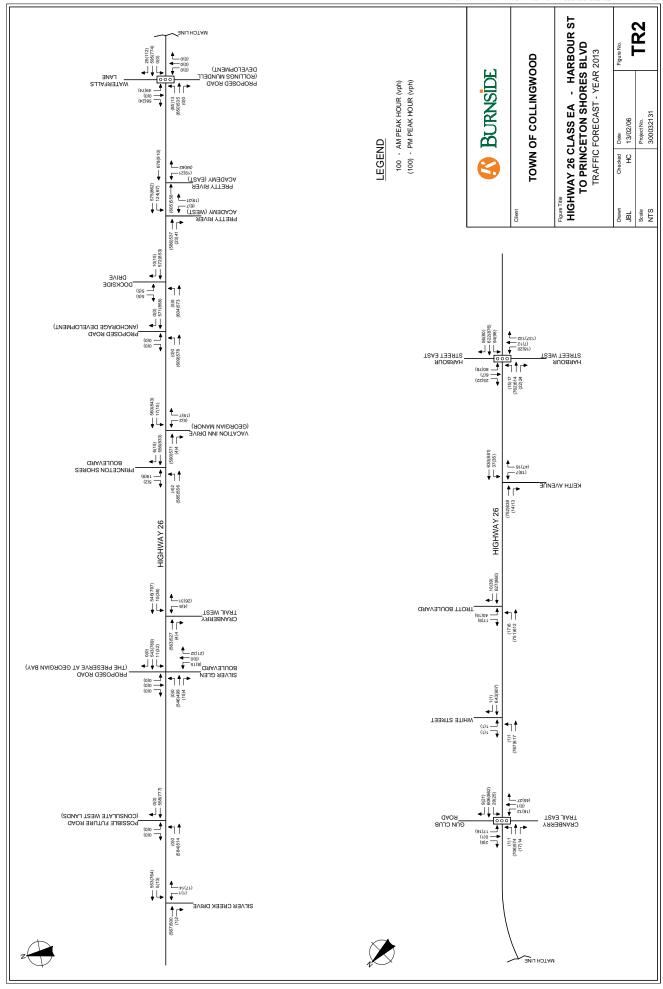
The studies prepared for the Town of Collingwood and the Town of the Blue Mountains have provided turning movement data for the intersections of Highway 26 / Harbour Street and for Highway 26 / Grey Road 21 (Osler Bluff Road). The traffic forecasts were adjusted to rationalize the assumptions made in the two studies, and to balance the traffic between these intersections.

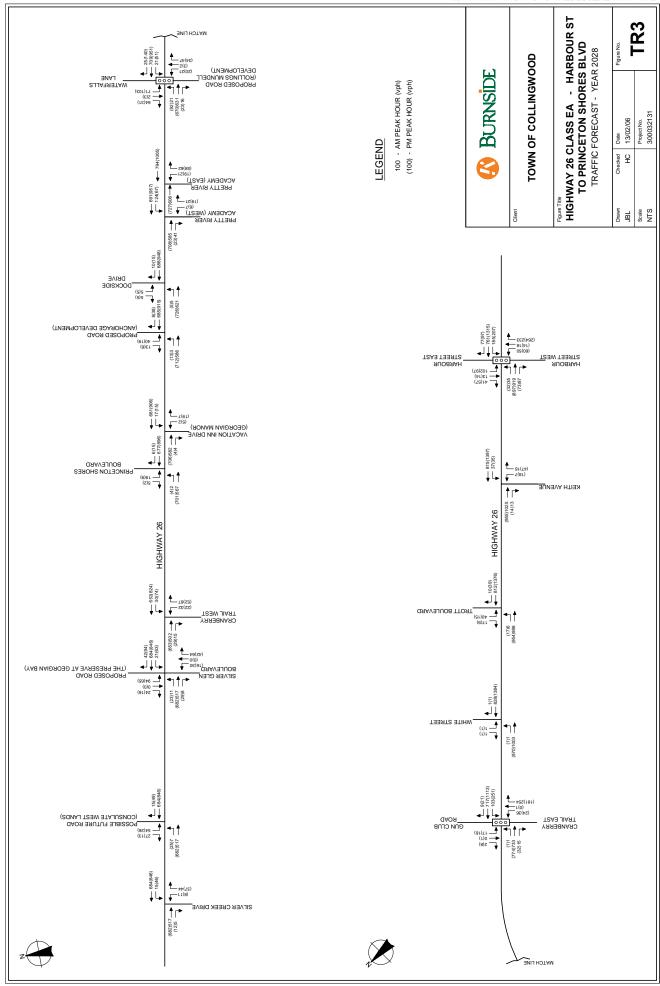
Traffic volume additions/drops are made along the corridor, based on existing and proposed developments in this area. Where available, these forecasts are based on previously prepared Traffic Impact Studies (TIS). The following TIS reports were reviewed to assess background traffic data:

- Signal Warrant Analysis, Highway 26 and Gun Club Road / Cranberry Trail East; prepared by C. C. Tatham & Associates Ltd.; dated August 22, 2012.
- Traffic Impact Study, Rollings / Mundell Property; prepared by C.F. Crozier & Associates Inc.; dated February 2008

- Traffic Impact Study, The Preserve at Georgian Bay; prepared by C. F. Crozier & Associates Inc.; dated February 2007
- Master Servicing Plan, The Preserve at Georgian Bay; prepared by C.R. Crozier & Associates inc.; dated March 2012
- Traffic Impact Study Update, Balmoral Village; prepared by C. F. Crozier & Associates Inc.; dated July 2011
- Traffic Impact Study, Tanglewood at Cranberry Village; prepared by C. F. Crozier & Associates Inc.; dated June 2007
- Traffic Impact Study, Huntingwood Trails; prepared by C. F. Crozier & Associates Inc.; dated June 2009
- Traffic Impact Study, Anchorage Development; prepared by C. C. Tatham & Associates Ltd.; dated August 2011
- Site Servicing Report, Waterstone Development; prepared by C. F. Crozier & Associates Inc.; dated November 2007
- Traffic Impact Assessment, Pretty River Academy; prepared by Cansult Tatham Ltd.; dated April 2005.

The preliminary planned intersection improvements, to accommodate new development, are shown on Figure TR1 (Appendix A). It is noted that the timing and details, of the developments identified, are still subject to change as their planning process proceeds. Consideration of their completion, in this study, provides a sensitivity analysis, when compared with existing traffic operations, to inform the design requirements that may be considered under the present project. Further input should be obtained from the Town, during the detailed design process, to confirm whether the staging of development-related projects should proceed at this time as part of the improvement works (i.e. front-ended), or whether the works should be implemented as part of a future development project.


Where previous studies were not available, traffic volumes were forecast based on trip generation rates, provided in the Trip Generation Manual, 9<sup>th</sup> Edition (Institute of Transportation Engineers), and an assessment of existing / proposed development in the immediate study area.


The forecast turning movements for the primary intersections along the corridor are show on Figure TR2 (2013) and on Figure TR3 (2028).

#### 2.2 Identification of Traffic Alternatives

In the study area, Highway 26 is a two lane arterial road, which provides access to abutting development (existing and proposed), while providing a highway connecting link for through traffic travelling to the broader area. In the study area, the posted speeds along Highway 26 are as follows:

- 50 km/h to just north of Harbour Street
- 60 km/h from just north of Harbour Street to just west of Silver Glen Boulevard
- 70 km/h from just west of Silver Glen Boulevard to just east of County Road 21 (Osler Bluff Road), where the speed decreases again to 60 km/h.





#### Highway 26 Growth Rates - ESR

Highway 26 east of Waterfalls Lane

#### **AM Peak Period**

| Year | EB Volume (veh/hr) | WB volume (veh/hr) | Two-way Volume (veh/hr) | Growth Rate |
|------|--------------------|--------------------|-------------------------|-------------|
| 2013 | 584                | 620                | 1204                    | 1.49%       |
| 2028 | 749                | 755                | 1504                    | 1.47/0      |

#### **PM Peak Period**

| Year | EB Volume (veh/hr) | WB volume (veh/hr) | Two-way Volume (veh/hr) | Growth Rate |
|------|--------------------|--------------------|-------------------------|-------------|
| 2013 | 724                | 886                | 1610                    | 1.28%       |
| 2028 | 807                | 1142               | 1949                    | 1.20 /6     |

Eastbound volumes were determined using the eastbound "exiting" volumes at Highway 26 and Waterfalls Lane (i.e. NBR, EBT, and SBL)

Westbound volumes were determined using the westbound "entering" volumes at Highway 26 and Waterfalls Lane (i.e. WBL, WBT, and WBR)



Ministry of Transportation Highway Standards Branch

Traffic Office

Provincial Highways

Traffic Volumes

1988-2016

King's Highways / Secondary Highways / Tertiary Roads

#### **Ministry Contact:**

Traffic Office (905)-704-2960

#### **Abstract:**

This annual publication contains averaged traffic volume information and accident rate information for each of the sections of highway under MTO jurisdiction.

#### **Key Words:**

Annual Average Daily Traffic volume (AADT), Summer Average Daily Traffic volume (SADT), Summer Average Weekday Traffic volume (SAWDT), Winter Average Daily Traffic volume (WADT), Accident Rate (AR)

#### Distance (KM)

The length of the section in kilometres reported to one decimal place.

#### **Pattern Type**

One of 14 pattern types that represent the seasonal variation of the traffic flow on the section indicated. A graphical presentation of these pattern types has been included on the following page.

The 14 pattern types represent the traffic flow variation on the whole network. They include:

#### **Variation Types**

| LOW   | UC<br>SC<br>C                  | urban commuter suburban commuter commuter                                                                                      |
|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| INTER | IC<br>CR<br>IR<br>CTR<br>IT    | intermediate commuter<br>commuter recreation<br>intermediate recreation<br>commuter tourist recreation<br>intermediate tourist |
| HIGH  | LT<br>T<br>HT<br>LR<br>R<br>HR | low tourist<br>tourist<br>high tourist<br>low recreation<br>recreation<br>high recreation                                      |
|       | UNKN                           | unknown                                                                                                                        |
|       | UNCL                           | unclassified                                                                                                                   |
|       | NEW                            | new volume section                                                                                                             |

The first three are generally referred to as Low Variation Curves (or commuter travel); the next five as Intermediate Variation Curves

(a blend of all types of traffic); and the last six as High Variation Curves. For the last group, the first three represent tourist travel and the second three, recreational travel; this sub-grouping is distinguished by the relationship of weekend to weekday traffic.

There are two additional codes in the pattern type column. "UNC" indicates that the AADT was calculated using adjustment factors from an unclassified (i.e. new) permanent counting station. "NEW" indicates that this is a new volume section and there is insufficient data to assign a pattern type.

#### AADT

Annual Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period January 1<sup>st</sup> to December 31<sup>st</sup>.

#### SADT

Summer Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period July 1<sup>st</sup> to August 31<sup>st</sup> including weekends.

#### **SAWDT**

Summer Average Weekday Traffic; defined as the average twenty four hour, two way traffic for the period July 1<sup>st</sup> to August 31<sup>st</sup>, excluding weekends.

#### **WADT**

Winter Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period January 1<sup>st</sup> to March 31<sup>st</sup>, plus December 1<sup>st</sup> to December 31<sup>st</sup>, including weekends.

|         |                                               | Dist. |      | Pattern |       |        |        |       |     |
|---------|-----------------------------------------------|-------|------|---------|-------|--------|--------|-------|-----|
| Highway | Location Description                          | (KM)  | Year | Type    | AADT  | SADT   | SAWDT  | WADT  | AR  |
| 26      | POPLAR SDRD ROUNDABOUT                        | 0.9   | 2016 | UNKN    | N/A   | N/A    | N/A    | N/A   | N/A |
| 26      | 6 TH LINE\OLD HWY 26 (HWY 7148) - START OF NA | 10.6  |      |         |       |        |        |       |     |
| 26      | LONG POINT RD (N)/GREY RD 21 (S) - END OF NA  | 2.7   | 1988 | CTR     | 6,700 | 8,700  | 8,000  | 5,500 | 1.9 |
|         |                                               |       | 1989 | CTR     | 7,000 | 8,900  | 8,300  | 5,800 | 1.8 |
|         |                                               |       | 1990 | CTR     | 7,350 | 9,100  | 8,400  | 6,600 | 1.2 |
|         |                                               |       | 1991 | CTR     | 7,550 | 9,200  | 8,600  | 6,700 | 1.9 |
|         |                                               |       | 1992 | CTR     | 7,700 | 9,400  | 8,700  | 6,900 | 1.7 |
|         |                                               |       | 1993 | CTR     | 7,300 | 9,100  | 8,800  | 6,200 | 1.5 |
|         |                                               |       | 1994 | CTR     | 7,200 | 9,200  | 8,800  | 6,050 | 1.5 |
|         |                                               |       | 1995 | CTR     | 7,200 | 9,200  | 8,850  | 6,050 | 1.1 |
|         |                                               |       | 1996 | CTR     | 7,450 | 9,250  | 8,200  | 6,550 | 1.6 |
|         |                                               |       | 1997 | CTR     | 7,500 | 9,600  | 9,250  | 6,300 | 0.8 |
|         |                                               |       | 1998 | CTR     | 7,550 | 9,600  | 9,200  | 6,350 | 0.8 |
|         |                                               |       | 1999 | CTR     | 7,600 | 9,600  | 9,200  | 6,400 | 1.5 |
|         |                                               |       | 2000 | CTR     | 7,950 | 10,000 | 9,600  | 6,700 | 0.6 |
|         |                                               |       | 2001 | CTR     | 8,100 | 10,200 | 9,800  | 6,800 | 1.4 |
|         |                                               |       | 2002 | CTR     | 8,450 | 10,700 | 10,200 | 7,150 | 1.0 |
|         |                                               |       | 2003 | CTR     | 8,650 | 10,900 | 10,500 | 7,350 | 0.9 |
|         |                                               |       | 2004 | CTR     | 8,550 | 10,600 | 10,200 | 7,250 | 1.1 |
|         |                                               |       | 2005 | CTR     | 8,550 | 10,600 | 10,200 | 7,250 | 0.6 |
|         |                                               |       | 2006 | CTR     | 8,550 | 10,600 | 10,100 | 7,250 | 1.4 |
|         |                                               |       | 2007 | CTR     | 8,750 | 10,800 | 10,700 | 7,400 | 1.7 |
|         |                                               |       | 2008 | CTR     | 8,550 | 10,300 | 10,300 | 7,200 | 0.8 |
|         |                                               |       | 2009 | CTR     | 8,950 | 10,800 | 10,400 | 7,550 | 1.1 |
|         |                                               |       | 2010 | CTR     | 8,900 | 10,700 | 10,300 | 7,550 | 1.1 |
|         |                                               |       | 2011 | CTR     | 8,900 | 10,400 | 10,500 | 7,900 | N/A |
|         |                                               |       | 2012 | CTR     | 8,300 | 9,950  | 9,800  | 7,050 | N/A |
|         |                                               |       | 2013 | CTR     | 8,400 | 10,100 | 10,300 | 7,150 | N/A |
|         |                                               |       | 2014 | CTR     | 8,500 | 10,400 | 10,500 | 7,250 | N/A |
|         |                                               |       | 2015 | CTR     | 8,600 | 10,500 | 10,600 | 7,300 | N/A |
|         |                                               |       | 2016 | CTR     | 8,700 | 10,600 | 10,700 | 7,400 |     |
| 26      | GREY RD 19 (S)                                | 10.2  | 1988 | CR      | 5,750 | 6,600  | 6,400  | 5,000 | 0.9 |
|         |                                               |       | 1989 | CR      | 6,150 | 7,000  | 6,900  | 5,400 | 1.0 |

#### MTO Highway 26 - Long point Road to Grey Road 21

| Year | AADT | Year-to-Year Increase | Average Increase |
|------|------|-----------------------|------------------|
| 2008 | 8550 | 4.68%                 |                  |
| 2009 | 8950 | -0.56%                |                  |
| 2010 | 8900 | 0.00%                 |                  |
| 2011 | 8900 | -6.74%                | 0.26%            |
| 2012 | 8300 | 1.20%                 | 0.20/0           |
| 2013 | 8400 | 1.19%                 |                  |
| 2014 | 8500 | 1.18%                 |                  |
| 2015 | 8600 | 1.16%                 |                  |
| 2016 | 8700 |                       |                  |

| Year | SADT  | Year-to-Year Increase | Average Increase |
|------|-------|-----------------------|------------------|
| 2008 | 10300 | 4.85%                 |                  |
| 2009 | 10800 | -0.93%                |                  |
| 2010 | 10700 | -2.80%                |                  |
| 2011 | 10400 | -4.33%                | 0.40%            |
| 2012 | 9950  | 1.51%                 | 0.40%            |
| 2013 | 10100 | 2.97%                 |                  |
| 2014 | 10400 | 0.96%                 |                  |
| 2015 | 10500 | 0.95%                 |                  |
| 2016 | 10600 |                       |                  |

## APPENDIX H

Signal Warrant Sheets

| Input Dat                                                          | a She                                                   | et                                                              |                                        | Analysis                                  | Sheet                        | Results S                    | Sheet                               | Proposed                                                    | Collision                    |                                                      | GO TO Justification:                     |                                  |                                       |  |
|--------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------|------------------------------|------------------------------------------------------|------------------------------------------|----------------------------------|---------------------------------------|--|
| What are the int                                                   | tersecting                                              | roadways?                                                       | Hv                                     | vy 26 and S                               | ilver Glen E                 | Blvd                         |                                     |                                                             |                              |                                                      |                                          |                                  | •                                     |  |
| What is the dire                                                   | ction of the                                            | Main Road                                                       | street?                                | Eas                                       | st-West                      | -                            | When was                            | the data colle                                              | ected?                       | Future Tota                                          | l 2025                                   |                                  |                                       |  |
|                                                                    |                                                         |                                                                 |                                        |                                           |                              | _                            |                                     |                                                             |                              |                                                      |                                          |                                  |                                       |  |
| Justification                                                      | 1 - 4: V                                                | olume Wa                                                        | rrants                                 |                                           |                              |                              |                                     |                                                             |                              |                                                      |                                          |                                  |                                       |  |
| a Number of I                                                      | anes on th                                              | e Main Road                                                     | d?                                     | 1                                         | -                            |                              |                                     |                                                             |                              |                                                      |                                          |                                  |                                       |  |
| Number of I                                                        | anes on th                                              | e Minor Roa                                                     | d?                                     | 1                                         | •                            |                              |                                     |                                                             |                              |                                                      |                                          |                                  |                                       |  |
|                                                                    |                                                         | s? 4                                                            |                                        |                                           |                              |                              |                                     |                                                             |                              |                                                      |                                          |                                  |                                       |  |
| c How many a                                                       | approache                                               | S?   4                                                          | ▼                                      |                                           |                              |                              |                                     |                                                             |                              |                                                      |                                          |                                  |                                       |  |
| Ť                                                                  |                                                         | . ,                                                             |                                        | Rural                                     | -                            | Popul                        | ation < 10.000                      | ) AND                                                       | Speed >= 70                  | ) km/hr                                              |                                          |                                  |                                       |  |
| d What is the                                                      | operating                                               | environment                                                     | ?                                      | Rural                                     | ▼ (Please fil                |                              | ation < 10,000                      | ) AND                                                       | Speed >= 70                  | ) km/hr                                              |                                          |                                  |                                       |  |
| d What is the                                                      | operating<br>eight hour                                 | environment                                                     | ?<br>me at the i                       | intersection?                             | (Please fil                  | II in table be               | low)                                |                                                             |                              |                                                      |                                          |                                  |                                       |  |
| d What is the                                                      | operating<br>eight hour<br>Main E                       | environment<br>vehicle volu<br>astbound Ap                      | ?<br>me at the i                       | intersection?                             | (Please fil                  | Il in table be               | low)<br>Main W                      | estbound Ap                                                 | proach                       | Minor Sc                                             | outhbound A                              |                                  | Pedestrians<br>Crossing Main          |  |
| I What is the  - What is the                                       | operating<br>eight hour                                 | environment                                                     | ?<br>me at the i                       | intersection?                             | (Please fil                  | II in table be               | low)                                |                                                             |                              |                                                      | outhbound A                              | Approach<br>RT                   |                                       |  |
| I What is the  - What is the  Hour Ending  7:00                    | operating eight hour  Main E  LT                        | environment vehicle volu astbound Ap TH 129                     | ?<br>me at the i                       | intersection?                             | (Please fil                  | Il in table be               | Main W LT 7                         | estbound Ap<br>TH<br>137                                    | proach RT                    | Minor So                                             |                                          | <b>RT</b> 13                     | Crossing Main                         |  |
| Hour Ending 7:00 8:00                                              | operating eight hour  Main E LT 4 10                    | environment vehicle volu astbound Ap TH 129 313                 | ? me at the i proach RT 4 9            | Minor No                                  | orthbound A  TH  0 0         | Approach RT 8 20             | Main W LT 7 17                      | estbound Ap<br>TH<br>137<br>332                             | proach RT 9 23               | Minor So<br>LT<br>31<br>75                           | TH<br>0<br>0                             | RT 13 33                         | Crossing Main<br>Road                 |  |
| 1 What is the  - What is the  Hour Ending  7:00 8:00 9:00          | operating eight hour  Main E  LT                        | environment vehicle volu astbound Ap TH 129                     | ? me at the i proach RT 4              | Minor No                                  | rthbound A                   | Approach RT 8 20 40          | Main W LT 7                         | estbound Ap<br>TH<br>137                                    | proach RT                    | Minor So                                             | <b>TH</b> 0                              | RT<br>13<br>33<br>64             | Crossing Main<br>Road                 |  |
| d What is the b What is the Hour Ending 7:00 8:00                  | operating eight hour  Main E LT 4 10                    | environment vehicle volu astbound Ap TH 129 313                 | ? me at the i proach RT 4 9            | Minor No                                  | orthbound A  TH  0 0         | Approach RT 8 20             | Main W LT 7 17                      | estbound Ap<br>TH<br>137<br>332                             | proach RT 9 23               | Minor So<br>LT<br>31<br>75                           | TH<br>0<br>0                             | RT 13 33                         | Crossing Main<br>Road  0 0            |  |
| 1 What is the  - What is the  Hour Ending  7:00 8:00 9:00          | operating eight hour  Main E LT 4 10 19                 | environment vehicle volu astbound Ap TH 129 313 613             | ? me at the i proach RT 4 9 17         | Minor No LT 3 8 15                        | rthbound A  TH  0 0 0        | Approach RT 8 20 40          | Main W LT 7 17 33                   | estbound Ap<br>TH<br>137<br>332<br>651                      | proach RT 9 23 45            | Minor Sc<br>LT<br>31<br>75<br>148                    | TH 0 0 0 0                               | RT<br>13<br>33<br>64             | Crossing Main<br>Road  0 0 0          |  |
| 1 What is the  Hour Ending  7:00 8:00 9:00 10:00                   | operating eight hour  Main E  LT  4  10  19  13         | environment vehicle volu astbound Ap TH 129 313 613 417         | ? me at the i proach RT 4 9 17 12      | Minor No<br>LT<br>3<br>8<br>15            | Orthbound A TH 0 0 0 0       | Approach RT 8 20 40 27       | Main W<br>LT<br>7<br>17<br>33<br>22 | estbound Ap<br>TH<br>137<br>332<br>651<br>443               | proach RT 9 23 45 31         | Minor Sc<br>LT<br>31<br>75<br>148<br>101             | TH 0 0 0 0 0 0 0                         | RT<br>13<br>33<br>64<br>44       | Crossing Main<br>Road  0 0 0 0 0      |  |
| 1 What is the - What is the Hour Ending 7:00 8:00 9:00 10:00 16:00 | operating eight hour  Main E  LT  4  10  19  13  44     | environment vehicle volu astbound Ap TH 129 313 613 417 538     | ? me at the i proach RT 4 9 17 12 9    | Minor No<br>LT<br>3<br>8<br>15<br>10<br>9 | Orthbound A TH 0 0 0 0 0 0   | Approach RT  8 20 40 27 17   | Main W LT 7 17 33 22 24             | estbound Ap<br>TH<br>137<br>332<br>651<br>443<br>687        | proach RT 9 23 45 31 103     | Minor Sc<br>LT<br>31<br>75<br>148<br>101<br>61       | TH 0 0 0 0 0 0 0 0 0                     | RT<br>13<br>33<br>64<br>44<br>26 | Crossing Main Road  0 0 0 0 0 0 0     |  |
| 8:00<br>9:00<br>10:00<br>16:00<br>17:00                            | operating eight hour  Main E  LT  4  10  19  13  44  58 | environment vehicle volu astbound Ap TH 129 313 613 417 538 720 | ? me at the i proach RT 4 9 17 12 9 12 | Minor No<br>LT<br>3<br>8<br>15<br>10<br>9 | orthbound A  TH  0 0 0 0 0 0 | Approach RT 8 20 40 27 17 23 | Main W LT 7 17 33 22 24 32          | estbound Ap<br>TH<br>137<br>332<br>651<br>443<br>687<br>920 | proach RT 9 23 45 31 103 138 | Minor Sc<br>LT<br>31<br>75<br>148<br>101<br>61<br>82 | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT  13 33 64 44 26 35            | Crossing Main Road  0 0 0 0 0 0 0 0 0 |  |

#### **Justification 5: Collision Experience**

| Preceding<br>Months | Number of Collisions* |
|---------------------|-----------------------|
| 1-12                | 0                     |
| 13-24               | 0                     |
| 25-36               | 0                     |

<sup>\*</sup> Include only collisions that are susceptable to correction through the installation of traffic signal control

#### **Justification 6: Pedestrian Volume**

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                       | Zor         | ne 1       | Zone     | 2          | Zone 3 (i | f needed)  | Zone 4 (if needed) |            | Total |
|---------------------------------------|-------------|------------|----------|------------|-----------|------------|--------------------|------------|-------|
|                                       | Assisted    | Unassisted | Assisted | Unassisted | Assisted  | Unassisted | Assisted           | Unassisted | Total |
| Total 8 hour pedestrian volume        | 0           | 0          | 0        | 0          | 0         | 0          | 0                  | 0          |       |
| Factored 8 hour pedestrian volume     |             | 0          | 0        |            |           | 0          |                    | 0          |       |
| % Assigned to crossing rate           | 23          | 3%         | 34%      | 6          | 30        | )%         | 10                 | 00%        |       |
| Net 8 Hour Pedestrian Volume at Cross | sing        |            |          |            |           |            |                    |            | 0     |
| Net 8 Hour Vehicular Volume on Street | Being Cross | sed        |          |            |           |            |                    |            | 2,000 |

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                                          | Zoi                                  | ne 1       | Zo       | ne 2       | Zone 3 (i | if needed) | Zone 4 ( | if needed) | Total |
|----------------------------------------------------------|--------------------------------------|------------|----------|------------|-----------|------------|----------|------------|-------|
|                                                          | Assisted                             | Unassisted | Assisted | Unassisted | Assisted  | Unassisted | Assisted | Unassisted | Total |
| Total 8 hour pedestrian volume                           | 0                                    | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Total 8 hour pedestrians delayed greater than 10 seconds | 0                                    | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Factored volume of total pedestrians                     |                                      | 0          |          | 0          |           | 0          |          | 0          |       |
| Factored volume of delayed pedestrians                   |                                      | 0          |          | 0          |           | 0          |          | 0          |       |
| % Assigned to Crossing Rate                              | 23                                   | 3%         | 34       | 4%         | 30        | 0%         | 10       | 0%         |       |
| Net 8 Hour Volume of Total Pedestrians                   | 3                                    |            |          |            |           |            |          |            | 0     |
| Net 8 Hour Volume of Delayed Pedestri                    | 8 Hour Volume of Delayed Pedestrians |            |          |            |           |            |          |            | 0     |

#### **Justification 1: Minimum Vehicle Volumes**

#### **Free Flow Rural Conditions**

| Justification     | Gı                                | uidance Ap     | proach Lane | es             |                                 |      |       | Percentage | Warrant |            |       |          | Total  | Section |
|-------------------|-----------------------------------|----------------|-------------|----------------|---------------------------------|------|-------|------------|---------|------------|-------|----------|--------|---------|
| dustinication     | 1 La                              | nes            | 2 or Mor    | e Lanes        |                                 |      |       | Hour En    | ding    |            |       |          | Across | Percent |
| Flow<br>Condition | FREE FLOW                         | RESTR.<br>FLOW | FREE FLOW   | RESTR.<br>FLOW | 7:00                            | 8:00 | 9:00  | 10:00      | 16:00   | 17:00      | 18:00 | 19:00    |        |         |
|                   | ~                                 |                |             |                |                                 |      |       |            |         |            |       |          |        |         |
| 1A                | 480                               | 720            | 600         | 900            | 345                             | 839  | 1,645 | 1,119      | 1,518   | 2,030      | 2,051 | 1,497    |        |         |
| '^                |                                   | COMPL          | IANCE %     |                | 72                              | 100  | 100   | 100        | 100     | 100        | 100   | 100      | 772    | 96      |
| 1B                | 120                               | 170            | 120         | 170            | 56                              | 136  | 267   | 182        | 113     | 151        | 153   | 112      |        |         |
| I B               | COMPLIANCE %                      |                |             |                | 47                              | 100  | 100   | 100        | 94      | 100        | 100   | 93       | 734    | 92      |
|                   | Free Flow Signal Justification 1: |                |             |                | Both 1A and 1<br>Lesser of 1A o |      |       |            | ırs     | Yes<br>Yes | -     | No<br>No |        |         |

#### **Justification 2: Delay to Cross Traffic**

#### Free Flow Rural Conditions

| Justification     | Gı                                | uidance Ap     | proach Lan | es             |                                 |             |       | Percentage | Warrant |            |       | Total | Section  |    |  |
|-------------------|-----------------------------------|----------------|------------|----------------|---------------------------------|-------------|-------|------------|---------|------------|-------|-------|----------|----|--|
| Justilication     | 1 la                              | nes            | 2 or Mo    | re lanes       |                                 | Hour Ending |       |            |         |            |       |       |          |    |  |
| Flow<br>Condition | FREE FLOW                         | RESTR.<br>FLOW | FREE FLOW  | RESTR.<br>FLOW | 7:00                            | 8:00        | 9:00  | 10:00      | 16:00   | 17:00      | 18:00 | 19:00 |          |    |  |
| 2A                | 480                               | 720            | 600        | 900            | 289                             | 703         | 1,378 | 937        | 1,405   | 1,879      | 1,898 | 1,386 |          |    |  |
| 24                |                                   | COMPL          | IANCE %    |                | 60                              | 100         | 100   | 100        | 100     | 100        | 100   | 100   | 760      | 95 |  |
| 2B                | 50                                | 75             | 50         | 75             | 34                              | 83          | 163   | 111        | 70      | 94         | 95    | 69    |          |    |  |
| 26                | COMPLIANCE %                      |                |            | 68             | 100                             | 100         | 100   | 100        | 100     | 100        | 100   | 768   | 96       |    |  |
|                   | Free Flow Signal Justification 2: |                |            |                | Both 2A and 2<br>Lesser of 2A o |             |       |            | urs     | Yes<br>Yes |       |       | <b>V</b> |    |  |

#### **Justification 3: Combination**

#### Combination Justification 1 and 2

|                 | Justification Satisfied 80% or Mo | Two Justifications Satisfied 80% or More |      |       |      |
|-----------------|-----------------------------------|------------------------------------------|------|-------|------|
| Justification 1 | Minimun Vehicular Volume          | YES 🔽                                    | NO 🗆 | YES 🔽 | NO 🗆 |
| Justification 2 | Delay Cross Traffic               | JUSTIFIED                                |      |       |      |

#### **Justification 4: Four Hour Volume**

| Justification   | Time Period | Total Volume of Both<br>Approaches (Main) | Heaviest Minor<br>Approach<br>Y (actual) | Required Value Y (warrant threshold) | Average % Compliance | Overall %<br>Compliance |
|-----------------|-------------|-------------------------------------------|------------------------------------------|--------------------------------------|----------------------|-------------------------|
|                 | 9:00        | 1,587                                     | 212                                      | 80                                   | 100 %                |                         |
|                 | 16:00       | 1,606                                     | 87                                       | 80                                   | 100 %                | 100.0/                  |
| Justification 4 | 17:00       | 2,148                                     | 117                                      | 80                                   | 100 %                | 100 %                   |
|                 | 18:00       | 2,170                                     | 118                                      | 80                                   | 100 %                |                         |

| Results                 | Sh             | eet                     | Input Sheet | Analysis   | Sheet         | Propo   |  |  |  |  |  |
|-------------------------|----------------|-------------------------|-------------|------------|---------------|---------|--|--|--|--|--|
| Intersection: H         | łwy 2          | 26 and Silver Glen Blvd |             | Count Date | e: Future Tot | al 2025 |  |  |  |  |  |
| Summary I               | ummary Results |                         |             |            |               |         |  |  |  |  |  |
|                         | Just           | ification               | Compliano   | e          | Signal Ju     |         |  |  |  |  |  |
|                         |                |                         |             |            | YES           | NO      |  |  |  |  |  |
| 1. Minimum<br>Vehicular | A              | Total Volume            | 96          | %          |               | ~       |  |  |  |  |  |
| Volume                  | В              | Crossing Volume         | 92          | %          |               |         |  |  |  |  |  |
| 2. Delay to<br>Cross    | A              | Main Road               | 95          | %          |               | ~       |  |  |  |  |  |
| Traffic                 | В              | Crossing Road           | 96          | %          |               | •       |  |  |  |  |  |
| 3. Combination          | Α              | Justificaton 1          | 92          | %          | V             |         |  |  |  |  |  |
|                         | В              | Justification 2         | 95          | %          |               |         |  |  |  |  |  |
| 4. 4-Hr Volume          |                |                         | 100         | %          | V             |         |  |  |  |  |  |
|                         |                |                         |             |            |               |         |  |  |  |  |  |
| 5. Collision Exp        | erienc         | ee                      | 0           | %          |               | V       |  |  |  |  |  |

~

Justification not met

Justification not met

6. Pedestrians

A Volume

B Delay

| <b>Input Dat</b>                                                   | a She                                             | et                                                                          |                                      | Analysis                                         | Sheet                                                               | Results S                     | Sheet                                     | Proposed                                                             | Collision                         | GO TO                                                      | ) Justificati                            | on:                              |                                                 |
|--------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------------|
| What are the int                                                   | tersecting i                                      | roadways?                                                                   | Hv                                   | vy 26 and S                                      | ilver Glen E                                                        | Blvd                          |                                           |                                                                      |                                   |                                                            |                                          |                                  | -                                               |
| What is the dire                                                   | ction of the                                      | e Main Road                                                                 | street?                              | Eas                                              | st-West                                                             | •                             | When was                                  | the data colle                                                       | ected?                            | Future Tota                                                | I 2030                                   |                                  |                                                 |
|                                                                    |                                                   |                                                                             |                                      |                                                  |                                                                     |                               |                                           |                                                                      |                                   |                                                            |                                          |                                  |                                                 |
| Justification                                                      | 1 - 4: V                                          | olume Wa                                                                    | rrants                               |                                                  |                                                                     |                               |                                           |                                                                      |                                   |                                                            |                                          |                                  |                                                 |
| a Number of la                                                     | anes on th                                        | e Main Road                                                                 | d?                                   | 1                                                | T                                                                   |                               |                                           |                                                                      |                                   |                                                            |                                          |                                  |                                                 |
| b Number of la                                                     | anes on th                                        | e Minor Roa                                                                 | d?                                   | 1                                                | •                                                                   |                               |                                           |                                                                      |                                   |                                                            |                                          |                                  |                                                 |
| c How many a                                                       | approache                                         | s? 4                                                                        | •                                    |                                                  |                                                                     |                               |                                           |                                                                      |                                   |                                                            |                                          |                                  |                                                 |
|                                                                    |                                                   |                                                                             |                                      |                                                  |                                                                     |                               |                                           |                                                                      |                                   |                                                            |                                          |                                  |                                                 |
| d - What is the                                                    | onerating                                         | environment                                                                 | ?                                    | Bural                                            | -                                                                   | Populs                        | ation ~ 10 000                            | AND                                                                  | Speed >= 70                       | \km/hr                                                     |                                          |                                  |                                                 |
| d What is the                                                      |                                                   |                                                                             |                                      | Rural                                            | V (Places fil                                                       | ·                             | ation < 10,000                            | AND                                                                  | Speed >= 70                       | ) km/hr                                                    |                                          |                                  |                                                 |
| d What is the e What is the                                        |                                                   |                                                                             |                                      | 1                                                |                                                                     | ·                             | ·                                         | ) AND                                                                | Speed >= 70                       | ) km/hr                                                    |                                          |                                  |                                                 |
| e What is the                                                      | eight hour                                        |                                                                             | me at the i                          | ntersection?                                     |                                                                     | II in table bel               | low)                                      | AND estbound Ap                                                      |                                   |                                                            | outhbound A                              | Approach                         | Pedestrians                                     |
|                                                                    | eight hour                                        | vehicle volu                                                                | me at the i                          | ntersection?                                     | ' (Please fil                                                       | II in table bel               | low)                                      |                                                                      |                                   |                                                            | outhbound <i>F</i>                       | Approach<br>RT                   | Pedestrians Crossing Main Road                  |
| e What is the                                                      | eight hour                                        | vehicle volu                                                                | me at the i                          | ntersection?                                     | ' (Please fil                                                       | II in table bel               | ow)<br>Main W                             | estbound Ap                                                          | proach                            | Minor So                                                   |                                          |                                  | Crossing Main                                   |
| e What is the                                                      | eight hour  Main E                                | vehicle volu<br>astbound Ap<br>TH                                           | me at the i<br>proach<br>RT          | ntersection?  Minor No                           | (Please file                                                        | Il in table bel Approach RT   | ow)<br>Main W                             | estbound Ap                                                          | proach<br>RT                      | Minor So                                                   | TH                                       | RT                               | Crossing Main<br>Road                           |
| e What is the  Hour Ending  7:00                                   | eight hour  Main E                                | vehicle volu<br>astbound Ap<br>TH                                           | proach RT                            | Minor No                                         | P (Please fill prthbound A TH 0                                     | Il in table bel Approach RT 9 | Main W                                    | estbound Ap<br>TH<br>147                                             | proach<br>RT<br>9                 | Minor So<br>LT<br>31                                       | <b>TH</b><br>0                           | <b>RT</b> 13                     | Crossing Main<br>Road                           |
| e What is the  Hour Ending  7:00 8:00                              | eight hour  Main E  LT  4 10                      | vehicle volu<br>astbound Ap<br>TH<br>139<br>337                             | proach RT 4 9                        | Minor No                                         | P (Please file orthbound A TH 0 0                                   | Approach RT 9 22              | Main W LT 7 18                            | estbound Ap TH 147 358                                               | proach RT 9 23                    | Minor So<br>LT<br>31<br>75                                 | TH<br>0<br>0                             | RT<br>13<br>33                   | Crossing Main<br>Road  0 0                      |
| e What is the  Hour Ending  7:00  8:00  9:00                       | eight hour  Main E  LT  4  10  19                 | astbound Ap TH 139 337 660                                                  | proach  RT  4  9 18                  | Minor No LT 3 8 16                               | Orthbound A TH 0 0 0                                                | Approach RT 9 22 43           | Main W LT 7 18 35                         | estbound Ap<br>TH<br>147<br>358<br>701                               | 9 23 45                           | Minor So<br>LT<br>31<br>75<br>148                          | TH 0 0 0 0 0                             | RT<br>13<br>33<br>64             | Crossing Main<br>Road  0 0 0                    |
| e What is the  Hour Ending  7:00  8:00  9:00  10:00                | eight hour  Main E  LT  4  10  19  13             | astbound Ap TH 139 337 660 449                                              | proach RT 4 9 18 12                  | Minor No<br>LT<br>3<br>8<br>16<br>11             | O' (Please fill orthbound A' TH 0 0 0 0 0 0                         | Approach RT 9 22 43 29        | Main W LT 7 18 35 24                      | estbound Ap<br>TH<br>147<br>358<br>701<br>477                        | 9<br>23<br>45<br>31               | Minor So<br>LT<br>31<br>75<br>148<br>101                   | TH 0 0 0 0 0 0 0                         | RT<br>13<br>33<br>64<br>44       | Crossing Main<br>Road  0  0  0  0               |
| e What is the  Hour Ending  7:00 8:00 9:00 10:00 16:00             | eight hour  Main E:  LT  4  10  19  13  44        | vehicle volu<br>astbound Ap<br>TH<br>139<br>337<br>660<br>449<br>579        | proach RT 4 9 18 12 10               | Minor No.  LT  3 8 16 11                         | O' (Please fill orthbound A' TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Approach RT 9 22 43 29 19     | Main W<br>LT<br>7<br>18<br>35<br>24<br>25 | estbound App<br>TH<br>147<br>358<br>701<br>477<br>741                | 9<br>23<br>45<br>31<br>103        | Minor So<br>LT<br>31<br>75<br>148<br>101<br>61             | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT<br>13<br>33<br>64<br>44<br>26 | Crossing Main Road  0 0 0 0 0 0 0               |
| e What is the  Hour Ending  7:00 8:00 9:00 10:00 16:00 17:00       | eight hour  Main E  LT  4  10  19  13  44  58     | vehicle volu<br>astbound Ap<br>TH<br>139<br>337<br>660<br>449<br>579<br>775 | proach  RT  4  9  18  12  10  13     | Minor No.  LT  3 8 16 11 10 13                   | Orthbound A TH 0 0 0 0 0 0 0 0 0                                    | Approach RT 9 22 43 29 19 25  | Main W. LT 7 18 35 24 25 34               | estbound App TH 147 358 701 477 741 991                              | 9<br>23<br>45<br>31<br>103<br>138 | Minor So<br>LT<br>31<br>75<br>148<br>101<br>61<br>82       | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT 13 33 64 44 26 35             | Crossing Main Road  0 0 0 0 0 0 0 0 0 0         |
| e What is the  Hour Ending  7:00 8:00 9:00 10:00 16:00 17:00 18:00 | eight hour  Main E  LT  4  10  19  13  44  58  59 | vehicle volu<br>astbound Ap  TH  139  337  660  449  579  775  783          | proach  RT  4  9  18  12  10  13  13 | Minor No<br>LT<br>3<br>8<br>16<br>11<br>10<br>13 | O (Please fill orthbound A TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Approach RT 9 22 43 29 19 25  | Main W LT 7 18 35 24 25 34 34             | estbound Ap<br>TH<br>147<br>358<br>701<br>477<br>741<br>991<br>1,001 | 9<br>23<br>45<br>31<br>103<br>138 | Minor So<br>LT<br>31<br>75<br>148<br>101<br>61<br>82<br>83 | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT 13 33 64 44 26 35 35          | Crossing Main Road  0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

#### **Justification 5: Collision Experience**

| Preceding<br>Months | Number of Collisions* |
|---------------------|-----------------------|
| 1-12                | 0                     |
| 13-24               | 0                     |
| 25-36               | 0                     |

<sup>\*</sup> Include only collisions that are susceptable to correction through the installation of traffic signal control

#### **Justification 6: Pedestrian Volume**

 a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                       | Zoi        | ne 1       | Zo       | ne 2       | Zone 3 (if | needed)    | Zone 4 ( | if needed) | Total |
|---------------------------------------|------------|------------|----------|------------|------------|------------|----------|------------|-------|
|                                       | Assisted   | Unassisted | Assisted | Unassisted | Assisted   | Unassisted | Assisted | Unassisted | Iotai |
| Total 8 hour pedestrian volume        | 0          | 0          | 0        | 0          | 0          | 0          | 0        | 0          |       |
| Factored 8 hour pedestrian volume     |            | 0          |          | 0          | 0          |            |          | 0          |       |
| % Assigned to crossing rate           | 23         | 3%         | 3        | 4%         | 30         | %          | 10       | 00%        |       |
| Net 8 Hour Pedestrian Volume at Cross | sing       |            |          |            |            |            |          |            | 0     |
| Net 8 Hour Vehicular Volume on Street | Being Cros | sed        |          |            |            |            |          |            | 2,000 |

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                                          | Zoi      | ne 1       | Zo       | ne 2       | Zone 3 (i | f needed)  | Zone 4 ( | if needed) | Total |
|----------------------------------------------------------|----------|------------|----------|------------|-----------|------------|----------|------------|-------|
|                                                          | Assisted | Unassisted | Assisted | Unassisted | Assisted  | Unassisted | Assisted | Unassisted | Total |
| Total 8 hour pedestrian volume                           | 0        | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Total 8 hour pedestrians delayed greater than 10 seconds | 0        | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Factored volume of total pedestrians                     |          | 0          |          | 0          |           | 0          |          | 0          |       |
| Factored volume of delayed pedestrians                   |          | 0          |          | 0          |           | 0          |          | 0          |       |
| % Assigned to Crossing Rate                              | 23       | 3%         | 3.       | 4%         | 30        | 0%         | 10       | 00%        |       |
| Net 8 Hour Volume of Total Pedestrians                   | S        |            |          |            |           |            |          |            | 0     |
| Net 8 Hour Volume of Delayed Pedestri                    | ans      |            |          |            |           |            |          |            | 0     |

#### **Justification 1: Minimum Vehicle Volumes**

#### **Free Flow Rural Conditions**

| Justification     | Gu                                | idance Ap      | proach Lane | es                               |                   |      |       | Total   | Section    |             |       |          |        |         |
|-------------------|-----------------------------------|----------------|-------------|----------------------------------|-------------------|------|-------|---------|------------|-------------|-------|----------|--------|---------|
| dustilication     | 1 La                              | nes            | 2 or Mor    | e Lanes                          |                   |      |       | Hour En | ding       |             |       |          | Across | Percent |
| Flow<br>Condition | FREE FLOW                         | RESTR.<br>FLOW | FREE FLOW   | RESTR.<br>FLOW                   | 7:00              | 8:00 | 9:00  | 10:00   | 16:00      | 17:00       | 18:00 | 19:00    |        |         |
| 1A                | 480                               | 720            | 600         | 900                              | 367               | 892  | 1,749 | 1,189   | 1,617      | 2,163       | 2,185 | 1,595    |        |         |
| , in              |                                   | COMPL          | IANCE %     |                                  | 77                | 100  | 100   | 100     | 100        | 100 100 100 |       |          | 777    | 97      |
| 1B                | 120                               | 170            | 120         | 170                              | 57                | 138  | 271   | 184     | 115        | 154         | 156   | 114      |        |         |
| 16                |                                   | COMPL          | IANCE %     |                                  | 47 100 100 100 96 |      |       |         |            | 100         | 100   | 95       | 739    | 92      |
|                   | Free Flow Signal Justification 1: |                |             | Both 1A and 1I<br>Lesser of 1A o |                   |      |       | ırs     | Yes<br>Yes |             |       | <b>V</b> |        |         |

#### **Justification 2: Delay to Cross Traffic**

#### Free Flow Rural Conditions

| luctification     | Guidance Approach Lanes           |                |           |                 |                                                        |               |               | Percentage | Warrant |       |       |       | Total  | Section |
|-------------------|-----------------------------------|----------------|-----------|-----------------|--------------------------------------------------------|---------------|---------------|------------|---------|-------|-------|-------|--------|---------|
| Justilication     | 1 la                              | nes            | 2 or Mor  | e lanes         |                                                        |               |               | Hour En    | ding    |       |       |       | Across | Percent |
| Flow<br>Condition | FREE FLOW                         | RESTR.<br>FLOW | FREE FLOW | RESTR.<br>FLOW  | 7:00                                                   | 8:00          | 9:00          | 10:00      | 16:00   | 17:00 | 18:00 | 19:00 |        |         |
| 2A                | 480                               | 720            | 600       | 900             | 310                                                    | 754           | 1,478         | 1,005      | 1,501   | 2,009 | 2,029 | 1,481 |        |         |
| ZA                |                                   | COMPL          | IANCE %   |                 | 65                                                     | 100           | 100           | 100        | 100     | 100   | 100   | 100   | 765    | 96      |
| 2B                | 50                                | 75             | 50        | 75              | 34                                                     | 84            | 164           | 112        | 71      | 95    | 96    | 70    |        |         |
| 26                |                                   | COMPL          | IANCE %   |                 | 69                                                     | 100           | 100           | 100        | 100     | 100   | 100   | 100   | 769    | 96      |
|                   | Free Flow                         |                |           |                 | Both 2A and 2B 100% Fullfilled each of 8 hours Yes No. |               |               |            |         |       |       |       | ~      |         |
|                   | Free Flow Signal Justification 2: |                |           | Lesser of 2A or | r 2B at least                                          | 80% fulfilled | each of 8 hou | ırs        | Yes     |       |       |       |        |         |

#### **Justification 3: Combination**

#### Combination Justification 1 and 2

|                 | Justification Satisfied 80% or Mo | Two Justifications<br>Satisfied 80% or More |      |           |      |  |
|-----------------|-----------------------------------|---------------------------------------------|------|-----------|------|--|
| Justification 1 | Minimun Vehicular Volume          | YES 🔽                                       | NO 🗆 | YES 🔽     | NO 🗆 |  |
| Justification 2 | Delay Cross Traffic               | YES 🔽                                       | NO 🗆 | JUSTIFIED |      |  |

#### **Justification 4: Four Hour Volume**

| Justification   | Time Period | Total Volume of Both<br>Approaches (Main) | Heaviest Minor Approach | Required Value        | Average % Compliance | Overall %<br>Compliance |
|-----------------|-------------|-------------------------------------------|-------------------------|-----------------------|----------------------|-------------------------|
| _               |             | ^                                         | Y (actual)              | Y (warrant threshold) |                      |                         |
|                 | 16:00       | 1,501                                     | 87                      | 80                    | 100 %                |                         |
| Justification 4 | 17:00       | 2,009                                     | 117                     | 80                    | 100 %                | 100 %                   |
| oustilication 4 | 18:00       | 2,029                                     | 118                     | 80                    | 100 %                | 100 /6                  |
|                 | 19:00       | 1,481                                     | 86                      | 80                    | 100 %                |                         |

| Results              | Sh    | neet                    | <u>I</u> nput Sheet | Analysi   | s Sheet       | Propo     |
|----------------------|-------|-------------------------|---------------------|-----------|---------------|-----------|
| Intersection: H      | wy 2  | 26 and Silver Glen Blvc | i                   | Count Dat | te: Future To | tal 2030  |
| Summary F            | les   | ults                    |                     |           |               |           |
|                      | lust  | tification              | Complian            | ce        |               | ustified? |
| 1. Minimum           |       |                         |                     |           | YES           | NO        |
| Vehicular            | Α     |                         | 97                  | %         |               | V         |
| Volume               | В     | Crossing Volume         | 92                  | %         |               |           |
| 2. Delay to<br>Cross | A     | Main Road               | 96                  | %         |               | V         |
| Traffic              | В     | Crossing Road           | 96                  | %         |               | •         |
| 3. Combination       | Α     | Justificaton 1          | 92                  | %         | <b>V</b>      |           |
|                      | В     | Justification 2         | 96                  | %         |               |           |
| 4. 4-Hr Volume       |       |                         | 100                 | %         | ~             |           |
|                      |       |                         |                     |           |               |           |
| 5. Collision Expe    | rienc | ce                      | 0                   | %         |               | ☑         |

**~** 

Justification not met

Justification not met

6. Pedestrians

A Volume

B Delay

| <b>Input Dat</b>                                                   | a Shee                                             | et                                                                                 |                                       | Analysis                             | Sheet                                                           | Results 9                              | Sheet                                            | Proposed                                                       | d Collision                              |                                                            | ) Justificati                            | on:                     |                                               |
|--------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|------------------------------------------|-------------------------|-----------------------------------------------|
| What are the int                                                   | tersecting r                                       | oadways?                                                                           | Hv                                    | wy 26 and S                          | ilver Glen E                                                    | Blvd                                   |                                                  |                                                                |                                          |                                                            |                                          |                         | <b>-</b>                                      |
| What is the dire                                                   | ction of the                                       | Main Road                                                                          | street?                               | Eas                                  | st-West                                                         | •                                      | When was                                         | the data colle                                                 | ected?                                   | Future Tota                                                | 1 2035                                   |                         |                                               |
|                                                                    |                                                    |                                                                                    |                                       |                                      |                                                                 |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
| Justification                                                      | 1 - 4: Vo                                          | olume Wa                                                                           | rrants                                |                                      |                                                                 |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
| a Number of la                                                     | anes on the                                        | e Main Road                                                                        | d?                                    | 1                                    | •                                                               |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
| b Number of la                                                     | anes on the                                        | e Minor Roa                                                                        | ıd?                                   | 1                                    | ▼                                                               |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
| c How many a                                                       | approaches                                         | ? 4                                                                                | •                                     |                                      |                                                                 |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
|                                                                    |                                                    | ,                                                                                  |                                       |                                      |                                                                 |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
|                                                                    |                                                    |                                                                                    |                                       | Downst                               | 1                                                               |                                        |                                                  |                                                                |                                          |                                                            |                                          |                         |                                               |
| d What is the                                                      | operating e                                        | environment                                                                        | 1?                                    | Rural                                | •                                                               | Popul                                  | ation < 10,000                                   | AND                                                            | Speed >= 7                               | ) km/hr                                                    |                                          |                         |                                               |
| <ul><li>d What is the</li><li>e What is the</li></ul>              |                                                    |                                                                                    |                                       |                                      |                                                                 |                                        |                                                  | AND                                                            | Speed >= 7                               | ) km/hr                                                    |                                          |                         |                                               |
| e What is the                                                      | eight hour                                         |                                                                                    | ıme at the i                          | ntersection?                         |                                                                 | II in table bel                        | low)                                             | AND                                                            |                                          |                                                            | outhbound A                              | Approach                | Pedestrians                                   |
|                                                                    | eight hour                                         | vehicle volu                                                                       | ıme at the i                          | ntersection?                         | ' (Please fi                                                    | II in table bel                        | low)                                             |                                                                |                                          |                                                            | uthbound <i>f</i>                        | Approach<br>RT          | Pedestrians Crossing Main Road                |
| e What is the                                                      | eight hour                                         | vehicle volu                                                                       | me at the i                           | ntersection?                         | ' (Please fi                                                    | II in table bel                        | ow) Main W                                       | estbound App                                                   | proach                                   | Minor So                                                   |                                          |                         | Crossing Main                                 |
| e What is the                                                      | eight hour  Main Ea                                | vehicle volu<br>astbound Ap<br>TH                                                  | me at the i                           | ntersection?  Minor No               | P (Please fi<br>orthbound A                                     | II in table be<br>Approach<br>RT       | Main W                                           | estbound App                                                   | proach<br>RT                             | Minor So                                                   | TH                                       | RT                      | Crossing Main<br>Road                         |
| e What is the Hour Ending 7:00                                     | eight hour  Main Ea  LT  4                         | vehicle volu<br>astbound Ap<br>TH<br>149                                           | proach RT                             | Minor No                             | P (Please file)  Orthbound A  TH  0                             | Il in table be<br>Approach<br>RT<br>10 | Main Wo                                          | estbound App<br>TH<br>159                                      | proach<br>RT<br>9                        | Minor So<br>LT<br>31                                       | <b>TH</b> 0                              | RT<br>13                | Crossing Main<br>Road                         |
| e What is the Hour Ending 7:00 8:00                                | eight hour  Main Ea  LT  4  10                     | vehicle volu<br>astbound Ap<br>TH<br>149<br>363                                    | proach RT 4 10                        | Minor No                             | P (Please fi                                                    | Approach RT 10 23                      | Main Wo                                          | TH<br>159<br>385                                               | proach RT 9 23                           | Minor So<br>LT<br>31<br>75                                 | TH<br>0<br>0                             | RT 13 33                | Crossing Main<br>Road<br>0                    |
| e What is the  Hour Ending  7:00  8:00  9:00                       | eight hour  Main Ea  LT  4  10  19                 | astbound Ap TH 149 363 711                                                         | proach  RT  4  10  19                 | Minor No LT 4 9 17                   | TH 0 0                                                          | Approach RT 10 23 46                   | Main Wo LT 8 19 38                               | 25tbound App<br>TH<br>159<br>385<br>755                        | 9 23 45                                  | Minor So<br>LT<br>31<br>75<br>148                          | TH<br>0<br>0<br>0                        | RT<br>13<br>33<br>64    | Crossing Main<br>Road<br>0<br>0               |
| e What is the  Hour Ending  7:00  8:00  9:00  10:00                | eight hour  Main Ea  LT  4  10  19  13             | astbound Ap TH 149 363 711 483                                                     | proach RT 4 10 19 13                  | Minor No<br>LT<br>4<br>9<br>17       | O' (Please fi<br>prthbound A<br>TH<br>0<br>0<br>0<br>0          | Approach RT 10 23 46 31                | Main Wo                                          | ### ##################################                         | 9 23 45 31                               | Minor So<br>LT<br>31<br>75<br>148<br>101                   | TH 0 0 0 0 0 0 0                         | RT 13 33 64 44          | Crossing Main<br>Road<br>0<br>0<br>0          |
| e What is the  Hour Ending  7:00  8:00  9:00  10:00  16:00         | eight hour  Main Ea  LT  4  10  19  13  44         | vehicle volu<br>astbound Ap<br>TH<br>149<br>363<br>711<br>483<br>625               | proach RT 4 10 19 13 10               | Minor No<br>LT<br>4<br>9<br>17<br>12 | O (Please fi<br>Orthbound A<br>TH  0  0  0  0  0                | Approach RT 10 23 46 31 20             | Main Wo                                          | 25tbound App<br>TH<br>159<br>385<br>755<br>513<br>798          | 9<br>23<br>45<br>31<br>103               | Minor So<br>LT<br>31<br>75<br>148<br>101<br>61             | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT 13 33 64 44 26       | Crossing Main<br>Road<br>0<br>0<br>0<br>0     |
| e What is the  Hour Ending  7:00 8:00 9:00 10:00 16:00 17:00       | eight hour  Main Ea  LT  4  10  19  13  44  58     | vehicle volue<br>astbound Ap<br>TH<br>149<br>363<br>711<br>483<br>625<br>836       | Proach  RT  4  10  19  13  10  14     | Minor No.  LT  4  9 17 12 10 14      | O' (Please fi<br>orthbound A<br>TH<br>0<br>0<br>0<br>0<br>0     | Approach RT 10 23 46 31 20 27          | Main Wo<br>LT<br>8<br>19<br>38<br>26<br>27<br>36 | estbound App<br>TH<br>159<br>385<br>755<br>513<br>798<br>1,067 | 9<br>23<br>45<br>31<br>103<br>138        | Minor So<br>LT<br>31<br>75<br>148<br>101<br>61<br>82       | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT 13 33 64 44 26 35    | Crossing Main Road  0 0 0 0 0 0 0 0 0 0 0     |
| e What is the  Hour Ending  7:00 8:00 9:00 10:00 16:00 17:00 18:00 | eight hour  Main Ea  LT  4  10  19  13  44  58  59 | vehicle volu<br>astbound Ap<br>TH<br>149<br>363<br>711<br>483<br>625<br>836<br>844 | Proach  RT  4  10  19  13  10  14  14 | Minor No. LT 4 9 17 12 10 14 14      | P (Please fi<br>orthbound A<br>TH<br>0<br>0<br>0<br>0<br>0<br>0 | Approach  RT  10 23 46 31 20 27 27     | Main W. LT  8 19 38 26 27 36 36                  | ### ##################################                         | 9<br>23<br>45<br>31<br>103<br>138<br>139 | Minor So<br>LT<br>31<br>75<br>148<br>101<br>61<br>82<br>83 | TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RT 13 33 64 44 26 35 35 | Crossing Main Road  0 0 0 0 0 0 0 0 0 0 0 0 0 |

#### **Justification 5: Collision Experience**

| Preceding<br>Months | Number of Collisions* |
|---------------------|-----------------------|
| 1-12                | 0                     |
| 13-24               | 0                     |
| 25-36               | 0                     |

<sup>\*</sup> Include only collisions that are susceptable to correction through the installation of traffic signal control

#### **Justification 6: Pedestrian Volume**

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                       | Zoi        | ne 1       | Zo       | ne 2       | Zone 3 (i | f needed)  | Zone 4 ( | if needed) | Total |
|---------------------------------------|------------|------------|----------|------------|-----------|------------|----------|------------|-------|
|                                       | Assisted   | Unassisted | Assisted | Unassisted | Assisted  | Unassisted | Assisted | Unassisted | iotai |
| Total 8 hour pedestrian volume        | 0          | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Factored 8 hour pedestrian volume     |            | 0          |          | 0          | (         | 0          |          | 0          |       |
| % Assigned to crossing rate           | 23         | 3%         | 3        | 4%         | 30        | )%         | 10       | 00%        |       |
| Net 8 Hour Pedestrian Volume at Cross | sing       |            |          |            |           |            |          |            | 0     |
| Net 8 Hour Vehicular Volume on Street | Being Cros | sed        |          |            |           |            |          |            | 2,000 |

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                                          | Zoi      | ne 1       | Zo       | ne 2       | Zone 3 (i | f needed)  | Zone 4 ( | Total      |       |
|----------------------------------------------------------|----------|------------|----------|------------|-----------|------------|----------|------------|-------|
|                                                          | Assisted | Unassisted | Assisted | Unassisted | Assisted  | Unassisted | Assisted | Unassisted | iotai |
| Total 8 hour pedestrian volume                           | 0        | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Total 8 hour pedestrians delayed greater than 10 seconds | 0        | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Factored volume of total pedestrians                     |          | 0          |          | 0          |           | 0          |          | 0          |       |
| Factored volume of delayed pedestrians                   |          | 0          |          | 0          |           | 0          |          | 0          |       |
| % Assigned to Crossing Rate                              | 23       | 3%         | 3        | 4%         | 30        | )%         | 10       | 00%        |       |
| Net 8 Hour Volume of Total Pedestrians                   | S        |            |          |            |           |            |          |            | 0     |
| Net 8 Hour Volume of Delayed Pedestri                    | ans      |            |          |            |           |            |          |            | 0     |

#### **Justification 1: Minimum Vehicle Volumes**

#### **Free Flow Rural Conditions**

| Justification     |                                      |                | es        |                |                 |                                                      | Percentage   | Warrant |       |             |       | Total | Section |         |
|-------------------|--------------------------------------|----------------|-----------|----------------|-----------------|------------------------------------------------------|--------------|---------|-------|-------------|-------|-------|---------|---------|
| Justilication     | 1 La                                 | nes            | 2 or Mor  | e Lanes        |                 |                                                      |              | Hour Er | nding |             |       |       | Across  | Percent |
| Flow<br>Condition | FREE FLOW                            | RESTR.<br>FLOW | FREE FLOW | RESTR.<br>FLOW | 7:00            | 8:00                                                 | 9:00         | 10:00   | 16:00 | 17:00       | 18:00 | 19:00 |         |         |
|                   | ~                                    |                |           |                |                 |                                                      |              |         |       |             |       |       |         |         |
| 1A                | 480                                  | 720            | 600       | 900            | 391             | 950                                                  | 1,862        | 1,266   | 1,723 | 2,306       | 2,329 | 1,700 |         |         |
| IA .              |                                      | COMPL          | IANCE %   |                | 81              | 100                                                  | 100          | 100     | 100   | 100 100 100 |       |       | 781     | 98      |
| 1B                | 120                                  | 170            | 120       | 170            | 58              | 140                                                  | 275          | 187     | 118   | 157         | 159   | 116   |         |         |
| IB.               |                                      | COMPL          | IANCE %   |                | 48              | 100                                                  | 100          | 100     | 98    | 100         | 100   | 97    | 743     | 93      |
|                   | Free Flow                            |                |           |                | Both 1A and 1   | Both 1A and 1B 100% Fullfilled each of 8 hours Yes N |              |         |       |             |       |       |         |         |
|                   | Free Flow<br>Signal Justification 1: |                |           | Lesser of 1A o | r 1B at least 8 | 30% fulfilled                                        | each of 8 ho | urs     | Yes   | ~           | No    |       |         |         |

#### **Justification 2: Delay to Cross Traffic**

#### Free Flow Rural Conditions

| Justification     | Gı                                | uidance Ap     | proach Lane | es             |                    |                                                        |               | Percentage    | Warrant |       |          |       | Total  | Section |
|-------------------|-----------------------------------|----------------|-------------|----------------|--------------------|--------------------------------------------------------|---------------|---------------|---------|-------|----------|-------|--------|---------|
| Justilication     | 1 la                              | nes            | 2 or Mor    | e lanes        |                    |                                                        |               | Hour En       | ding    |       |          |       | Across | Percent |
| Flow<br>Condition | FREE FLOW                         | RESTR.<br>FLOW | FREE FLOW   | RESTR.<br>FLOW | 7:00               | 8:00                                                   | 9:00          | 10:00         | 16:00   | 17:00 | 18:00    | 19:00 |        |         |
| 2A                | 480                               | 720            | 600         | 900            | 333                | 809                                                    | 1,587         | 1,079         | 1,606   | 2,148 | 2,170    | 1,584 |        |         |
| ZA                |                                   | COMPL          | IANCE %     |                | 69                 | 100                                                    | 100           | 100           | 100     | 100   | 100      | 100   | 769    | 96      |
| 2B                | 50                                | 75             | 50          | 75             | 35                 | 84                                                     | 165           | 112           | 72      | 96    | 97       | 71    |        |         |
| 26                |                                   | COMPL          | IANCE %     |                | 69 100 100 100 100 |                                                        |               |               |         | 100   | 100      | 100   | 769    | 96      |
|                   | Free Flow                         |                |             |                | Both 2A and 2I     | Both 2A and 2B 100% Fullfilled each of 8 hours Yes No. |               |               |         |       |          |       | ~      |         |
|                   | Free Flow Signal Justification 2: |                |             |                | Lesser of 2A o     | r 2B at least 8                                        | 30% fulfilled | each of 8 hou | ırs     | Yes   | Yes V No |       |        |         |

#### **Justification 3: Combination**

#### Combination Justification 1 and 2

|                 | Justification Satisfied 80% or Mo | re    |      |           | ifications<br>0% or More |
|-----------------|-----------------------------------|-------|------|-----------|--------------------------|
| Justification 1 | Minimun Vehicular Volume          | YES 🔽 | NO 🗆 | YES 🔽     | NO 🗆                     |
| Justification 2 | Delay Cross Traffic               | YES 🔽 | NO 🗆 | JUSTIFIED |                          |

#### **Justification 4: Four Hour Volume**

| Justification   | Time Period | Total Volume of Both<br>Approaches (Main) | Heaviest Minor<br>Approach | Required Value        | Average % Compliance | Overall % |  |
|-----------------|-------------|-------------------------------------------|----------------------------|-----------------------|----------------------|-----------|--|
|                 |             | X                                         | Y (actual)                 | Y (warrant threshold) |                      | ·         |  |
|                 | 9:00        | 1,587                                     | 212                        | 80                    | 100 %                |           |  |
| luctification 4 | 16:00       | 1,606                                     | 87                         | 80                    | 100 %                | 100 %     |  |
| Justilication 4 | 17:00       | 2,148                                     | 117                        | 80                    | 100 %                | 100 %     |  |
|                 | 18:00       | 2,170                                     | 118                        | 80                    | 100 %                |           |  |

| Results                 | Sh    | eet                     | Input Sheet | Ana   | lysis Sheet      | Propo    |
|-------------------------|-------|-------------------------|-------------|-------|------------------|----------|
| Intersection: H         | wy 2  | 26 and Silver Glen Blvd | l           | Count | Date: Future Tot | al 2035  |
| Summary F               | Res   | ults                    |             |       |                  |          |
|                         | Just  | ification               | Compliano   | ce    | Signal Ju        |          |
|                         |       |                         |             |       | YES              | NO       |
| 1. Minimum<br>Vehicular | A     | Total Volume            | 98          | %     |                  | ~        |
| Volume                  | В     | Crossing Volume         | 93          | %     |                  |          |
| 2. Delay to<br>Cross    | Α     | Main Road               | 96          | %     |                  | <b>V</b> |
| Traffic                 | В     | Crossing Road           | 96          | %     |                  |          |
| 3. Combination          | Α     | Justificaton 1          | 93          | %     | V                |          |
|                         | В     | Justification 2         | 96          | %     |                  | _        |
| 4. 4-Hr Volume          |       |                         | 100         | %     | ✓                |          |
|                         |       |                         |             |       |                  |          |
| 5. Collision Expe       | rienc | ce                      | 0           | %     | □                | ~        |

**~** 

Justification not met

Justification not met

6. Pedestrians

A Volume

B Delay

# APPENDIX I TAC GDGCR Excerpts



Auxiliary lanes, at an intersection, serve as storage lanes, deceleration lanes, or a combination of the two. They can be used to minimize hazard and inconvenience, to increase capacity, and to promote operating efficiency where vehicles exit or enter the roadway. Acceleration lanes are seldom used along urban roads, except for freeways and expressways, and are commonly used for higher-speed rural roads. Added lanes on the departure legs of an intersection may be considered for capacity, access, or safety reasons.

Auxiliary lanes may be either left- or right-turn lanes adjacent to the through lanes and in the same direction of travel. Left-turn lanes can be added with or without divisional islands. A divisional island effectively provides a measure of protection for vehicles queued to make a left turn at an intersection, and can be used for the placement of traffic control devices and as a pedestrian refuge. In existing urban locations where right-of-way is limited or where opportunities for widening are restricted by adjacent development, it may not be possible to introduce a divisional island. The feasibility of an island may also be influenced by the access needs of the adjacent land uses.

## 9.14.2 GUIDELINES FOR THE APPLICATION OF RIGHT-TURN TAPER AND BAY TAPERS WITH AUXILIARY LANES

Right- and left-turn tapers are normally provided at all at-grade intersections along major roads and expressways. The consistent use of auxiliary lanes along major roads is often achieved through local policies related to classification, design speed, and volume warrants. Along minor arterials and collectors, the implementation of auxiliary turn lanes is considered on the basis of many factors, including speed, design volumes, right-of-way availability, collision potential, access locations, intersection spacing, cyclist and pedestrian needs, and implications on transit operation.

Right-turn tapers may be provided without auxiliary lanes on intersection approach legs to permit the right-turn movement at the intersection with less interference to the through traffic. Right-turn tapers normally connect to a separate right-turning roadway at a major channelized intersection.

Where it is desirable to flare an intersection to better accommodate the right-turn movement, it is generally preferable to incorporate a right-turn auxiliary lane as part of the design. The auxiliary lane serves to separate the through and right-turning traffic well in advance of the intersection, causes less deceleration of the turning traffic in the through lanes, and provides a storage area for turning vehicles stopped for pedestrians crossing the roadway on the green signal. Tapers without parallel lanes may also be a disadvantage to through cyclists in determining a safe travel path through the intersection.

The following guidelines are suggested for the use of a right-turn auxiliary lane on urban and rural roads. Refer to other publications, including the latest version of the TRB *Highway Capacity Manual*, for more detailed procedures on determining the need for tapers and auxiliary lanes.

#### Unsignalized:

• When the volume of decelerating or accelerating vehicles compared with the through traffic volume causes undue hazard.

#### Signalized:

- Right-turn lane without separate signal indication when the volume of right-turning traffic is 10% to 20% of the total approaching volume.
- Right-turn lane with separate indication when right-turn traffic is greater than 20% of the total approaching volume.



Right-turn taper lengths are a function of design speed and are calculated based on the ratios presented in **Table 9.14.1**. Lane widths (w) vary (see **Chapter 4**). Some agencies use reduced taper ratios in constrained urban environments where lower speeds are desired and where property constraints exist.

Table 9.14.1: Right-Turn Tapers without Auxiliary Lanes

| Design Speed (km/h)<br>(through roadway) | Taper Ratio | Taper Length for<br>w = 3.5 (m) | Horizontal Curve <sup>a</sup> (R) |
|------------------------------------------|-------------|---------------------------------|-----------------------------------|
| 50                                       | 15:1        | 53                              | 500                               |
| 60                                       | 18:1        | 63                              | 750                               |
| 70                                       | 21:1        | 74                              | 1,000                             |
| 80                                       | 24:1        | 84                              | 1,200                             |

Note: a) Flat radii as indicated can be used rather than tangent alignment for right-turn tapers.

The taper can be a straight line or a larger radius curve (see **Table 9.14.1** for suggested horizontal curve values); curves are typically used in an urban environment where curb and gutter is provided and straight tapers in a rural environment where curb and gutter is not used.

Shortened taper lengths may be considered for intersections on curve to provide a visible break from the through lanes. On high-speed roads, the taper length should generally conform to that discussed in **Chapter 10**.

occur exclusively within the auxiliary lane, although in an urban environment, deceleration (up to 15 km/h) over the bay taper is normally tolerable (especially in a peak-hour condition).

Suggested taper and parallel lengths are shown in **Table 9.14.2** and illustrated in **Figure 9.14.4**. Adjustments for intersections on curves are discussed in **Section 18.8**.

Table 9.14.2: Right-Turn Taper with Parallel Deceleration Lane Design

| Design Speed (km/h) | Taper Ratio <sup>a</sup><br>Design Domain | Radius for Reverse <sup>a</sup><br>Curves (m) | Parallel Lane Length <sup>b</sup><br>Design Domain |
|---------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| 50                  | 11:1-17:1                                 | 90-150                                        | 35-75                                              |
| 60                  | 14:1-17:1                                 | 150                                           | 40–90                                              |
| 70                  | 17:1-20:1                                 | 150-220                                       | 50-110                                             |
| 80°                 | 17:1-24:1                                 | 150-300                                       | 60-130                                             |

Notes:

- Taper may be straight line or may be symmetrical reverse curves; length is derived from design values calculated for a 3 s lane change criterion for the appropriate operating speed.
- b) Additional parallel lane length may be required for storage.
- c) For higher design speeds, refer to Chapter 10.



The tapers can be made smooth by using horizontal curves at the beginning and end of transitions. The radii of the horizontal curves typically vary from about 500 m for tapers at a design speed of 50 km/h, to 3,000 m for tapers at a design speed of 120 km/h.

Where space to develop tapers is limited, the taper length could also be based on running speed rather than design speed. Gradual approach and departure tapers are particularly important for the higher design speeds. It is also desirable to provide decision sight distance for the taper areas to enhance safe operation. Combinations of minimum sight distance and minimum taper ratios should be avoided.

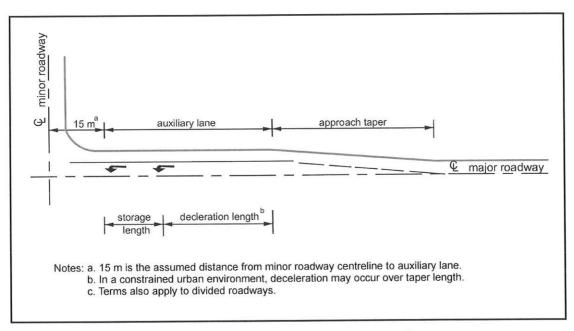



Figure 9.17.1: Left-Turn Lane, Pictorial Description of Terms

Table 9.17.1: Approach and Departure Taper Ratios and Lengths for Left Turns at Intersections

| Design Speed (km/h) | Design Domain for<br>Taper Ratio | Horizontal Curve to Smooth<br>Taper R (m) |
|---------------------|----------------------------------|-------------------------------------------|
| 50                  | 8:1 - 30:1                       | 500                                       |
| 60                  | 15:1 - 36:1                      | 750                                       |
| 70                  | 15:1 - 42:1                      | 1,000                                     |
| 80                  | 15:1 - 48:1                      | 1,200                                     |
| 90                  | 27:1 - 54:1                      | 1,500                                     |
| 100                 | 30:1 - 60:1                      | 2,000                                     |
| 110                 | 33:1 - 66:1                      | 2,500                                     |
| 120                 | 36:1 - 72:1                      | 3,000                                     |



Table 9.17.3: Bay Tapers Symmetrical Reverse Curves

| Design Speed<br>(km/h) | Taper Ratio<br>Design Domain | Radii (m) |
|------------------------|------------------------------|-----------|
| 50                     | 10:1                         | 90-150    |
| 60                     | 10:1-12:1                    | 150       |
| 70                     | 10:1-18:1                    | 150-220   |
| 80                     | 13:1-20:1                    | 150-300   |

Note:

For higher design speeds, the 80 km/h design speed dimensions are used and the storage length is increased to provide deceleration length.

#### 9.17.4.2 Deceleration Requirements

In the design of left-turn auxiliary lanes, it is important to consider the deceleration requirements. The minimum deceleration length is based on the distance needed for the driver to brake comfortably to come to a full stop at the intersection. Desirably, the distance needed for deceleration is provided by the auxiliary lane, exclusive of storage requirements. In urban conditions, it is often not feasible to provide both the deceleration distance and storage length due to other considerations, such as intersection spacing, access needs, and other physical controls. In these cases, the taper length may be used for deceleration distance. The deceleration distances for a range of speeds are provided in **Chapter 2**.

#### 9.17.4.3 Storage Length

The storage length is normally designed to accommodate not only left-turning vehicles. It is also made sufficiently long so that vehicles queued in the through lanes do not block the entrance to the turning lane. As a minimum, the auxiliary lane length should be determined by checking that the storage length plus the bay taper length is equal to the deceleration length required for the design speed. Ideally, however, storage length should be provided in addition to deceleration length.

The storage length required to accommodate the left-turning vehicles depends on the number of left-turning vehicles approaching the intersection and whether or not the intersection is, or will be, signalized.

For an unsignalized intersection, storage length can be calculated using the equation outlined in Section 9.14. If the intersection is to be signalized, either initially or in the future, the turn lane provided is normally sufficiently long to store the left-turning traffic and to clear the equivalent per-lane volume of traffic stored on the through lanes, during unsaturated flow conditions. Additional storage length must be provided for larger design vehicles. The minimum storage length that should be provided is 15 m (see Section 9.17.2).

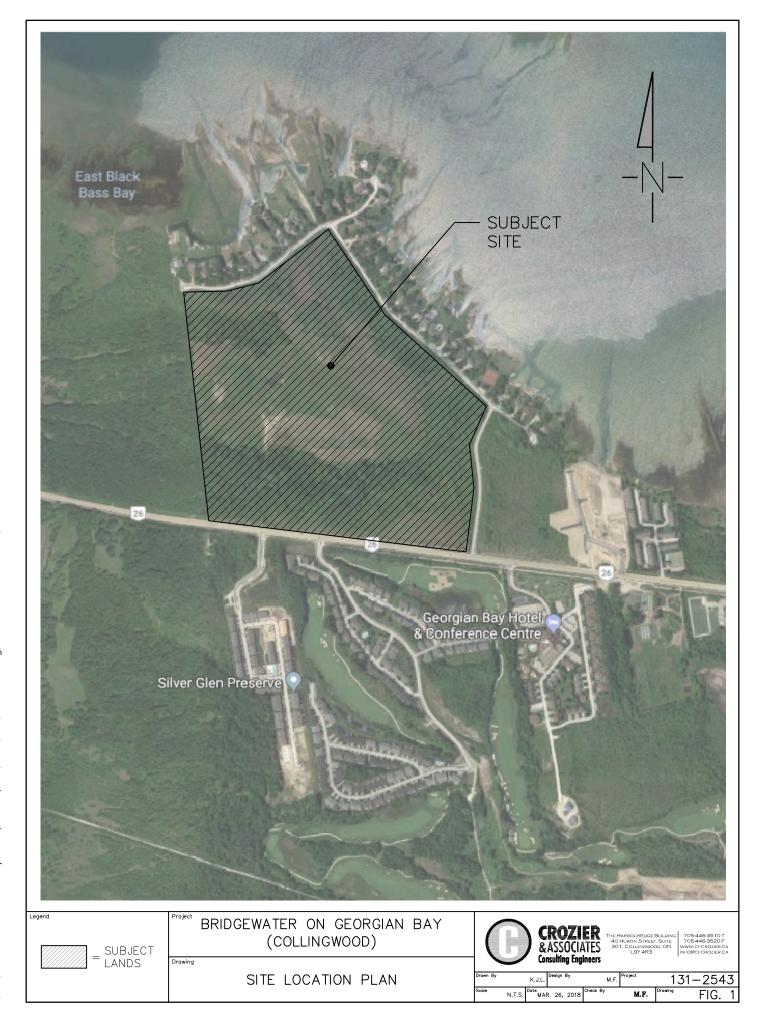
#### 9.17.4.4 Run-out Lane

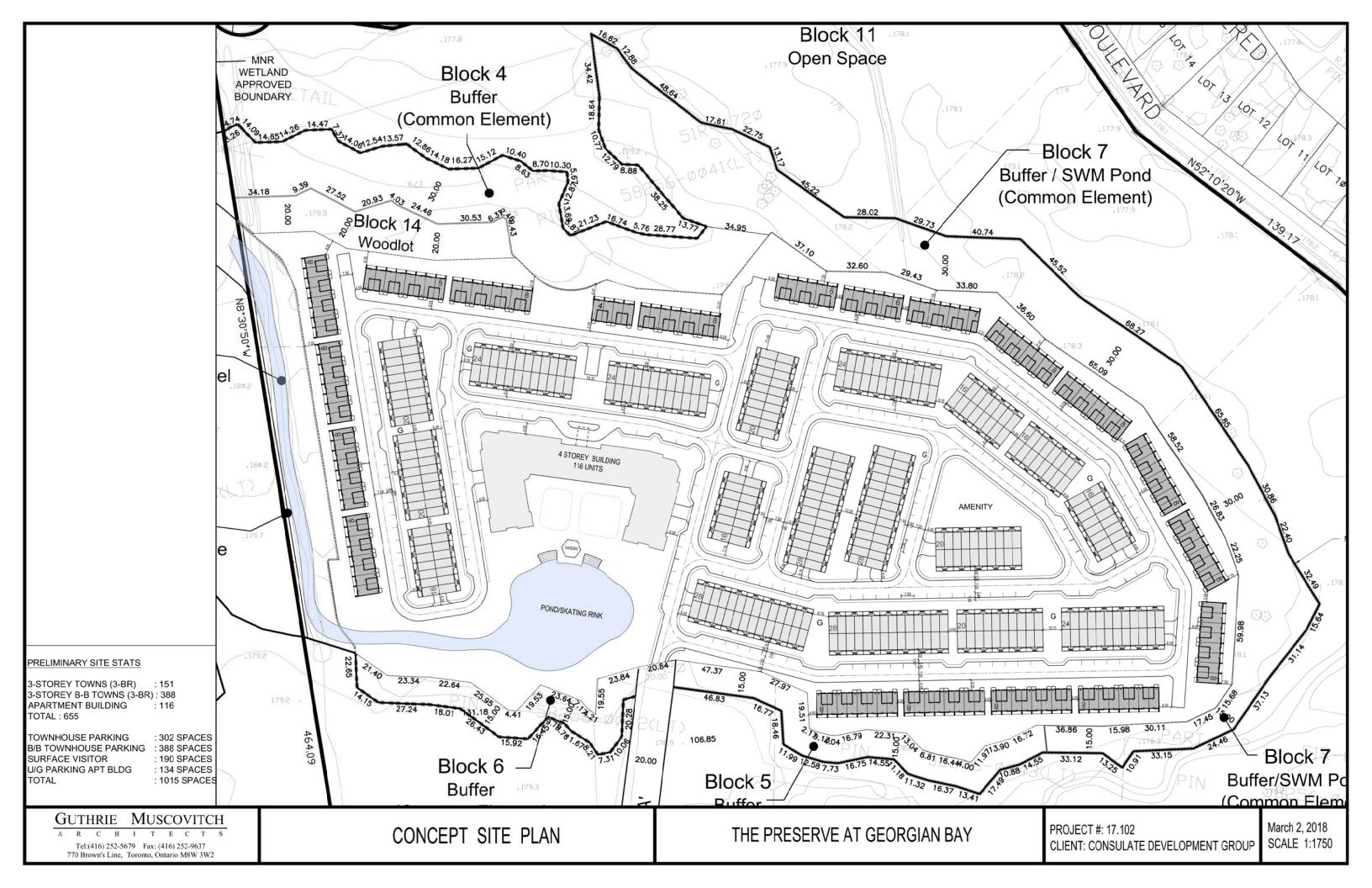
The run-out lane terminates the bypass lane on the far side of the intersection. The width of the parallel section of the run-out lane is the same as that of the bypass lane. The taper length varies with the design speed and is the same as that applied to the acceleration lane (see **Chapter 10**). The run-out lane is shown in **Figure 9.17.2** and **Figure 9.17.3**.

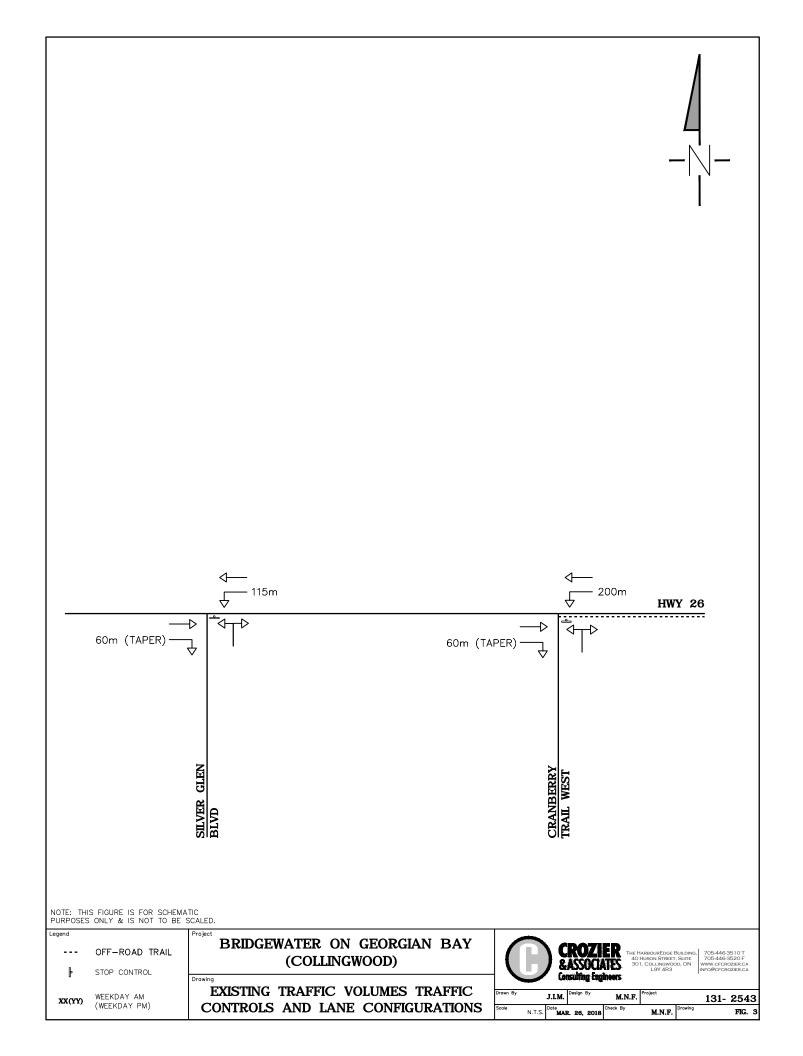
## **Figures**

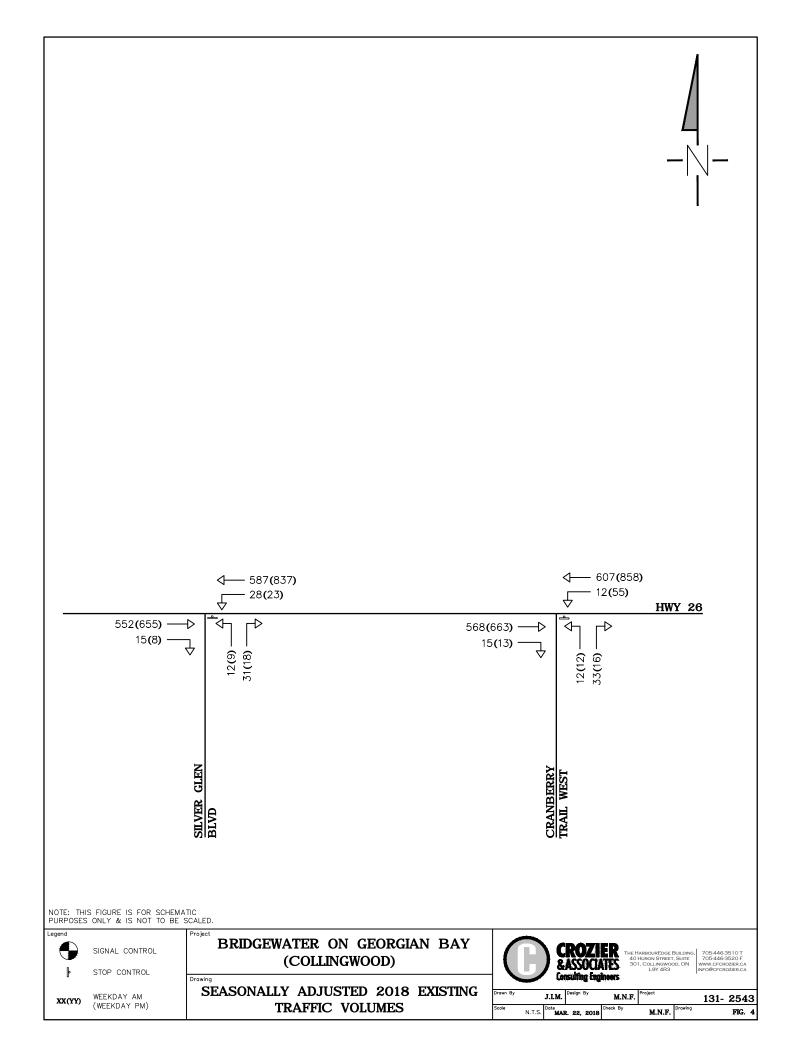
Figure 1: Site Location Plan

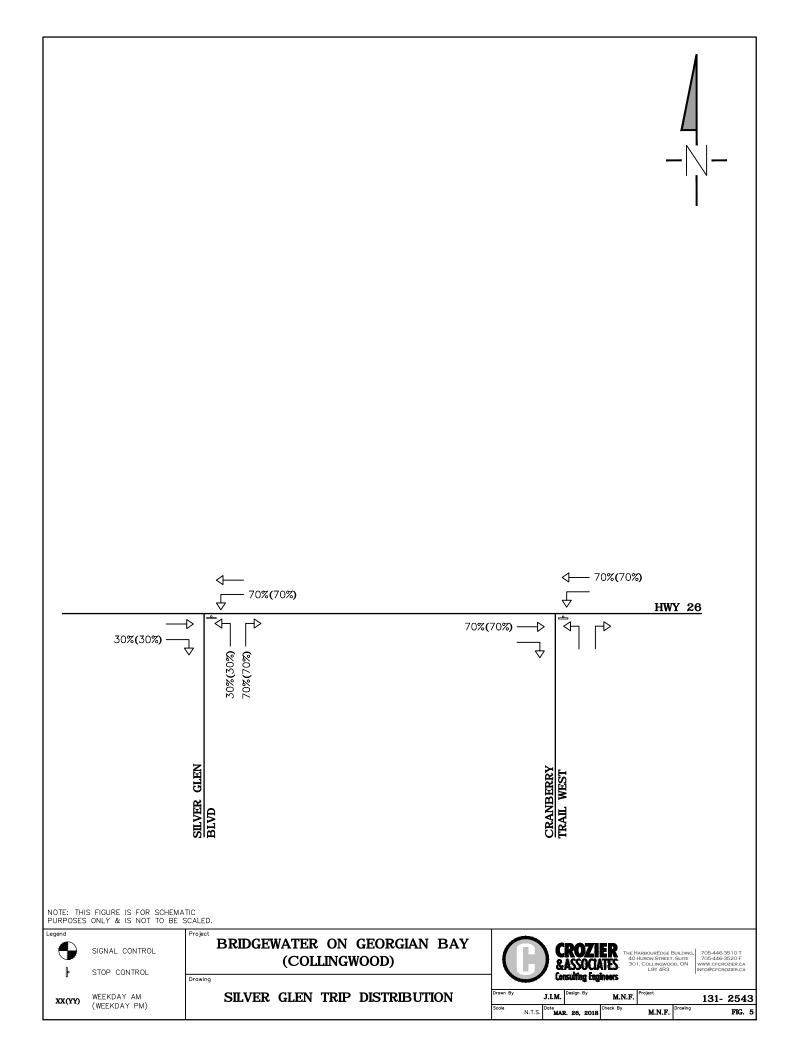
Figure 2: Site Plan


Figure 3: Existing Traffic Control and Lane Configurations
Figure 4: 2018 Seasonally Adjusted Existing Traffic Volumes


Figure 5: Silver Glen Trip Distribution
Figure 6: Silver Glen Trip Assignment


Figure 7: 2025 Future Background Traffic Volumes
Figure 8: 2030 Future Background Traffic Volumes
Figure 9: 2035 Future Background Traffic Volumes


Figure 10: Trip Distribution
Figure 11: Trip Assignment


Figure 12:2025 Future Total Traffic VolumesFigure 13:2030 Future Total Traffic VolumesFigure 14:2035 Future Total Traffic Volumes

