

Geotechnical Investigation **Proposed Commercial Development**

839 and 869 Hurontario Street, Collingwood, Ontario G2S21366C

Charis Developments Ltd. 186 Hurontario Street, Suite 204 Collingwood, Ontario L9Y 4T4 Attention: Steve Assaff, President

Table of Contents

1.	Introd	luction	1
2.	Site a	nd Project Overview	2
2.1	Site	Description	2
2.2	Prop	posed Development	2
3.	Invest	tigation Methodology	3
4.	Subsu	urface Conditions	4
4.1	Tops	soil	4
4.2	Fill		4
4.3	Uppe	er Clayey Silt	4
4.4	Silt		5
4.5	Lowe	er Clayey Silt	5
4.6	Silty	Sand Till/Sandy Silt Till	5
4.7	Grou	undwater Observations	6
5.	Geote	echnical Considerations	8
5.1	Site	Preparation	8
5.2		ndation Recommendations	
	5.2.1	Methodology	
	5.2.2	Strip and Spread Footing	9
	5.2.3	Helical Piles (Building C & Building D)	
5.3	Four	ndation Construction	12
5.4	Seis	mic Design Parameters	13
5.5	Floo	r Slab Considerations	13
5.6	Perir	meter Drainage	14
5.7		avations and Groundwater Control	
5.8		kfill Considerations	
5.9		erground Fuel Storage Tanks	
5.1		mwater Underground Storage Facility	
5.1		ement Considerations	
6.	Gener	ral Comments	20
7.	Limita	ations	21
8.	Closin	ng Remarks	22

Appendices

Drawings Borehole Logs Grain Size Analysis Graphs Plasticity Chart Appendix A: Appendix B:

1. Introduction

G2S Consulting Inc. (G2S) was retained by Charis Developments Ltd. (the Client) to complete a Geotechnical Investigation at 839 and 869 Hurontario Street in Collingwood, Ontario, hereinafter referred to as the 'Site'. Authorization to proceed with the Geotechnical Investigation was provided by Mr. Steve Assaff of Charis Developments Ltd.

It is understood that the proposed development will include the construction of a commercial development (the Gateway Centre – Option A-7), which will feature a gas station and five (5) slab-on-grade, single storey commercial buildings. The proposed development will also contain the associated parking areas and underground utilities. Copy of the current development plan is included in Drawing No. 1A in Appendix A.

The general location of the Site is shown on the Site Key Plan included on Drawing No. 1B in Appendix A. This geotechnical investigation was carried out as outlined in G2S' Proposal No. G2S21366, dated September 2, 2021.

2. Site and Project Overview

2.1 Site Description

The Site is an irregular shaped property (near square), comprising an approximate plan area of 2.7 hectares (6.75 acres) in size and is located on the northeast corner of Poplar Sideroad and Hurontario Street in Collingwood, Ontario. The Site is bound by Poplar Sideroad to the south, Hurontario Street to the west, residential development to the east, and a tributary to Pretty River to the north, followed by residential and commercial developments.

At the time of the investigation, the Site was vacant, undeveloped land. A gravel fill pad was noted in the centre portion of the Site. We understand that the granular pad was constructed of imported fill around December 2007/January 2008.

2.2 Proposed Development

It is understood that consideration is being given to constructing a commercial development consisting of two phases (Phase 1 & 2). Phase 1 comprises a gas bar at the southwest corner of the Site, and a total number of three (3) commercial buildings, Buildings A, B, and E, with building footprints of approximately 446 m² (4,800 ft²), 446 m² (4,800 ft²), and 204 m² (2200 ft²), respectively. All three buildings in Phase 1 will feature a single storey slab on grade structure. Phase 2 of the project will contain a 2 storey office building (Building C) with building footprint of approximately 2,044 m² (22,000 ft²), and a single storey slab on grade building (Building D) with building footprint of approximately 2,880 m² (31,000 ft²). It is further understood that the proposed development will also contain the associated parking areas, access road and underground utilities.

The purpose of this geotechnical investigation was to determine the subsurface conditions at twenty-three (23) borehole locations and to interpret these findings with respect to the design and construction of the underground services, foundations, and related earthworks for this project from a geotechnical point-of-view.

This report is based on the above summarized project description, and on the assumption that the design and construction will be performed in accordance with applicable codes and standards. Any significant deviations from the proposed project design may void the recommendations given in this report. If significant changes are made to the proposed design, then this office must be consulted to review the new design with respect to the results of this investigation. The information contained in this report does not reflect upon the environmental aspects of the Site and therefore it has not been addressed in this document.

3. Investigation Methodology

A total of twenty-three (23) sampled boreholes were advanced at the locations illustrated in the attached Drawing No. 1, Borehole and Monitoring Well Location Plan, in Appendix A. The borings were put down uncased using solid stem continuous flight auger equipment. The drilling and sampling operations were carried out under the direction and supervision of a G2S staff member. The boreholes were advanced to depths of between approximately 2.1 to 8.2 m below the existing grade. On completion of drilling, the boreholes were backfilled in general accordance with Ontario Regulation 903.

Representative samples of the subsoils were recovered from the borings at selected depth intervals using split barrel sampling equipment driven in accordance with the requirements of Standard Penetration Resistance Testing. After undergoing a general field examination, the soil samples were preserved in plastic bags and transported to the soil laboratory for visual, tactile, and olfactory classifications. Routine moisture content tests were performed on the recovered samples as well as grain size analysis and Atterberg Limits tests, which were performed on selective soil samples.

Details of the conditions encountered in the boreholes, together with the results of the field and laboratory tests, are presented in Borehole (BH) Logs BH101 to BH123, inclusive, included in Appendix B. It is noted that the boundaries of soil types indicated on the borehole logs are inferred from non-continuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design and therefore should not be construed as the exact plans of geological change.

Elevations at the ground surface of the borehole locations were interpolated from the provided Topographic Survey Plan entitled "Plans of Survey of Part of Lot 40 Concession 8 Geographic Township of Nottawasaga Now in the Town of Collingwood County of Simcoe", by J.D. Barnes, dated September 14, 2021. This topographic survey plan was later utilized to produce the Borehole and Monitoring Well Location Plan.

4. Subsurface Conditions

The subsurface soil conditions have been evaluated in the twenty-three (23) boreholes investigated by G2S at the Site for the purpose of this report. It should be considered that the subsurface conditions may not be consistent between and beyond the locations investigated at the Site. The soil descriptions outlined in the following stratigraphic summary are based on our interpretation of non-continuous samples of soil obtained from the boreholes.

The subsurface conditions encountered at the borehole locations are summarized as follows:

4.1 Topsoil

A surficial veneer of topsoil and organic material with thicknesses ranging between approximately 75 and 360 mm, was encountered in BH101, BH103 to BH108, BH113 to BH115, BH117, BH118, BH121, and BH122.

It should be noted that the depth of topsoil must be expected to vary across the Site, particularly in areas of mature trees, from the depths encountered at the borehole locations. If required, a more detailed analysis such as test pits can be carried out to accurately quantify the amount of topsoil to be removed for construction purposes. In this report the term "topsoil" has been used from a geotechnical point of view and does not necessarily reflect the suitability of the material to support plant growth. If it is to be used for landscaping or agricultural purposes, its suitability should be confirmed by tests on representative samples for organic and nutrient content and therefore its ability to support plant growth.

4.2 Fill

Fill material was encountered below the topsoil in BH101, BH103, BH104, BH106 to BH108, BH115, and BH118, and extended to depths ranging from approximately 0.8 and 1.2 mbeg (~Elev. 194.6 to 193.3 m). This layer of fill consisted generally of clayey silt and contained traces to interbedded layers of sand.

Granular fill material (sand and gravel) was contacted at the surface in BH102, BH109 to BH112, BH119, BH120, and BH123. The granular fill extended to depths ranged between 0.9 and 1.6 mbeg (~Elev. 194.9 and 194.0 m). The granular fill was generally brown in color and contained some cobble and boulder size particles. The lower portion of the granular fill was mixed with clayey silt in BH102 and BH109.

With moisture content ranging between 4.0 and 26%, the fill layer was found to be in moist to wet condition.

4.3 Upper Clayey Silt

Clayey silt was found beneath the fill in BH101 to BH104, BH106 to BH109, BH111, BH115, BH116, BH118 to BH120, BH122, and BH123, below the topsoil in BH105, BH113, BH114, BH117, BH121. The clayey silt deposit was found underlaying a silt deposit in BH110. The clayey silt extended to depths ranging between approximately 1.5 and 4.6 mbeg (~Elev. 193.9 and 191.3 m). BH116 to BH121, and BH123 were terminated in this deposit. The upper clayey silt was brown to grey in color and contained traces of sand. With "N" values ranging from 1 to 18 blows per 300 mm of penetration, the clayey silt deposit was classified as very soft to very stiff in consistency. The moisture content for the clayey silt ranged between 18 and 29%, indicating moist conditions. Based on a single grain size analyses test, the clayey silt contained 34% clay, 64% silt, and 2% sand. Based on the laboratory results for one clayey silt sample, the liquid limit and the plastic limit for the clayey silt was in the order of 28 and 17%, respectively, indicating low

plasticity. The results of the grain size analysis and the Atterberg Limits are indicated on the borehole logs and the grain size distribution graphs, as well as the plasticity index chart are included in Appendix B

4.4 Silt

Silt deposit was encountered below the clayey silt in BH101 to BH106, BH108, BH109, BH111, BH113 to BH115, and below the fill in BH110 and BH112. In BH110 the silt was found interbedded by the native clayey silt deposit with a thickness of approximately 1.3 m. The silt extended to depths ranging from 3.1 and 6.1 mbeg (~Elev. 192.0 and Elev. 189.6 m). The silt deposit was generally greyish brown in color and contained traces of gravel and some clay. With "N" values ranging between 0 and 17 blows per 300 mm of penetration, the native silt deposit was classified as very loose to compact in compactness. The moisture content for the silt ranged between 5 and 30%, indicating moist to wet conditions. Grain size analysis and Atterberg limits determination testing were carried out on selected soil samples of the silt deposit. Based on the laboratory testing, the silt consisted of 0 to 2% gravel, 6 to 9% sand, 68 to 77% silt, and 15 to 24% clay. Based on the laboratory results for two silt samples, the liquid limit for the silt ranged between 20 and 22%, and the plastic limit was ranging between 15 and 16%, indicating low plasticity. The results of the grain size analysis and the Atterberg limits are indicated on the borehole logs and the grain size distribution graphs, as well as the plasticity index chart are included in Appendix B

4.5 Lower Clayey Silt

Lower clayey silt deposit was encountered beneath the silt in BH113 and BH122, below (~Elev. 191.8 – 190.5 m) and extending to depths ranging between 4.6 and 6.1 mbeg (~Elev.190.3 and 189.0 m). The lower clayey silt was brown to grey in color and contained traces of gravel and sand. With the hammer dropping under its own weight during the Standard Penetration Test and undrained shear strength in the order of 12 kPa, as determined by the field shear vane testing, the lower clayey silt deposit was classified as very soft in consistency. The moisture content for the clayey silt ranged between 21 and 23%, indicating moist conditions. Grain size analysis and Atterberg Limits determination testing were carried out on selected soil samples of the clayey silt deposit. Based on a two grain size analyses tests, the clayey silt contained 28 to 32% clay, 60 to 68% silt, 3% sand, and 1 to 5% gravel. Based on the laboratory results for two clayey silt samples, the liquid limit for ranged from 21 to 22%. and the plastic limit was in the order of 15%, indicating low plasticity. The results of the grain size analysis and the Atterberg Limits are indicated on the borehole logs and the grain size distribution graphs, as well as the plasticity index chart are included in Appendix B.

4.6 Silty Sand Till/Sandy Silt Till

Silty sand till/sandy silt till was encountered below the silt in BH101 to BH106, BH108 to BH112, BH114, and BH115, and below the clayey silt in BH107, BH113 and BH122. The silty sand till/sandy silt till extended to depths ranging between 5.2 and 8.2 mbeg. Borehole Nos. BH101 to BH115, and BH122 were terminated in this deposit. With "N" values ranging between 3 and in excess of 50 blows per 300 mm of penetration, the silty sand till/sandy silt till deposit was classified as very loose to very dense in compactness. The moisture content for the till deposit ranged between 6 to 18% indicating moist to very moist conditions. Grain size analysis and Atterberg limits determination testing were carried out on selected soil samples of the silt deposit. Based on the laboratory testing, the silty sand till/sandy silt till deposit consisted of 10 to 33% gravel, 36 to 60% sand, 7 to 35% silt, and 0 to 19% clay. The results of the grain size analysis are indicated

on the borehole logs and the grain size distribution graphs, as well as the plasticity index chart are included in Appendix B

4.7 Groundwater Observations

The groundwater level observations during the drilling operation have been recorded as footnotes on the borehole logs. Groundwater monitoring wells were installed in Borehole Nos. BH105, BH110, and BH122 to facilitate the prolonged groundwater monitoring. Further, four (4) additional monitoring wells were installed on January 7, 2022 in the immediate vicinity of BH101, BH103, BH106, and BH115 to provide relevant information for the hydrogeology study at the Site. Those monitoring wells were identified as BH101A, BH103A, BH106A, and BH115A, respectively. The results of our field observations and groundwater monitoring to date are summarized in Table No. 1 below:

Table 1: Groundwater Observations

		Observa	NL ations in reholes	GWL Observations in the Monitoring Wells									
BH/MW ID	BH/MW Depth from Ground Surface		, Oct. 21, 2021	Oct. 13	3, 2021	Nov. 1	, 2021	Jan. 21, 2022					
	(m)	Cave Depth (m)	Free Water Depth (m)	GWL (m)	Elev. (m)	GWL (m)	Elev. (m)	GWL (m)	Elev. (m)				
BH101	5.2	-	3.9										
BH/MW101A	4.6	-	-	-	-	-	-	1.1	193.4				
BH102	5.8	4.6	0.7										
BH103	5.2	4.3	4.1										
BH/MW103A	4.6	-	-	-	-	-	-	0.7	193.7				
BH104	5.2	-	4.4										
BH/MW105	5.2	-	-	(-0.1)	194.7	(-0.3)	195.9	*	*				
BH106	5.2	4.3	2.1										
BH/MW106A	4.6	-	-	-	-	-	-	*	*				
BH107	5.2	-	0.3										
BH108	5.2	4.4	3.4										
BH109	5.2	-	-										
BH/MW110	5.9	-	-	2.0	193.9	0.9	195.0	1.4	194.5				
BH111	6.6	5.8	1.2										
BH112	5.9	3.0	3.1										
BH113	6.7	-	2.3										

		Observa	WL ations in reholes	GWL Observations in the Monitoring Wells								
BH/MW ID	BH/MW Depth from Ground Surface		, Oct. 21, 2021	Oct. 13	3, 2021	Nov. 1	, 2021	Jan. 21, 2022				
	(m)	Cave Depth (m)	Free Water Depth (m)	GWL (m)	Elev. (m)	GWL (m)	Elev. (m)	GWL (m)	Elev. (m)			
BH114	5.2	-	3.7									
BH115	5.2	3.9	4.0									
BH/MW115A	4.6	-	-	-	-	-	-	0.6	194.7			
BH116	2.1	-	-									
BH117	2.1	-	-									
BH118	2.1	-	-									
BH119	2.1	-	-									
BH120	2.1	-	-									
BH121	2.1	-	-									
BH122	8.2	-	-	0.4	194.7	0.1	195.0	(-0.6)	195.7			
BH123	2.1	-	-									

^{*}The monitoring well was frozen likely due to the shallow depth of the groundwater level

Insufficient time has passed for the groundwater to infiltrate into the monitoring well for the present levels to be considered stabilized. Therefore, we would recommend that additional monitoring of the wells be conducted prior to construction. Some infiltration of groundwater through the more permeable seams of the native soils and from surface runoff should be anticipated during the excavation operations. Surface water should be directed away from the excavations. It is noted that the static groundwater level fluctuates based on seasonal conditions experienced and may at times be slightly shallower than noted above during the 'wet' periods of the year (i.e., spring melt). Refer to Appendix B for the list of abbreviations and borehole logs.

5. Geotechnical Considerations

5.1 Site Preparation

Based on the Site Grading Plan No. SG01, which was forwarded to us by the Client, and the present ground surface, it is likely that engineered fill, may be utilized to accommodate the design grades for the proposed buildings. Prior to any earthwork, it will be necessary to remove some or most of the vegetation and topsoil from the Site. All topsoil and any near-surficial soil containing high amounts of topsoil and/or organic material should be removed in areas that are to be developed.

Any engineered fill must be placed and uniformly compacted in maximum lift thicknesses of 300 mm for earth fill and 200 mm for commercially sourced granular material. Each lift of the engineered fill must be uniformly compacted to at least 100 percent of Standard Proctor Maximum Dry Density (SPMDD). The placement water content of the engineered fill material should be maintained within ± 3 percent of the laboratory optimum water content in order to achieve an acceptable degree of compaction.

The limits of any engineered fill placed during this operation can best be determined by the geotechnical engineer at the time of construction. If engineered fill will be used to support foundations or pavements, it must extend laterally at sufficient distance to develop adequate lateral resistance.

All aspects of engineered fill construction including final excavation, material selection, placement and compaction must be tested by the geotechnical engineer at the time of placement and compaction. In-situ density (compaction) testing is required during construction for any and all engineered fill placement.

5.2 Foundation Recommendations

5.2.1 Methodology

The shallow foundations are to be designed applying the Limit State Design (LSD) methodology described in Chapter 8 of the Canadian Foundation Engineering Manual (CFEM) (2006). Both Ultimate Limit State (ULS) and Serviceability Limit State (SLS) were considered.

For design purposes to address the ULS, the ultimate (unfactored) bearing capacity of the foundation soil (R_n) was calculated. The allowable (factored) bearing capacity (Φ R_n) was computed by multiplying R_n with a reduction factor Φ =0.5, in accordance with National Building Code of Canada (NBCC) (2015) and CFEM (2006).

The foundation designer needs to ensure that the factored bearing capacity is greater than the factored applied pressure at foundation level ($\alpha_i S_{ni}$). Hence, the following formula applies:

$$\Phi R_n \ge \sum \alpha_i S_{ni}$$

If the foundation is subjected to vertical forces that act eccentric to the centroid of the foundation, the size of the foundation used in the bearing capacity equation is reduced to the following:

$$B' \times L' = (B-2e_B) \times (L-2e_L)$$

where:

B. L: actual foundation dimensions

B', L': reduced dimensions to be used in the bearing capacity equation

e_B, e_L: eccentricities due to applied forces (loading) from the centroid in dimensions B and L respectively

Foundations subject to moments M_B and M_L in the B and L directions and vertical load V acting through the centroid are equivalent to a loading system with V acting at eccentricities $e_B=M_B/V$ and $e_L=M_L/V$.

CFEM (2006) emphasizes that this equation is an approximate but reasonable approach provided that the eccentricity acts within the middle third of the foundation, i.e., eccentricity, e <B/6. In addition, in case of inclined loading, appropriate factors need to be considered in accordance with CFEM (2006).

The serviceability limit state (SLS) bearing pressure is considered by calculating the settlements (immediate, consolidation and total) due to foundation load. It is expected that the structural team will compare the settlements due to foundation and fill loads against allowable foundation settlement values.

It is noted that the overall settlement and/or heave experienced by the foundations may depend on other factors such as the quality of subgrade preparation and weather conditions at the time of construction, ground freeze and thaw, dynamic loading, among other factors.

5.2.2 Strip and Spread Footing

The proposed structures can be supported on conventional spread and strip footings founded on the native clayey silt/silt deposits below any fill or disturbed soils. Bearing resistance of 120 to 180 kPa at SLS and 240 to 360 kPa at ULS could be utilized for the foundation design. The geotechnical resistance of a sustained load at Serviceability Limit State (SLS) should be within the normally tolerated limits of total and differential settlement of 25, and 19mm, respectively, and a maximum footing size of 1.5 m. Should a different footing size being used, G2S should be contacted to provide an update for the bearing resistance and the associated settlement.

Prior to placement of foundation concrete, all existing fill, organics, and any other deleterious material must be removed down to the undisturbed native soils. The exposed footing base is to be inspected by G2S.

Based on the provided grading plan, the Finished Floor Elevations (FFE) for the slab-on-grade for the proposed buildings are ranging between approximately Elev. 196.7 to 196.0 m. Given that the average existing ground surface elevation at the proposed building locations are ranging between approximate Elev. 195.7 and 194.7 m, engineered fill will likely be utilized for the construction of the proposed building pads. The proposed structures can be supported on conventional spread and strip footings founded on engineered fill, utilizing a design bearing resistance ranging between 100 and 150 kPa at SLS and 150 to 225 kPa at ULS.

The available bearing resistance and the relevant approximate founding elevations are presented in Table No. 2 below:

Table 2: Bearing Resistance for Conventional Spread Footing

Building Location	Borehole ID	Material	Bearing Resistance (kPa)	Recommended Founding Depth (m)	Approximate Founding Elevation (m)
	BH111	Clayey Silt	150 SLS/300 ULS	1.7	194.0
Building A &	BH112	Silt	150 SLS/300 ULS	1.7	194.2
Gas Station	BH122	Clayey Silt	150 SLS/300 ULS	1.0	194.1
	BH111, BH112, BH122, BH123	Engineered Fill	150 SLS/225 ULS	-	195.2
	BH105	Clayey Silt	120 SLS/240 ULS	0.8	193.8
Building B	BH118	Clayey Silt	120 SLS/240 ULS	1.0	193.7
	BH105, BH109, BH121	Engineered Fill	120 SLS/180 ULS	-	194.9
	BH101	Clayey Silt	150 SLS/300 ULS	1.4	193.1
Building C	BH102	Clayey Silt	150 SLS/300 ULS	1.7	193.8
	BH101, BH102, BH118, BH116	Engineered Fill	150 SLS/225 ULS	-	194.5
	BH106	Clayey Silt	180 SLS/360 ULS	1.0	193.8
Building D	BH107	Clayey Silt	180 SLS/360 ULS	1.0	194.4
	BH106, BH107, BH119	Engineered Fill	150 SLS/225 ULS	-	194.8
	BH113	Clayey Silt	180 SLS/360 ULS	0.8	194.1
Building E	BH114	Clayey Silt	180 SLS/360 ULS	0.8	194.2
Danaing L	BH115	Clayey Silt	180 SLS/360 ULS	1.0	194.3
	BH113, BH114, BH115	Engineered Fill	150 SLS/225 ULS	-	194.8

It should be noted that a weaker zone within the silt deposit was encountered in some boreholes and this layer was typically found below approximate elevations 192.8 to 191.0 m.

Settlement is expected to occur within the weaker deposit following the fill placement. Settlement analysis was carried out for the area below each building pad to explore the consolidation characteristics of the weak silt deposit based on the thickness of the engineered fill material, which is anticipated to be placed. The results of the settlement analysis are summarized in Table No. 3 below:

Table 3: Estimated Settlement Following Engineered Fill Placement

Building Location	Borehole ID	Engineered Fill	Estin	Estimated Settlement (mm)					
Building Location	Boleliole ID	Thickness (m)	lm.	Cons.	Т				
Building A & Gas Station	BH111, BH112, BH122	1.2	4	21	25				
Building B	BH105	1.7	6	37	43				
Building C	BH101, BH102	1.0	3	17	20				
Building D	BH106, BH107	1.75	5	25	30				
Building E	BH114, BH115	1.7	5	29	34				

Im: Immediate Settlement

Cons.: Consolidation Settlement

T: Total Settlement

The weaker deposit is predominantly silt and most of the consolidation is expected to occur within six months to one year from the time of fill placement. However, preloading is expected to accelerate the consolidation process. Engineered fill with an average thickness of 1.7 m is expected to be placed in the area of Building B, D, and E, and based on the settlement analysis results, the total settlement within the weaker silt deposit in these areas, was estimated as 43, 30, and 34 mm, respectively. Therefore, it is our recommendation to preload these areas with a minimum of 1.0 m of additional fill. It is also recommended that the start of construction of foundations be prolonged as much as possible after placement of the fill. Furthermore, we would recommend that settlement monitors be installed to monitor the rate of settlement and to determine if and when the majority of the settlement (90%) has taken place. Due to the relatively higher load in the area of Building C, it is recommended to delay the building construction as long as possible to make sure that the majority of the settlement/soil consolidation has occurred prior to the footing construction. The majority of the settlement is expected to occur within 2 to 3 months of the fill placement.

In addition to the preloading, wick drains can also be used to accelerate the consolidation process and significantly reduce the consolidation time for loose cohesive soils to shorten the drainage path for the pore water and hence accelerate consolidation process. Wick Drain is a special purpose strip drain used for consolidation of soft, compressible soils. The wick drain has two components, a core which serves as a water conduit for the pore water and a geotextile filter fabric, which allows water to pass into the core while restricting the movement of soil particles which might clog the core. The drain is fed down through a hollow mandrel mounted on an excavator or crane, which is connected at the bottom to an expendable anchor plate. A vibratory hammer or static method is used to drive the mandrel to design depth. It's then removed, leaving the wick drain in place. The wick drain is then cut at the ground surface. The vertical wick drains are installed in a pattern to provide short drainage paths for pore water, which accelerates the consolidation process and consequently shorten the construction schedule.

5.2.3 Helical Piles (Building C & Building D)

If higher bearing resistance is required at the location of Building C and Building D, or the project schedule wouldn't allow the pre-loading, Helical piles could be an option to support the proposed structures below the weaker silt zone and into the native silty sand till/sandy silt till.

The actual allowable bearing load available from the helical pile plates on the soil, however, would have to be determined by the pile designer and it will depend on the proposed pile load, as determined by the Client. The use of grouted columns may also be recommended to increase the pile capacity. Pile installation monitoring and inspection by qualified geotechnical personnel is required during the installation of all helical pile foundations.

It is also recommended that a field load test be carried out in order to determine the piles' actual load capacity, confirm the theoretical design foundation, and allow site specific correlation between capacity and installation torque. The test pile should be loaded to at least two times the design load. Piles that have been tested to their ultimate capacity should not be used as production piles. Pile test methods and apparatus should conform to ASTM D1143-81.

5.3 Foundation Construction

The footing beds in the clayey silt/silt will be prone to disturbance from construction, foot traffic and precipitation. It would be prudent to consider the placement of a 50 mm concrete 'mud' slab over the footing bases once evaluated. This will protect the footing beds from disturbance and provide a clean working surface for the placement of formwork and reinforcing steel.

In areas where it will be necessary to provide adjacent footings at different founding elevations, the lower footing should be constructed before the higher footing, if possible. To limit stress transfer from higher footings to lower footings, the higher footing should be set below a line drawn up from the edge of the lower footing at 10 horizontal to 7 vertical. The footings to be constructed adjacent the existing structure should 'match' the level of the existing foundations.

All footings exposed to the environment must be provided with a minimum of 1.5 m of earth cover or equivalent insulation to protect against frost damage. This frost protection would also be required if construction were undertaken during the winter months. All footings and foundations should be designed and constructed in accordance with the current Ontario Building Code. We would recommend the placement of a 50 mm thick high-density sheet of Styrofoam insulation against the exterior of the foundation walls, followed by the placement of a 10-mil sheet of 'double' polyethylene ('fold' placed at 'top') to prevent frost heaving/adfreezing action.

It is imperative that a soils engineer be retained from this office to provide geotechnical engineering services during the excavation and foundation construction phases of the project. This is to observe compliance with the design concepts and recommendations of this report and to allow changes to be made if subsurface conditions differ from the conditions identified at the borehole locations.

5.4 Seismic Design Parameters

The structure shall be designed according to Section 4.1.8 of the current Ontario Building Code, Ontario Regulation 332/12. Based on the subsurface soil conditions encountered at the Site and due to the limited depth of the investigation the applicable Site Classification for the seismic design is Site Class D. The conducting of site specific shear wave velocity testing may allow for the upgrade of the site class.

The seismic data as per the 2015 National Building Code interpolated seismic hazard values, based on the acceleration and velocity-based site coefficients, F_a and F_v, are as follows:

$S_a[0.2]$	S _a [0.5]	S _a [1.0]	S _a [2.0]	S _a [5.0]	S _a [10.0]	PGA	PGV
0.125	0.092	0.062	0.030	0.008	0.004	0.078	0.081

It should be noted that the F_a and F_v values are determined from Tables 4.1.8.4.B. and 4.1.8.4.C of the Building Code, respectively. The structural engineer responsible for the project should review the earthquake loads and effects.

5.5 Floor Slab Considerations

The floor slab may be constructed using conventional slab-on-grade techniques on a prepared subgrade. The exposed subgrade surface should then be well compacted (proofrolled) in the presence of a representative of G2S. Any soft 'spots' delineated during this work must be subexcavated and replaced with quality backfill material compacted to 100 percent of its Standard Proctor Maximum Dry Density (SPMDD). Imported granular fill is preferred due to its relative insensitivity to weather conditions, its relative ease in achieving the required degree of compaction, and its quick response to applied stresses.

As with all concrete floor slabs, there is a tendency for the floor slabs to crack. The slab thickness, concrete mix design, amount of steel and/or fibre reinforcement and/or wire mesh placed into the concrete slab, if any, will therefore be a function of the owner's tolerance for cracks in, and movements of, the slabs-on-grade, etc. The 'saw-cuts' in the concrete floors, for crack control, should extend a minimum of 1/3 the thickness of the slab.

A moisture barrier will be required under the floor slabs, such as the placement of at least 200 mm of well-compacted 19 mm clear crushed stone. At a minimum, the moisture barrier material should contain no more than 10 percent passing the No. 4 sieve

Curing of the slab-on-grade must be carefully specified to ensure that slab curl is minimized. This is especially critical during the hot summer months of the year when the surface of the slab tends to dry out quickly while high moisture conditions in the moisture barrier or water trapped on top of any 'poly' sheet at the saw cut joints and cracks, and at the edges of the slabs, maintains the underside of the slab in moist conditions.

It is also important that excess free water not be added to the concrete during its placement as this could increase the potential for shrinkage cracking and curling of the slab. Based on the

conditions encountered in the boreholes, backfill recommendations, and the floor slab considerations, a modulus of sub-grade reaction, k_{v1} , of 25 MPa/m (based on a loaded area of 300 mm x 300 mm) can be used for the design of the slab-on-grade floor slab.

5.6 Perimeter Drainage

We would recommend that the perimeter drainage system extend in all areas where the floor slab level is less than 0.3 m above the final exterior grade. As a minimum, it is recommended that the perimeter weeping tile consist of a 150 mm diameter perforated pipe with a geofabric 'sock', surrounded with 200 mm of 20 mm clear stone, with the stone in turn encased by a heavy geotextile filter fabric. The suppliers of the geotextile filter fabric should be consulted as to the type best suited for this project. The perimeter drainage system should outlet to a gravity drainage connection, fitted with a suitable back-flow prevention valve.

This office should examine the installation of the perimeter drains. Even a small break in the filtering materials could result in loss of 'fines' into the drains with attendant performance difficulties, including settlements of the ground surface. The exterior grade around the structure should be sloped away from the structure to prevent the ponding of water against the foundation walls.

Additional well graded granular material should be placed and compacted in exterior sidewalk and accessibility ramp areas to reduce the effects of frost heaving. Alternatively, insulation could be placed in these areas, or a structural 'frost' slab should be constructed at the doorways.

5.7 Excavations and Groundwater Control

It is anticipated that the excavations for the proposed foundations, sewers and other underground services may extend to depths of approximately 3.0 to 4.0 m below the present grade through the fill and into the native very soft to very stiff clayey silt and the very loose to compact silt. All excavations must comply with the current Occupations Health and Safety Act and Regulations for Construction Projects.

For guidance, the fill, the firm to stiff clayey silt, the loose to compact silt/silty sand above the groundwater table may be classified as Type 3 soil. All soils below the groundwater table can be classified as Type 4 soil. In accordance with the OHSA regulations, if the excavation contains more than one type of soil, the soil shall be classified as the type with the highest number. Excavations slopes steeper than those required in the Safety Act must be supported or a trench box must be provided, and a senior Geotechnical Engineer from this office should supervise the work. We note that the rate of excavation may be slowed when existing buried services are encountered by the contractor. In this regard it is recommended that a number of test excavations be conducted to allow tendering contractors to observe the groundwater conditions firsthand to assess how they will affect their operations.

Based on the borehole information, a water bearing silt was encountered at various locations across the Site and was found at depths ranging between 1.5 and 3.8 mbeg ~ (Elev. 194.4and Elev. 191.5). As such, significant infiltration of groundwater from surface runoff and the water bearing stratum should be anticipated and localized dewatering will likely be required to facilitate the excavation. Filtered sumps, trenches, and oversized excavations, can be used to mitigate this issue. However, if these techniques failed to control the groundwater seepage, an adequate dewatering technique, which should be carried out by a specialized contractor, should be considered. G2S will be pleased to review and comment on the contractor's proposed dewatering system. It should be noted that G2S is carrying out a hydrogeological investigation at the Site

and based on the results of this investigation, recommendations pertinent to the type and extent of the groundwater control will be issued under separate cover.

For underground services installation, no bearing capacity issues are anticipated for pipes founded in dewatered native soils. A minimum 150 mm bedding thickness of OPSS Granular 'A' crusher-run limestone is recommended under the pipes. The bedding material should be compacted to 98 percent SPMDD. For pipes founded in wet native soils, the pipe bedding should consist of 19 mm clear stone completely wrapped in geotextile filter fabric to prevent the migration of fines into the void spaces of the bedding material. High performance aggregate can also be used in excessively wet areas.

Granular material should be extended upward as trench backfill for at least 300 mm above the obvert of the pipe. The remaining trench to final subgrade level should be backfilled in 300 mm thick lifts with approved excavated material compacted to at least 98 percent SPMDD.

Frequent inspection by G2S geotechnical personnel should be carried out to examine and approve backfill materials, to carefully inspect placement, and to verify the specified degree of compaction has been obtained.

To minimize potential problems, backfilling operations should follow closely after excavation so only a minimal length of trench is exposed. This will minimize wetting of the subgrade and backfill materials. Should construction extend to the winter season, care should be taken to ensure frozen material is not used as backfill.

5.8 Backfill Considerations

The majority of the excavated material will consist of the native clayey silt and silt material, which is considered to be suitable for use as service trench backfill and as engineered fill provided that the moisture content can be controlled to within 3 percent of the standard Proctor optimum value. Some moisture content conditioning of the excavated material may be required, depending upon the weather conditions experienced at the time of construction to achieve acceptable compaction densities and minimize long-term settlements. A granular pad was encountered in the area of BH102, BH109 to BH112, BH119, BH120, and BH123. The material consisted of sand and gravel and was noted to contain cobbles and boulders size material. In addition, the granular material was also found contaminated with clayey silt in the area of BH102 and BH109. The granular material apart from the oversize particles should be suitable for use as service trenches and engineered fill backfill, provided adequate sorting is carried out. The granular backfill could remain in place at the pavement areas subject to proofrolling and evaluation at the time of construction.

We note that where backfill material is placed near or slightly above its optimum content, the potential for long-term settlements due to the ingress of groundwater and collapse of the fill structure is reduced. Correspondingly, the shear strength of 'wet' backfill material is also lowered, thereby reducing its ability to support construction traffic, and therefore impacting roadway construction. If the soil is well 'dry' of its optimum value, it will appear to be very strong when compacted, but will tend to settle with time as the moisture content in the fill increases to equilibrium condition. The soils may require high compaction energy to achieve acceptable densities if the moisture content is not close to their standard Proctor optimum value. It is therefore very important that the placement moisture content of the backfill soils be within 3 percent of its standard proctor optimum moisture content during placement and compaction.

Any imported fill required in service trenches or to raise the subgrade elevation should have its moisture content within 3 percent of its optimum moisture content and meet the necessary environmental guidelines.

The backfilling and compaction operations should be monitored by a representative of G2S to monitor uniform compaction of the backfill material to project specification requirements. Close supervision is prudent in areas that are not readily accessible to compaction equipment, for instance near the end of compaction 'runs', and around the foundation walls. Any engineered fill should be compacted to 100 percent SPMDD. A method should be developed to assess compaction efficiency employing the on-Site compaction equipment and backfill materials during construction.

5.9 Underground Fuel Storage Tanks

It is understood that the proposed development will include the construction of a gasoline service station at the southwest corner of the Site, which will incorporate the installation of fuel Underground Storage Tanks (USTs). The excavation for the UST installation is expected to extend to depths of approximately 4.0 to 5.0 mbeg. Very loose to loose silt and very soft clayey silt deposits were encountered at the tank installation area between depths of approximately 2.3 and 6.1 mbeg. The fuel tanks can be founded on concrete slab or engineered fill constructed as per Sections 5.1 and 5.2 of this report, supported on the native sand till. Bearing resistance of 150 kPa at SLS and 300 kPa at ULS could be utilized for the foundation design. The settlements of the tanks are expected to be within the normally tolerated limits of 25 mm total and 19 mm differential movements. The excavation must be completed in accordance with the current OHSA regulations and should be carried out as per Section 5.7 of this report.

The temporary shoring method will depend on the settlement tolerance for adjacent structure(s) and buried utilities. We would recommend an active earth pressure coefficient Ka = 0.45 and using a unit weight of retained soil of 22 kN/m3. The shoring wall must be designed and constructed as a rigid shoring system. The shoring system may be constructed with walers supported by rakers or soil anchors. The shoring design should be based on the procedure detailed in the latest edition of the Canadian Foundation Engineering Manual. The shoring system must be design by a professional engineer experienced in shoring design and the shoring system constructed by an experienced contractor. Any surcharge loads must be incorporated into the shoring design. The structural member stiffness and stability is the responsibility of the shoring design engineer and the shoring contractor. We would recommend that a detailed condition survey for the nearby structures and roadways be conducted prior to the commencement of the excavation operation. In addition, the shoring system must be monitored for any vertical or horizontal movements during the course of construction. The excavation must provide 'space' for the construction of footings and foundation walls, with an allowance for access by workers. We would recommend that this office be retained to review the selected design and provide monitoring during installation.

The groundwater table as prevailed by the investigation is located at approximately 0.6 to 1.4 mbeg across the Site. At some locations, groundwater was found at-grade. The groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing weather conditions. The underground tanks should be designed to resist uplift from hydrostatic pressure.

The hydraulic uplift pressure, P, below the structure can be calculated using the following formula:

 $P = \gamma_w h_w$

Where:

 γ_w = unit weight of water (10 kN/m³)

h_w = depth in metres below the water table; and

The groundwater table may be assumed to be at the ground surface when designing for uplift.

Typical techniques to resist uplift pressure are as follows:

- Deadman anchors with straps that go over the top of the tanks. The deadman anchors are typically 0.3 to 0.6 m² reinforced concrete beams which run the full length of the tanks.
- The deadweight of the empty tanks plus the deadweight of the backfill material above the units exceeds the maximum factored hydrostatic uplift pressure that will act on the tanks.
- Concrete slab to extend below the entire footprint of the tanks and protrudes about 0.3 to 0.6 m beyond either side of the tanks. The tanks can be tied to the concrete slab by straps

Groundwater control and dewatering considerations for construction at the Site will be provided in the hydrogeological report, issued under a separate cover.

5.10 Stormwater Underground Storage Facility

It is understood that a stormwater storage facility (SWSF) will be constructed beneath the proposed parking lot, which is located north of Building A and southeast of Building B. The proposed storage facility will consist of a Stormtech Mc-3500 system with a footprint of approximately 2359 m². Based on Drawing No. DE02, dated February 2022, the proposed system is anticipated to extend to approximately 1.5 m below the proposed finished grade elevation (~Elev. 193.7 m). As per the borehole information at the area of proposed facility (BH109, BH110, BH120), the soil at the proposed founding level consisted of clayey silt in BH109 and BH120, and silt overlaying clayey silt material in BH110. The clayey silt is considered suitable to support the proposed storage facility. Therefore, it is recommended to subexcavate the subgrade to the native clayey silt deposit and backfill the area, if required, with suitable material as per Sections 5.1 and 5.8 of this report. Bearing resistance of 120 kPa at SLS and 240 kPa at ULS could be utilized for the foundation design on the native clayey silt or properly placed fill material. Installation of the underground storage facility will remove soil and replace the soil with hollow structures, which likely be filled completely with water. If the facility is set at a depth of approximately 1.5 m below grade, unloading due to soil removal will be about 30 kPa. If the load of the facility plus stored water will be less than 30 kPa, settlement is not expected to be an issue. The infiltration rate for the clayey silt material was estimated based on the grain size analysis and borehole permeability testing, which was carried out for a soil sample obtained from BH109 at depth of approximately 1.5 mbeg (~Elev. 194.3). The results of the grain size analysis are summarized in Section 4.3 of this report and the grain size distribution graph is included in Appendix B. The infiltration rate was estimated as 10⁻⁷ cm/sec., which is considered suitable to be utilized as a liner.

The proposed storage facility will be placed on a 300 mm thick layer of Granular 'A' (OPSS.MUNI 1010) compacted to a minimum of 98% Standard Proctor Maximum Dry Density. For weak or excessively wet subgrade, 19 mm clear stone completely wrapped in geotextile filter fabric to prevent the migration of fines into the void spaces of the bedding material, can be used beneath the proposed storage facility. Bedding and cover requirements for the system installation should follow the designer and the proprietary system specifications. Discussion and recommendations regarding the buoyant uplift pressure due to the anticipated high groundwater level and its effect on the underground storage system are include in Section 5.9 of this report.

5.11 Pavement Considerations

The pavement areas should be stripped of all topsoil, organic and other unsuitable materials. The exposed subgrade should be proofrolled with 3 to 4 passes of a loaded tandem truck in the presence of a representative of G2S, immediately prior to the placement of the sub-base material. Any areas of distress revealed by this, or any other means must be subexcavated and replaced with suitable backfill material. Alternatively, the soft areas may be repaired by the placement of coarse aggregate, such as 50 mm clear crushed stone. The need for subexcavations of a softened subgrade will be reduced if construction is undertaken during periods of dry weather and careful attention is paid to the compaction operations. At areas of weak subgrade, suitable geogrid product such as Tensar TriAx (TX) geogrid or equivalent can be used to stabilize the subgrade. The fill placed over shallow utilities that cuts into or across the paved areas must also be compacted to 100 percent of its SPMDD.

Good drainage provisions will optimize the long-term performance of the pavement structure. The subgrade must be properly crowned and shaped to promote drainage to the subdrain system. Subdrains should be installed to intercept excess subsurface water and to prevent softening of the subgrade material. Surface water should not be allowed to pond adjacent to the outer limits of the paved area.

The most severe loading conditions on the subgrade typically occur during the course of construction, therefore, precautionary measures may have to be taken to ensure that the subgrade is not unduly disturbed by construction traffic. These measures would include minimizing the amount of heavy traffic travelling over the subgrade, such as during the placement of granular base layers.

If construction is conducted under adverse weather conditions, additional subgrade preparation may be required. During wet weather conditions, such as typically experienced during the fall and spring months, additional subgrade preparation, such as the provision of an additional depth of Granular B sub-base coarse material would be required. It is also important that the sub-base and base coarse granular layers of the pavement structure be placed as soon after exposure and preparation of the subgrade level as practical.

The suggested pavement structures, for the pavement areas, outlined in Table 4 below are based on subgrade parameters estimated on the basis of visual and tactile examinations of the on-Site soils and past experience. The outlined pavement structures may be expected to have an approximate 15 to 20 years of design life, assuming that regular maintenance is performed. Should a more detailed pavement structure design be required, Site specific traffic information would be needed, together with detailed laboratory testing of the subgrade soils.

Table 4: Suggested Pavement Structure

LAYER DESCRIPTION	COMPACTION REQUIREMENTS	LIGHT DUTY SECTIONS	HEAVY DUTY (TRUCK ROUTE)
Asphaltic Concrete Wearing course OPSS HL 3 or HL 3A	Min 92.0 % *MRD	40 millimetres	40 millimetres
Binder Course OPSS HL 8	Min 92.0 % *MRD	60 millimetres	80 millimetres
Base Course OPSS Granular A	100% **SPMDD	150 millimetres	150 millimetres
Sub-base Course OPSS Granular B Type II	100% **SPMDD	300 millimetres	450 millimetres

^{*} MRD denotes maximum relative density, MTO LS-264

^{**} SPMDD denotes Standard Proctor Maximum Dry Density, ASTM-D698.

6. General Comments

The subsoil descriptions and borehole information are only intended to describe conditions at the borehole locations. Contractors placing bids of undertaking this project should carry out due diligence to verify the results of this investigation and to determine how the subsurface conditions will affect their operations. The action of stripping topsoil and unsuitable near-surficial soils as well as the selection and placement of engineered fill should be tested by the geotechnical engineer at the time of construction. In-situ density testing should be carried out on any engineered fill placed at the Site.

All foundations should be reviewed on Site by the geotechnical engineer as they are constructed, as required by Section 4.2.2.2 of the Ontario Building Code (2012). If G2S is not retained to review the foundation bearing conditions or the construction of the foundations in the field, then G2S assumes no responsibility for the performance of the foundations as constructed.

The long-term performance of slabs on grade is dependent on the subgrade support conditions. Subgrades to support slabs on grade should be inspected by the geotechnical engineer prior to final construction. It is important that any engineered fill constructed beneath slabs on grade is carried out as outlined in this report.

7. Limitations

The geotechnical engineering advice and recommendations provided in this report are considered preliminary and were based on the factual information obtained during this investigation.

It may be possible that the subsurface conditions vary between and beyond the investigated borehole locations. For the purpose of this report, it is assumed that the conditions outside of and between the exact borehole locations are similar to the conditions observed in the boreholes. The change in subsurface stratigraphy reported on the borehole logs has also been interpreted based on non-continuous sampling, therefore, changes in stratigraphy as shown on the borehole logs and as discussed in this report should not be regarded as exact lines of geological change. The subsurface conditions at the Site may change with the passage of time and/or by human intervention.

The findings along with the geotechnical engineering advice and recommendations provided in this report are limited to the conditions at the Site at the time of this investigation as described herein. Conclusions presented in this report should not be construed as legal advice. If Site conditions or applicable standards change or if any additional information becomes available at a future date, changes to the findings, conclusions and recommendations in this report may be necessary.

Through any subsurface investigation by boreholes, it may not be possible to identify all aspects of the subsurface conditions at the Site that could affect construction costs, techniques, equipment, and scheduling. Contractors bidding on or undertaking work on the project must be directed to draw their own conclusions as to how the subsurface conditions may affect them, based on their interpretation of the subsurface conditions and/or their own investigations.

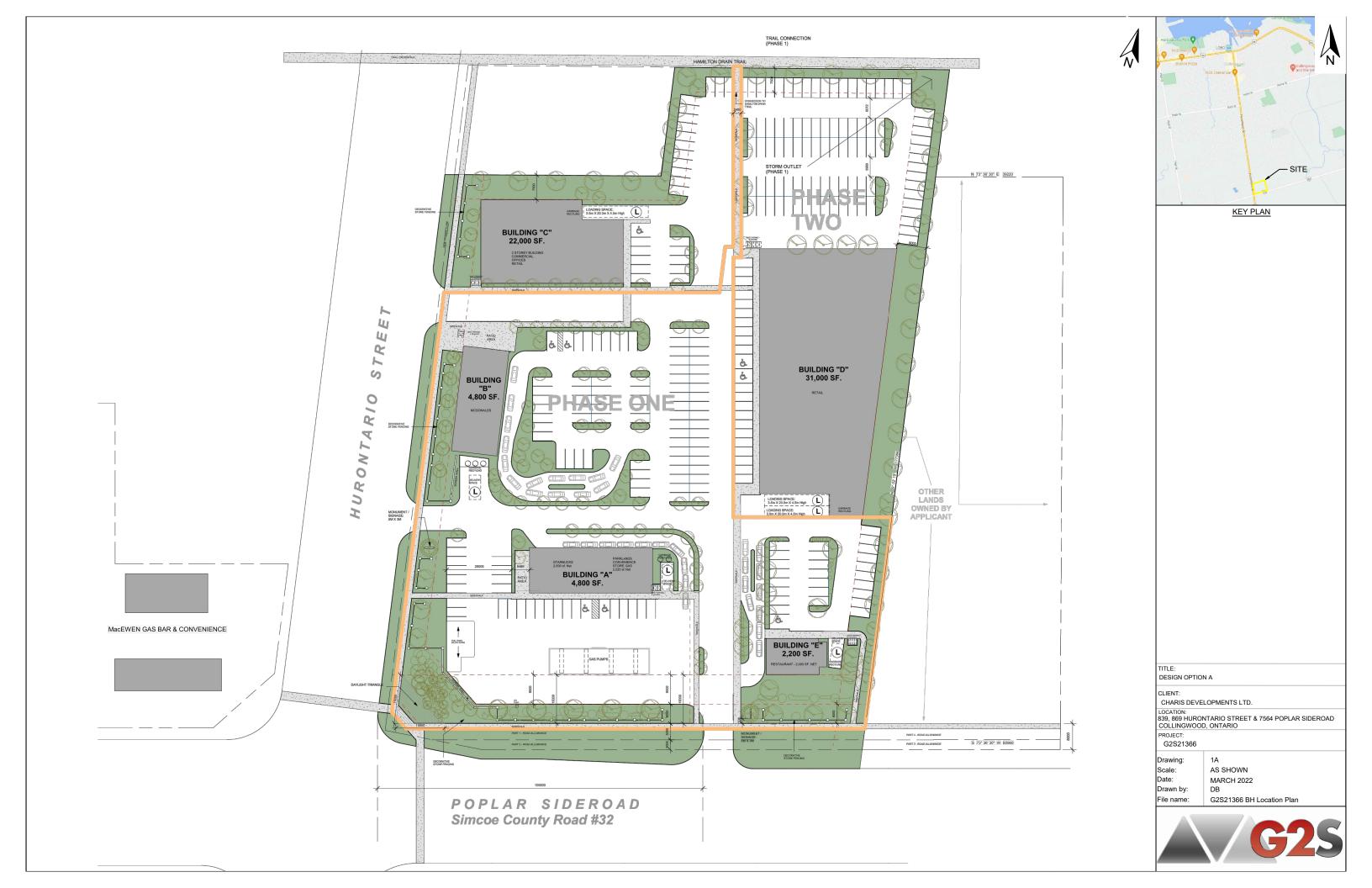
This report has been prepared for the sole benefit of the Client (Charis Developments Ltd.) and is intended to provide geotechnical engineering advice and recommendations based on the subsurface conditions investigated at the subject Site. This report is the copyright of G2S Consulting Inc. (G2S) and may not be used by any other person or entity without the expressed written consent of the Client and G2S. Any use which a third party makes of this report, or any reliance on decisions made based on it, is the responsibility of such third parties. G2S accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report. It is recognized that The Town of Collingwood in their capacity as the planning and building authority under Provincial statues, may make use of and rely upon this report cognizant of the limitations thereof, both as are expressed and implied.

Secondary review of this report was completed for general QA/QC and adherence to company standards and does not include a technical review of engineering conclusions and recommendations. This report does not address any environmental conditions such as soil and ground water chemical quality and suitability of excess soils for off-site re-use.

8. Closing Remarks

We trust this report is satisfactory for your present purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

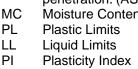

G2S Consulting Inc.

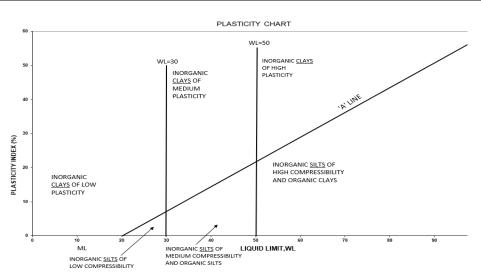
Ashraf Abass, P. Eng. Senior Project Engineer Steve Campbell, P.Geo.

Principal

Appendix A: Drawings

Appendix B:
Borehole Logs and
Grain Size Analysis Graphs
Plasticity Chart


LIST OF ABBREVIATIONS


Description of Soil

The consistency of cohesive soils and the relative density or compactness of cohesionless soils are described in the following terms:

COH	ESIVE SOIL		COHESION	NLESS SOIL
CONSISTENCY	N (blows/0.3 m)	C (kPa)	DENSENESS	N (blows/0.3 m)
Very Soft	0 – 2	0 – 12	Very Loose	0 – 4
Soft	2 – 4	12 – 25	Loose	4 – 10
Firm	4 – 8	25 – 50	Compact	10 – 30
Stiff	8 – 15	50 – 100	Dense	30 – 50
Very Stiff	15 – 30	100 – 200	Very Dense	>50
Hard	>30	>200		
Moisture conditions				
Moist: dark or greyish color, ma	y feel cool upon			
Wet: same as moist with free wa	ter seepage when handled			

<u>Abbre</u>	<u>eviations</u>
SS	Split Spoon Sample
AS	Auger Sample
GS	Grab Sample
DP	Direct Push
S	Sample
RC	Rock Core
SPT	Standard Penetration Test
N	Blow counts per 300mm of
	penetration. (ASTMD1586)
MC	Moisture Content

Penetration Resistance

Standard Penetration Resistance N: The number of blows required to advance a standard split spoon sampler 0.3 m into the subsoil. Driven by means of a 63.5 kg hammer falling freely a distance of 0.76 m. The value reported are as noted in the field without corrections.

Soil Classification Dynamic Penetration Resistance: The number of blows required to advance a 51 mm, 60-degree cone, fitted to the end of drill rods, 0.3 m into the subsoil. The driving energy being 475 J per blow. Soils descriptions are made in accordance with the Canadian Foundations Engineering Manual (CFEM), following the International Society for Soil Mechanics and Foundation Engineering. (ISSMFE)

Notes

Soil samples will be discarded after three months unless directed otherwise by the Client.

Unless the grain size analysis is performed in our lab, soil samples are classified based on visual, tactile, and olfactory examinations, which may not be sufficient for accurate classification or precise grain sizing.

ISSMFE SOIL CLASSIFICATION

							U = 1, U U					
	CLAY	SLT				SAND			COBBLES	BOULDERS		
L	COA	Fine Medium Coerse		Fine	Medium	Coarse	Fine	Medium	Medium Coarse			
	0.0	102 0	006 0.	02 0.	06 0	.2 0	1.6 2.	0 6	.0	20	60 2	00
_												

CL		On sulting Inc. Charis Developments Ltd.					_ PR	OJEC	T NAN	/IE _	839	& 869	Hurc	ontari	o St 8	k 7564	Popla	r Side	Rd
		NUMBER G2S21366B										Colling							
DA	ATE STA	ARTED 21-10-22	COMPLETED	21-10-	-22		_ GR	ROUNI	ELE/	VATI	ION .	194.5	50 m		_				
		CONTRACTOR LST																	
DR	RILLING	METHOD Diedrich D50 T	rack				_ NC	TES											
DEPTH (m)		MATERIAL DESCR	IPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	Undr	alues 20 ained St Penetr	Shear S	UES T valu	es	PLA	STUF STIC MC	ITY	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION ⁹ GR SA SI & CL
-	0.36	TOPSOIL: ~360 mm		194.14	1 1/2 X	1	SPT	5	<u>.</u>		:	:		:		:			
1	-	FILL: Sand, brown to dar silt, some clay, moist, deb	rk brown, some oris			331	01 1		~										
	1.2	CLAYEY SILT: Brown to	grey,	193.28		SS2	SPT	11							•				
2	_	occasional sand seams, s moist to very moist, stiff	some clay,			SS3	SPT	14		A	:				•				
	_					SS4	SPT	10	- - - -						•)			
3	3.1	SILT: Grey, some gravel very loose to loose	, very moist,	191.45	5	SS5	SPT	3	A		 : : :			•					
4	4.6			189.90		SS6	SPT	8	A					•	:				
5	5.2	SANDY SILT TILL: Grey, moist, dense	, some gravel,	189.32		SS7	SPT	55				>	> 🛕 (•					
		Borehole terminated at 5.	2 111.																on of augering No cave water at 3.9 m

PAGE 1 OF 1

\triangle /G2S	
Consulting Inc.	

LI	ENT Charis Developments Ltd.				PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd											
R	OJECT NUMBER G2S21366B			_ PR	PROJECT LOCATION Collingwood, Ontario											
Α	TE STARTED 21-10-21 COMPLETED	21-10-	GR													
R	LLING METHOD Diedrich D50 Track				NOTES											
טבר ווו (ווו)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 MOISTURE / PLASTICITY Pocket Penetrometer Vane Pocket Penetrometer Vane Pocket Penetrometer Vane Pl MC LL Pl									
	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist	404.00		SS1	SPT	3	40 80 120 160 10 20 30 9 S GR SA SI & CL									
	becoming clayey silt, brown, some gravel, some silt, moist			SS2	SPT	22	30/0									
2	CLAYEY SILT: Brown to grey, some sand, stiff			SS3	SPT	10	25/0									
-	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact			SS4	SPT	16	10/0									
-				SS5	SPT	12	▲ 15/0 2 6 77 15									
-				SS6	SPT	4	▲ • • • • • • • • • • • • • • • • • • •									
5		190.33	9//		VANE											
-	trace clay, moist, compact	400.70		1	SPT	19	★ 5/0									
	Borehole terminated at 5.8 m.	189.72		8			Upon completion of augering Wet cave at 4.6 m Free water at 0.65 m after 24 hours									
	R(R) ()	ATE STARTED 21-10-21 COMPLETED RILLING CONTRACTOR LST RILLING METHOD Diedrich D50 Track MATERIAL DESCRIPTION FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist becoming clayey silt, brown, some gravel, some silt, moist 1.5 CLAYEY SILT: Brown to grey, some sand, stiff 2.3 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact 5.2 SANDY SILT TILL: Grey, some gravel, trace clay, moist, compact 5.8	ROJECT NUMBER G2S21366B ATE STARTED 21-10-21 COMPLETED 21-10-21 RILLING CONTRACTOR LST RILLING METHOD Diedrich D50 Track FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist becoming clayey silt, brown, some gravel, some silt, moist 1.5	ROJECT NUMBER G2S21366B ATE STARTED 21-10-21 COMPLETED 21-10-21 RILLING CONTRACTOR LST RILLING METHOD Diedrich D50 Track MATERIAL DESCRIPTION FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist becoming clayey silt, brown, some gravel, some silt, moist 1.5 CLAYEY SILT: Brown to grey, some sand, stiff 2.3 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact SANDY SILT TILL: Grey, some gravel, trace clay, moist, compact 5.8 SANDY SILT TILL: Grey, some gravel, trace clay, moist, compact 5.8 189.72	ATE STARTED 21-10-21 COMPLETED 21-10-21 RILLING CONTRACTOR LST RILLING METHOD Diedrich D50 Track MATERIAL DESCRIPTION FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist becoming clayey silt, brown, some gravel, some silt, moist 2.3 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact SS1 SS6 SS6 SS6 SS7 SS7 SS7 SS7	ROJECT NUMBER G2S21366B ATE STARTED 21-10-21 COMPLETED 21-10-21 GR RILLING CONTRACTOR LST RILLING METHOD Diedrich D50 Track MATERIAL DESCRIPTION FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist becoming clayey silt, brown, some gravel, some silt, moist SS2 SPT 1.5 CLAYEY SILT: Brown to grey, some sand, stiff 2.3 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, loose to compact SS6 SPT SS7 SPT VANE SS7 SPT	ROJECT NUMBER G2S21366B PROJECT ATE STARTED 21-10-21 COMPLETED 21-10-21 GROUNT RILLING CONTRACTOR LST LOGGET RILLING METHOD Diedrich D50 Track NOTES MATERIAL DESCRIPTION LY AND DIEDRIC MOTES									

PAGE 1 OF 1

G25 Consulting Inc.		BORLHOLL
ENT Charis Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 7564

CLIE 4 Poplar Side Rd PROJECT NUMBER G2S21366B PROJECT LOCATION Collingwood, Ontario **GROUND ELEVATION** 194.39 m DATE STARTED 21-10-22 **COMPLETED** 21-10-22 CHECKED BY AA DRILLING CONTRACTOR LST LOGGED BY DB **NOTES** DRILLING METHOD Diedrich D50 Track SPT N VALUES N values CPT values SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION ELEVATION (m) GRAPHIC LOG △ 40 DEPTH (m) NUMBER N VALUE 20 30 TYPE MOISTURE / MATERIAL DESCRIPTION **PLASTICITY** Undrained Shear Strength (kPa GRAIN SIZE DISTRIBUTION 9 GR SA SI & CL \times 160 40 80 120 0.13 TOPSOIL: ~125 mm SPT SS1 7 FILL: Clayey silt, brown to grey, some sand, moist 1.00 193.39 SPT SS2 12 CLAYEY SILT: Brown, trace sand, rootlets, moist, stiff, reworked 192.89 1.5 appearance at the upper section SILT: Grey, layered, trace sand, trace SPT gravel, some clay, very moist to wet, SS3 6 very loose to compact SS4 SPT 2 266824 3 SS5 SPT 16 22-2-4 4 4.0 190.39 SANDY SILT TILL: Grey, some gravel, SS6 SPT 20 2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT moist, compact

SS7

SPT

27

Borehole terminated at 5.2 m.

5

Upon completion of augering Cave at 4.3m

Free water at 4.1 m

BORFHOLF NUMBER 104

G2S Consulting Inc.		БС	PAGE 1 OF								
CLIENT Charis Developments Ltd.		PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd									
PROJECT NUMBER G2S21366B		PROJECT LOCATION Collingwo	ood, Ontario								
DATE STARTED 21-10-22 COMPLETE	D 21-10-22	GROUND ELEVATION 194.40 m	<u>1</u>								
DRILLING CONTRACTOR LST		LOGGED BY DB	CHECKED BY AA								
DRILLING METHOD _ Diedrich D50 Track		NOTES									
(E) H MATERIAL DESCRIPTION	ATION (m) PHIC LOG	SPT N VALUES N values CPT values 10 20 30 40	/ S READINGS / S READINGS / STRUCTION PASTRUCTION								

	DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values 10 20 30 40
	-	0.10 TOPSOIL: ~100 mm FILL: Clayey silt, brown and grey	194.30		SS1	SPT	11	
		mottled, some sand, moist 0.78	193.62	\bigotimes				_
	1	CLAYEY SILT: Brown to grey, some sand, reworked appearance at top, moist, stiff			SS2	SPT	8	▲ • • • • • • • • • • • • • • • • • • •
		SILT: Grey, layered, trace sand, trace	192.90					
	2	gravel, some clay, very moist to wet, compact			SS3	SPT	10	
Ì								
Ì	3				SS4	SPT	13	
ŀ	<u> </u>							
					SS5	SPT	10	
† 7	4	3.8 SANDY SILT TILL: Grey, some gravel,	190.59					
77 77		moist, dense			SS6	SPT	33	0/0
								7
	5	5.2	189.22		SS7	SPT	43	△ • 0/0
آۃ		Barahala terminated at 5.2 m						Upon completion of augering

Borehole terminated at 5.2 m.

Upon completion of augering No cave Free water at 4.4 m

2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4

	G2S Consulting Inc.												P	AGE 1 OF 1
CI	•	_ PR	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd											
	OJECT NUMBER G2S21366B		PROJECT LOCATION Collingwood, Ontario											
D	TE STARTED 21-10-1 COMPLETED	_ GR												
DF	DRILLING CONTRACTOR Davis							В		с	HECKED	BY _	\A	
DF	ILLING METHOD CME 45 Track	_ NC	TES .											
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	10 Undraine Pocket Pen	N VALU es CPT 20 30 d Shear Strer netrometer V	40 ngth (kPa) /ane	-		SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL
-	0.20 TOPSOIL: ~200 mm CLAYEY SILT: Brown, trace sand, stiff, very moist, occasional sand seams,	194.43		SS1	SPT	1	* ×	: : : : : : : : : :	:		•	25/0		5.1.6.1.6.2
<u>1</u> -	moist, firm to stiff, reworked appearance at the top portion	193.11		SS2	SPT	11			225		•	25/0		
2	becoming greyish, layered, numerous sand seams, very moist	192.34		SS3	SPT	8	A		*		•	20/0		
3	SILT: Grey, layered, trace sand, some clay, very moist to wet, very loose to loose	132.04		SS4	SPT	6	*			F	•	20/0		0 9 72 19
- - -				SS5	SPT	0)					•	30/0		
.GDT 22-2-4	4.6	190.06			VA		3.0 50							
A TEMPLATE	SILTY SAND TILL: Grey, some gravel, trace clay, compact, wet	189.45			SPT	14	A			•		10/0		
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4	Borehole terminated at 5.2 m.										Kei	ei io ie	sport ic	or groundwater elevation data

PAGE 1 OF 1

G2S Consulting Inc.		PAGE
CLIENT Charis Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 7564 Poplar Side Rd

PROJECT NUMBER G2S21366B PROJECT LOCATION Collingwood, Ontario **GROUND ELEVATION** 194.54 m DATE STARTED 21-10-22 **COMPLETED** 21-10-22 CHECKED BY AA DRILLING CONTRACTOR LST LOGGED BY DB **NOTES** DRILLING METHOD Diedrich D50 Track SPT N VALUES N values CPT values SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION ELEVATION (m) GRAPHIC LOG \(\frac{\(\triangle}{40}\) DEPTH (m) NUMBER N VALUE 30 TYPE MOISTURE / MATERIAL DESCRIPTION **PLASTICITY** Undrained Shear Strength (kPa GRAIN SIZE DISTRIBUTION S GR SA SI & CL \times 160 40 80 120 .0.08∕ TOPSOIL: ~75 mm SPT SS1 FILL: Clayey silt, brown and grey mottled, some sand, very moist, 193.78 0.76 reworked native CLAYEY SILT: Brown, occasional sand SPT SS2 10 seams, moist, stiff SPT SS3 13 2.3 192.25 SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to wet, SS4 SPT 5 very loose to loose 3 3.1 191.49 trace gravel, occasional sand seams SS5 SPT 3 2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4 SS6 SPT 6 189.97 4.6

SS7

SPT

26

Borehole terminated at 5.2 m.

very moist, compact

5

SILTY SAND TILL: Grey, some gravel,

Upon completion of augering Cave at 4.3 m

Free water at 2.1 m

PAGE 1 OF 1

G25	
Consulting Inc.	

CL	CLIENT Charis Developments Ltd.								PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd										
PROJECT NUMBER G2S21366B								PROJECT LOCATION Collingwood, Ontario											
DA	TE STA	ARTED 21-10-21	COMPLETED	21-10-	21		_ GR	OUNI	ELEVATION _	194.78 r	<u>n</u>								
		CONTRACTOR LST					_ LO	GGE	BY DB		CHEC	KED B	Y _A	Α					
DR	ILLING	METHOD Diedrich D50 T	rack				_ NO	TES											
DEPTH (m)		MATERIAL DESCR	IPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALIN Values CPT 10 20 30 Undrained Shear Str Pocket Penetrometer 40 80 120	ength (kPa)	MOISTURE PLASTICITE PL MC 10 10 20 11	E / FY LL 1 30	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION GR SA SI & CI				
-	0.25	TOPSOIL: ~250 mm		194.53	3	004	CDT					:							
-		FILL: Sand, brown, some moist	e silt, very		\bowtie	SS1	SPT	2		:		:							
1	0.76	CLAYEY SILT: Brown, so moist, very stiff	ome sand,	194.02		SS2	SPT	16	A		•								
2						SS3	SPT	14	A	:	•	:							
 	2.3	SILTY SAND TILL/SAND Grey, some gravel, some very moist, very loose to	clay, moist to	192.49		SS4	SPT	7	A		•								
 						SS5	SPT	3	A		•				10 36 35 19				
4 																			
5						SS6	SPT	15	A		•	<u>.</u>							
	5.2	Borehole terminated at 5.	2 m.	189.60)Y(//2)					:]		_		Free	on of augerin No cav water at 3.0 n 0.3 m after 2 hour				
5																			

	G2S Consulting Inc.				PAGE 1 OF 1									
CI	· ·				_ PR	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd PROJECT LOCATION Collingwood, Ontario GROUND ELEVATION 195.37 m								
	OJECT NUMBER G2S21366B													
D	TE STARTED 21-10-21 COMPLETED	21-10-	21											
- 1	RILLING CONTRACTOR LST						BY DB CHECKED BY AA							
DI	Diedrich D50 Track				_ NO	TES .								
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 MOISTURE / PLASTICITY MOISTURE / PLASTIC							
-	TOPSOIL: ~100 mm FILL: Clayey silt, brown to dark brown, some sand, very moist	195.27 194.61		SS1	SPT	4	10/0							
1	CLAYEY SILT: Brown and grey mottled, some sand seams, moist, very stiff	193.87			SPT	16	0/0							
2	SILT: Grey, layered, trace sand, trace gravel, some clay, very moist to very moist, compact			SS3	SPT	17	▲ • 0/0							
3				SS4	SPT	11	10/0							
-	3.8	191.56		SS5	SPT	11	A 5/0							
E.GDT 22-2-4	SANDY SILT TILL: Grey, some gravel, moist, compact,			SS6	SPT	11	▲ • 0/0							
TA TEMPLAT	5.2 Borehole terminated at 5.2 m.	190.19		SS7	SPT	21	Upon completion of augering							
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4							Cave at 4.4 m Free water at 3.4 m							

			25													PA	AGE 1 OF 1
		Consulting						0.150	T N/A 845	000.0	000 11		. 04 0 :	7504	D l	0:4-	D.I
		CHARLES DEVELOPMENT							I NAME . T LOCATI					7564	Popiai	Side	Ka
		OJECT NUMBER G2S2		21 10	21						_		itario				
		· · · · · · · · · · · · · · · · · · ·	COMPLETED						ELEVAT				CUEC	VED I	DV ^	٨	
		ILLING CONTRACTOR _ ILLING METHOD _Diedr							BY DB						ы <u>А</u>	Α	
Ļ	л\ —	Diedi	ICH DOU HACK				_ 110			V VALU							
(m) 114010	DEPIH (m)	MATERIAI	_ DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N value 10 2 Undrained Pocket Penet	Shear Stre	values 40 ength (kPa) Vane	MOI	•	ΓΥ	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL
-	1 1 1	silt to silty, poss	gravel, brown, some ible cobble and boulder the surface, moist			SS1	SPT	8	A :			•	:		25/0		
	1	0.95 becoming claye some sand, son	y silt, brown and grey, ne gravel, moist	194.86	\bigotimes	SS2	SPT	11	A			•		: 	25/0		
<u> </u>	2	CLAYEY SILT: trace sand, moi	Brown to grey mottled, st, stiff to very stiff			SS3	SPT	14	A		:		10 —1		30/0		0 2 64 34
} - - ;	3	3.1		102.76		SS4	SPT	16	A				•		35/0		
-	-	becoming layer	ed with trace gravel	192.76		SS5	SPT	15	A				•		20/0		
EMPLATE.GDT 22-2-4	4	SILT: Grey, lay gravel, some cla	ered, trace sand, trace ay, very moist, compact	192.00		SS6	SPT	15	•			•) 	:	15/0		
	5		LL: Grey, some gravel,	190.63		4	SPT	9	A			•			15/0		
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA T		Borehole termin	ated at 5.2 m.											Ο _Γ	oon co	mpleti	on of augering No cave No free water

BH/MW NUMBER 110

PAGE 1 OF 1

Consulting Inc. CLIENT Charis Developments Ltd. PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd PROJECT NUMBER G2S21366B PROJECT LOCATION Collingwood, Ontario **COMPLETED** 21-10-1 GROUND ELEVATION 195.87 m DATE STARTED 21-10-1 DRILLING CONTRACTOR Davis LOGGED BY DB _____ CHECKED BY AA DRILLING METHOD CME 45 Track NOTES SPT N VALUES |

DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL I I I I I I I I I I I I I I I I I I	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL
-	FILL: Sand and gravel, brown, trace to some silt, possible cobble and boulder size material at the surface, moist			SS1	AU				25/0		
1				SS2	SPT	52	>>	•	25/0	Ţ	
2	1.6 SILT: Brown to grey, trace sand, some gravel, very moist, compact, reworked appearance at top portion	194.24 193.58		SS3	SPT	11	A	•	25/0		
3	CLAYEY SILT: Brown to grey mottled, trace sand, trace gravel, moist, stiff			SS4	SPT	14	▲ 225×	(45/0		
-	- - -			SS5	SPT	11	A X	•	25/0		
E.GDI 22-2-4	4.6	191.30									
S 2021 BH DAIA IEMPLAIE.GDI	SILT: Grey, occasional sand pockets, some clay, moist, loose	190.54		SS6	SPT	6	x	•	30/0		
S 2021 BH D	SANDY SILT TILL: Grey, some gravel, trace clay, very moist, compact	189.93		SS7	SPT	19	▲ 225	(●	30/0		

Borehole terminated at 5.9 m.

Water Level Readings: Date Depth (m) Elev. (m) 2022-01-21 194.4 1.4 194.9 2021-11-03 0.9 2021-10-13 2.0 193.9

2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4

		G25 Consulting Inc.					PAGE 1 OF 1								
	CLI	ENT Charis Developments Ltd.				_ PR	OJEC	ECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd							
		DJECT NUMBER G2S21366B					OJEC	ECT LOCATION Collingwood, Ontario							
- 1		TE STARTED _21-9-30 COMPLETED _													
- 1		LLING CONTRACTOR Davis LLING METHOD CME 45 Track						G CHECKED BY _AA							
ŀ			ON (m)	C LOG	3ER			L COT NI VALLIEC							
	DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N values CPT values							
-	-	FILL: Sand and gravel, brown, some silt, cobble and boulder size material at the surface, moist			SS1	SPT	32								
-	1	1.5	194.22		SS2	SPT	36	5 A O							
-	2	CLAYEY SILT: Brown to grey, trace sand, some gravel, moist to very moist, stiff to very stiff, reworked appearance at top portion			SS3	SPT	16	5 A •							
-	3	3.1	192.67		SS4	SPT	12	2 🛕							
-	-	SILT: Grey, layered, trace sand, trace gravel, some clay, wet, very loose	192.07		SS5	SPT	4								
.GDT 22-2-4	4					VANE		2:8 80							
A TEMPLATE	5				SS6	SPT	1								
S 2021 BH DAT	6					VANE									
OGS.GPJ G2	-	SILTY SAND TILL: Grey, some gravel, trace clay, compact, wet	189.62		SS7	SPT	25								
2021 G2S GEOTECH BOREHOLE LOG G2S21386 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4		Borehole terminated at 6.6 m.						Upon completion of augerin Cave at 5.8 i Free water at 1.2 i							

PAGE 1 OF 1

Consulting Inc.		BOKEHOLE
ENT Charis Developments Ltd.	PROJECT NAME	839 & 869 Hurontario St & 7564

CL	IENT Charis Developments Ltd.	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd													
PF	ROJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario										
DA	ATE STARTED 21-9-30 COMPLETED	21-10-	.1		_ GR	GROUND ELEVATION 195.87 m									
DF	RILLING CONTRACTOR Davis				_ LO	GGED) BY	DB			_ Cł	HECKED	BY A	Α	
DF	RILLING METHOD CME 45 Track				_ NO	TES									
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	ТҮРЕ	N VALUE	N v	rained Sheatet Penetromei	+	Pa) F	PLAST	—	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZ DISTRIBUTIO GR SA SI &
-	FILL: Sand and gravel, brown, some silt, possible cobble and boulder sized material at surface, moist			SS1	AU		4	0 80 	120 160 : : : : : :			0 30	15/0		GR SA SI &
1				SS2	SPT	23	-	•		•			20/0		
2	SILT: Greyish brown, layered, trace sand, trace gravel, some clay moist to wet, very loose to loose	194.37	7 XX	SS3	SPT	7					•		10/0		
3				SS4	SPT	10	_	•	×		•	•	20/0		
- -				SS5	SPT	4	A	×				•	15/0		
4				SS6	SPT	2	*				•)	20/0		
5				SS7	SPT	6	A			•			20/0		
	SANDY SILT TILL: Grey, some gravel, very moist, compact	190.54		SS8	SPT	12		A		•			15/0		
30.0FU 021	Borehole terminated at 5.9 m.											U	lpon co		ion of auger Cave at 3.0 water at 3.1
2021 G2S GEOTECH BOREHOLE LOG. G2S21386 BOREHOLE LOGS.GPJ. G2S 2021 BH DATA TEMPLATE.GJJ. 22-24															

PAGE 1 OF 1

G25		DUK
Consulting Inc.	DDO JECT NAME	830 & 860 Huronts
ENT ('harie L)evelonmente l td	PRO IECT NAME	230 X 260 Hir

CLI	CLIENT Charis Developments Ltd. PROJECT NUMBER G2S21366B							PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd PROJECT LOCATION Collingwood, Ontario											
PR																			
DA	TE STARTED 21-9-30	COMPLETED	21-9-3	30		_ GR	OUNI) ELE	VAT	ION	19	4.85 ו	m						
DR	ILLING CONTRACTOR Davis					_ LO	GGE	BY	DB					С	HECI	KED I	BY _/	AA	
DR	ILLING METHOD CME 45 Track	Κ				NO	TES												
DEPTH (m)	MATERIAL DESCR	RIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBE	TYPE	N VALUE	Und Pock	SPT Notation of the Penetral Notation of the P	S CF	Strengt	alues 40 th (kPa)	M	LAS		ſΥ	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION GR SA SI &C
-	CLAYEY SILT: Brown to	grey trace	134.00		SS1	SPT	6			:	:		:	•		:			
1	sand, trace organics, mo stiff, reworked appearan portion	pist, firm to very			SS2	SPT	17		A			· · · · · · · · · · · · · · · · · · ·		•					
2	2.3		192.56	6	SS3	SPT	12		A	· · · · · · · · ·	: : : : : : : :	· · · · · · · · ·			•				
3	SILT: Greyish brown, lay sand, trace gravel, some wet, very loose to loose	e clay moist to	191.80	0	SS4	SPT	6	A		: : : : : : : :	: : : : : : :				•	: : : : : : :			
 	CLAYEY SILT: Brown to sand, trace gravel, moist	grey, trace t, very soft			SS5			MH -						-	•				1 3 68 2
 	4.6 SILTY SAND TILL/SANI	DY SILT TILL:	190.28	8		VANE		20				· · · · · · ·							
5	Grey, some gravel, some moist, loose to very dens	e clay, very se			SS6	SPT	4	<u> </u>					•	•••••	: : :	: : : :			16 38 28 1
6					SS7	SPT	34			· · · · · · ·	A	:	•						
	6.7		188.14	4 2	SS8	SPT	50			: : : : : :	:	50/12	5 mm		:				
<u>4</u>	Borehole terminated at 6	5.7 m.														O _F	oon co		ion of augerin No cav water at 2.3 i

πριειιοn of augering No cave Free water at 2.3 m

		Consulting Inc.						PAGE 1 OF 1							
	CLI					DD	O IEC	ECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd							
		ENT Charis Developments Ltd. DJECT NUMBER G2S21366B					PROJECT LOCATION Collingwood, Ontario								
			24.0.2	0											
		TE STARTED _21-9-30 COMPLETED _					GROUND ELEVATION 195.01 m								
		ILLING CONTRACTOR Davis				LOGGED BY _DB CHECKED BY _AA									
	DK	LLING METHOD CME 45 Track		_		_ NC	IES .	SPT N VALUES 0 7							
	DEРТН (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG		TYPE	N VALUE	N values CPT values							
		O.110 TOPSOIL: ~100 mm CLAYEY SILT: Brown to grey, some sand, trace organics, occasional sand seams, moist, firm to very stiff, reworked	194.91		SS1	SPT	5								
	1	appearance at the top portion			SS2	SPT	18								
	2				SS3	SPT	6								
		SILT: Grey, layered, trace sand, trace gravel, some clay, moist, soft	192.72		SS4	SPT	4								
	3	SANDY SILT TILL: Grey, trace to some gravel, trace clay, compact, wet	191.96		SS5	SPT	11								
TEMPLATE.GDT 22-2-4	4														
'A TEMPLATE.	5	5.2	189.83		SS6	SPT	11	: : : : : : : : : : : : : : : : : : : :							
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA		Borehole terminated at 5.2 m.						Upon completion of augerin No cav Free water at 3.7 r							
2021 G;															

PAGE 1 OF 1

	DOILLIOLL MOMBLIX
G25 Consulting Inc.	PAGE ²
CLIENT Charis Developments Ltd.	PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd
PROJECT NUMBER G2S21366B	PROJECT LOCATION Collingwood, Ontario

 DATE STARTED
 21-10-1
 COMPLETED
 21-10-1
 GROUND ELEVATION
 195.28 m

__ LOGGED BY _DB _____ CHECKED BY _AA DRILLING CONTRACTOR Davis DRILLING METHOD CME 45 Track NOTES _ SPT N VALUES

	DEPTH (m)		MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane Pocket Penetrometer Vane Pocket Penetrometer Vane PL MC LL
	DE			ELEV	GRA	ž		Z	Pocket Penetrometer Vane → 40 80 120 160 → PL MC LL → → → → → → → → → → → → →
ŀ		0.25	TOPSOIL: ~250 mm	195.03	3		ODT		
		0.76	FILL: Clayey silt, brown, some sand, trace gravel, moist	194.52	\otimes	SS1	SPT	2	
ŀ		0.70	CLAYEY SILT: Brown to grey, trace	194.52					
	<u> </u>		sand, trace organics, very moist, stiff, reworked appearance at the top portion			SS2	SPT	12	
ŀ						}			
	2	-				SS3	SPT	11	
ŀ		2.3		192.99					
		-	SILT: Greyish brown, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to loose			SS4	SPT	7	
İ		İ							
						SS5	SPT	1	
_	٠.	-							7 : : : : : :
7-7-77	4	-					VANE		5.0: : : : : : :
إج]							
-ATE.GD		4.6		190.71	Щ				
EMPLA	 5	-	SANDY SILT TILL: Grey, some gravel, trace clay, very dense, wet			SS6	SPT	50	50/100 mm
	IJ	5.2		190.10		1			T
إ			Borehole terminated at 5.2 m.		-5/V		•	•	Upon completion of augerin

Cave at 3.9 m Free water at 4.0 m

2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4

PAGE 1 OF 1

G2 S	7
Consulting Inc	

CLIENT Charis Developments Ltd.						PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd								
PR	OJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario									
DA	TE STARTED 21-10-22 COMPLETED	21-10-	22		GROUND ELEVATION 195.22 m									
DR	ILLING CONTRACTOR LST			_ LO	GGED	BY DB	CHECKED BY _AA	A						
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _								
DEРТН (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL 10 20 30	MELL CONSTRUCTION WELL CONSTRUCTION WE WELL CONSTRUCTION WELL CONSTRUCTION WELL CONSTRUCTION WELL CONS					
	FILL: Sandy silt, dark brown to brown, trace clay, trace gravel, trace organics, moist			SS1	SPT	5	A	•						
1	1.1 CLAYEY SILT: Brown, some sand, reworked appearance at top portion, moist, stiff	194.15		SS2	SPT	7	A	•						
2	2.1	193.09	1333I	SS3	SPT	11	A	•						

Borehole terminated at 2.1 m.

PAGE 1 OF 1

		G	25
C	nsult	i n a	Inc.

CL	IENT Charis Developments Ltd.				_ PR	OJEC.	F NAME <u>839 & 869 Hu</u>	rontario St & 7564 F	oplar Side	Rd
PR	OJECT NUMBER G2S21366B				_ PR	OJEC	LOCATION Collingwo	ood, Ontario		
DA	TE STARTED 21-10-22 COMPLETED	21-10-	22		_ GR	OUND	ELEVATION 194.39 n	<u>n</u>		
DR	ILLING CONTRACTOR LST				_ LO	GGED	BY DB	CHECKED B	Y _AA	
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _				
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL I D I 10 20 30	SOIL GAS READINGS HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL
	TOPSOIL: ~75 mm CLAYEY SILT: Brown to grey, occasional sand seams, moist to very moist, firm to stiff, reworked appearance	194.32	<i>YYY</i>	SS1	SPT	5	A ×	•	0/0	
1	at top portion			SS2	SPT	9	▲ 225×	•	0/0	
2	2.1	192.26		SS3	SPT	9	▲ 225	•	0/0	

Borehole terminated at 2.1 m.

Upon completion of augering No cave

No free water

PAGE 1 OF 1

	/	G	2 5
Cons	ult	i n a	Inc.

CL	ENT Charis Developments Ltd.		PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd											
PR	OJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario									
DA	TE STARTED 21-10-1 COMPLETED 2	21-10-1	1		GROUND ELEVATION 194.74 m									
DR	ILLING CONTRACTOR Davis		LO	GGED	BY DB	CHECKED BY	AA							
DR	ILLING METHOD CME 45 Track				NO	TES _								
DEPTH (m)	MATERIAL DESCRIPTION	ᇳ│	GR	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values \[\begin{array}{ccccc} \limits & \triangle \limits	MOISTURE / PLASTICITY PL MC LL I D I 10 20 30	HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL				
	0.20 TOPSOIL: ~200 mm	194.54												
	FILL: Silty sand, brown, trace gravel, moist, contains brick debris	193.98	\bowtie	SS1	SPT	3		•						
1	CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist stiff to very stiff			SS2	SPT	16	A	•						
2	2.1	192.61	<i>7</i> 7771	SS3	SPT	13	A	•						

Borehole terminated at 2.1 m.

PAGE 1 OF 1

	4	N	V							2		5
c	0	n	s	u	I	t	i	n	g	1	n	С.

CL	IENT Charis Developments Ltd.				_ PR	OJEC.	T NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd
PR	OJECT NUMBER G2S21366B				_ PR	OJEC ⁻	T LOCATION Collingwood, Ontario
DA	TE STARTED 21-10-21 COMPLETED	21-10-	21		_ GR	OUND	D ELEVATION 195.66 m
DR	ILLING CONTRACTOR LST				_ LO	GGED	D BY _DB CHECKED BY _AA
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _	
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values
- ·	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist			SS1	SPT	28	
1	1.2 CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist, very stiff	194.46		SS2	SPT	16	
2	2.1	193.53		SS3.	SPT	17	

Borehole terminated at 2.1 m.

PAGE 1 OF 1

	/	G	2 5
Consu	Ιt	i n a	Inc.

CL	CLIENT Charis Developments Ltd.						PROJECT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd							
PR	OJECT NUMBER G2S21366B				PROJECT LOCATION Collingwood, Ontario									
DA	TE STARTED 21-10-21 COMPLETED	21-10-2	21		GROUND ELEVATION 195.83 m									
DR	DRILLING CONTRACTOR LST						BY DB	CHECKED BY	AA					
DR	ILLING METHOD _ Diedrich D50 Track				_ NO	TES _								
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY SET IN THE PLASTICITY	HEX/IBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI &CL				
 	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist			SS1	SPT	22	A	•						
1	1.4	194.48		SS2	SPT	29	A	•						
2	CLAYEY SILT: Brown to grey mottled, trace sand, moist to very moist, very stiff 2.1	193.70		SS3	SPT	18	A	•						

Borehole terminated at 2.1 m.

PAGE 1 OF 1

G25	
Consulting Inc.	

CL	IENT Charis Developments Ltd.			PR	OJEC	T NAME <u>839 & 869 Hu</u>	<u>ırontario St & 7564 P</u>	<u>oplar Side</u>	Rd
PR	OJECT NUMBER G2S21366B			PR	OJEC.	T LOCATION Collingwo	ood, Ontario		
DA	TE STARTED 21-10-1 COMPLETED	21-10-1	1	GF	OUND	ELEVATION 194.70 r	<u>m</u>		
DR	ILLING CONTRACTOR Davis			LO	GGED	BY DB	CHECKED BY	r _AA	
DR	ILLING METHOD CME 45 Track								
DEPTH (m)	MATERIAL DESCRIPTION 0.15 TOPSOIL: ~150 mm CLAYEY SILT: Brown to grey mottled,	ELEVATION (m)	GRAPHIC LOG		ω N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PL MC LL 10 20 30	SOIL GAS READINGS HEXIBL (ppm) WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION % GR SA SI & CL
1	trace sand, moist to very moist, stiff to very stiff	192.57	SS SS		15	A			
-	H=** .					 			

Borehole terminated at 2.1 m.

	G2S Consulting Inc.							БΠ/	IVIVV	IVUI		ER 122 AGE 1 OF
					_ PR	OJEC.	T NAME <u>839 & 869 Hurd</u>	ontario S	<u> </u>	Popla	r Side	Rd
	ROJECT NUMBER G2S21366B						T LOCATION Collingwood		О			
	ATE STARTED 21-9-30 COMPLETED	21-9-3	0				ELEVATION 195.09 m					
	RILLING CONTRACTOR Davis						BY DB		ECKED	BY _A	Α	
DR	RILLING METHOD CME 45 Track				_ NO	TES _						
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTUPLASTI	CITY	SOIL GAS READINGS HEX/IBL (ppm)	VELL CONSTRUCTION	GRAIN SIZ DISTRIBUTIO GR SA SI &
		194.84	1 7/1/					: :	:			
	FILL: Clayey silt, brown to dark brown, mixed with organics, some sand, some gravel, moist	194.33	\bowtie	SS1	SPT	3						
1	CLAYEY SILT: Brown to grey, occasional sand seams, trace gravel, moist to very moist, stiff to very stiff		S	SS2	SPT	16	A	•				
2	2.3	192.80		SS3	SPT	11	A	•				
3	SILT: Greyish brown, layered, trace sand, trace gravel, some clay, very moist to wet, very loose to loose	102.33	Ш	SS4	SPT	7	A		•			
			S	SS5	SPT	0 ^V	H		•			
4	4.6	190.52		,	VANE		3.0		<u>:</u>			
5	CLAYEY SILT: Brown to grey, trace			SS6	SPT	0 4	H	H)			5 3 60
6	6.1	188.99										
	SAND TILL: Grey, medium to coarse, mixed with gravel, trace silt, wet, compact to very dense	100.33		SS7	SPT	17	A	•				33 60
7												
8	8.2	186.86	K/XI	SS8	SPT	64	>>	•				
	Borehole terminated at 8.2 m.								<u>Date</u> 2022-0 2021-1	1-21 1-03	Depth 0 0	.1 195.
									2021-1	υ-13	0	.4 194

V	vater Levei	Readings:
Date	Depth (m)	Elev. (m)
2022-01-21	0.0	195.1
2021-11-03	0.1	195.0
2021-10-13	0.4	194.7

PAGE 1 OF 1

	\bigvee	G	25
Ĉ.	nsult	i n a	Inc.

CL	Charis Developments Ltd.				_ PR	OJEC	NAME <u>839 & 869 Hur</u>	rontario St & 7564 Popla	r Side Rd	_
PR	OJECT NUMBER G2S21366B				_ PR	OJECT	T LOCATION Collingwo	od, Ontario		_
DA	TE STARTED 21-10-21 COMPLETED	21-10-	21		_ GR	OUND	ELEVATION _ 195.75 m	1		
DR	ILLING CONTRACTOR LST				_ LO	GGED	BY DB	CHECKED BY _A	A	_
DR	ILLING METHOD Diedrich D50 Track				_ NO	TES _				_
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	SPT N VALUES N values CPT values 10 20 30 40 Undrained Shear Strength (kPa) Pocket Penetrometer Vane 40 80 120 160	MOISTURE / PLASTICITY PLASTICITY PL MC LL 10 20 30	MELL CONSTRUCTION MIRAD MIRAD GR SA GR SA	JTION %
	FILL: Sand and gravel, brown, some silt, cobble and boulder size material on the surface, moist			SS1	SPT	25	A	•		
<u>1</u> 	0.93 CLAYEY SILT: Greyish brown, mottled, trace sand, trace gravel, moist, stiff to very stiff	194.83		SS2	SPT	14	A	•		
2	2.1	193.62		SS3	SPT	15	A	•		

Borehole terminated at 2.1 m.

BH/MW NUMBER 101A

PROJECT NUMBER G2S21366B PROJECT LOCATION Collingwood, Ontario DATE STARTED 22-1-7 COMPLETED 22-1-7 GROUND ELEVATION 194.50 m LOGGED BY DB CHECKED BY AA NOTES WATERIAL DESCRIPTION SPIT OF SAMPLING BY A SIGNAN SIGNAL STREET	Consulting Inc.		PPG 1505 NAME	
DATE STARTED 22-1-7 COMPLETED 22-1-7 GROUND ELEVATION 194.50 m LOGGED BY DB CHECKED BY AA DRILLING METHOD CME 45 Track MATERIAL DESCRIPTION MATERIAL DESCRIPTION Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Borehole terminated at 4.6 m. Borehole terminated at 4.6 m. GROUND ELEVATION 194.50 m LOGGED BY DB CHECKED BY AA LOGGED BY DB CHECKED BY AA NOTES MOISTURE / PLASTICITY PL NO LL 10 20 30 40 MOISTURE / PLASTICITY PL NO LL 10 20 30 40 MOISTURE / PLASTICITY PL NO LL 10 20 30 50 10 10 20 30 10 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30				
DRILLING CONTRACTOR Davis DRILLING METHOD OME 45 Track NOTES MATERIAL DESCRIPTION MATERIAL DESCRIPTION Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST Borehole terminated at 4.6 m. Date More of the contractor of the				
Borehole terminated at 4.6 m. Comparison				
MATERIAL DESCRIPTION Section Se				
MATERIAL DESCRIPTION Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST ST Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 1 ST ST ST ST ST ST ST	ONE TO TRUCK			
Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Bentonite seal 1 ST Borehole terminated at 4.6 m. Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation Filter sand 1 ST Water Level Readin Depth (m) Elev. (1)	(E) H MATERIAL DESCRIPTION	ELEVATION (m) GRAPHIC LOG NUMBER	N values CPT values N values CPT values	MOISTURE / PLASTICITY SOIL GAS READINGS HEXIBITION WELL CONSTRUCTION WELL CONSTRUCTION WELL CONSTRUCTION WELL CONSTRUCTION WELL CONSTRUCTION CONSTRU
	and 4.57 m for monitoring well installation	1	40 80 120 160	Bentonite seal Filter sand Slotted screen Water Level Reading Date Depth (m) Elev. (r

BH/MW NUMBER 103A

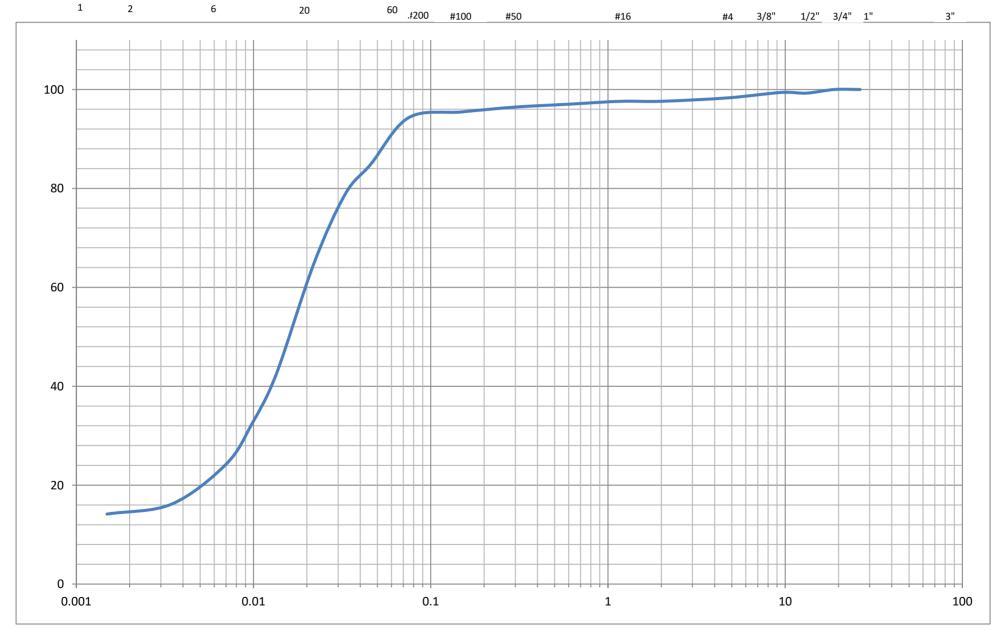
		625								P/	AGE 1 OF 1
,	~i i	Consulting Inc. ENT Charis Developments Ltd.				DD	O IEC.	Г NAME <u>839 & 869 Hu</u>	rontario St & 7564 Dan	lar Sida	Dd
								LOCATION Collingwo			Ku
		TE STARTED _22-1-7 COMPLETED _									
								BY DB		AA	
		LLING METHOD CME 45 Track									
_	(m)		(m) N	POOT	R.			SPT N VALUES N values CPT values A 10 20 30 40		_	
i i	DEPIH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	Undrained Shear Strength (kPa) Pocket Penetrometer Vane	MOISTURE / PLASTICITY PL MC LL PL MC LL PL MC LL	MELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION %
	1 1 2 2 3 3	Straight auger to 2.29 m for sampling and 4.57 m for monitoring well installation 4.6 Borehole terminated at 4.6 m.	189.82		1	ST				▼ Water Le	GRAIN SIZE DISTRIBUTION % GR SA SI &CL Stickup Bentonite seal Filter sand Slotted screen evel Readings: (m) Elev. (m) .7 193.7
021 G2S GEOTECH BOREHOLE LC											

BOREHOLE NUMBER 106A

	Consulting Inc.														P	AGE 1 OF 1
CL	IENT Charis Developments Ltd.				_ PR	OJEC	T NAN	/E _	839	& 869 Hu	ırontar	io St &	7564	Popla	r Side	Rd
PF	OJECT NUMBER G2S21366B									Collingwo						
D/	TE STARTED 22-1-7 COMPLETED	22-1-7	•		_ GR	ROUNE	ELE	VAT	ION	194.54 r	n					
DF	RILLING CONTRACTOR Davis				_ LO	GGED	BY	DB				CHEC	KED E	BY _A	·A	
DF	RILLING METHOD CME 45 Track				_ NO	TES .										
DEPTH (m)	MATERIAL DESCRIPTION	ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	N VALUE	Undr	alue:	Shear Strometer	LUES PT values \(\triangle 0 40 \) Strength (kPa) Vane \(\triangle 0 160 \)	MO PL/ PL	-	TY LL -	SOIL GAS READINGS HEX/IBL (ppm)	WELL CONSTRUCTION	GRAIN SIZE DISTRIBUTION %
- 1 - 2 - 2 - 3 - 3	Straight auger to 3.05 m for sampling and 4.57 m for monitoring well installation 3.1 SILT: Grey, some sand, some clay, trace gravel, wet, loose	191.49	9	SS1		6	A		0 12	20 160	10	20	30			GR SA SI &CL Stickup Bentonite seal Filter sand Slotted screen
GDT 22	4.4	190.12	2	SS2	SPT	6	A						•			
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA TEMPLATE.GDT 22-2-4 1-2-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4 1-2-2-4	Borehole terminated at 4.6 m.	190.12	2										Refe	er to re	eport fo	or groundwater elevation data

BH/MW NUMBER 115A

		G2S						PAGE 1 OF	1
	C	Consulting Inc. ENT Charis Developments Ltd.				DD	O IEC	CT NAME 839 & 869 Hurontario St & 7564 Poplar Side Rd	
		ENT Charis Developments Ltd. DJECT NUMBER G2S21366B						CT LOCATION Collingwood, Ontario	
		TE STARTED 22-1-7 COMPLETED	22-1-7					ID ELEVATION 195.28 m	
		LLING CONTRACTOR Davis						D BY DB CHECKED BY AA	
		LLING METHOD CME 45 Track							
ŀ				T.,				SPT N VALUES N values CPT values	
	Œ.		ELEVATION (m)	GRAPHIC LOG	<u>~</u>		ш		
	DEPTH (m)	MATERIAL DESCRIPTION		읟	NUMBER	TYPE	N VALUE	MOISTURE / NOISTURE /	
	닖		EVA	3AP		[-		Undrained Shear Strength (kPa) Pocket Penetrometer Vane PL MC LL ST GRAIN SI.	
				<u>5</u>				Pocket Penetrometer Vane PL MC LL S S S S S S S S S S S S S S S S S S	DN % CL
F	-	Straight auger to 3.05 m for sampling and 4.57 m for monitoring well						Stickup	
ŀ	-	installation							
Ī	1								
ŀ	1								
ţ	1							Bentonite sea	
ŀ	-								
Į	2								
ŀ	-								
ţ									
ŀ	3							Filter sand	
t	3	SILT: Grey, some sand, some clay,	192.23	3 					
F]	wet, loose			SS1	SPT	4		
ŀ	-				-				
2-2-4	4							Slotted screen	1
DT 2	-	4.3 4.4 ODAYELLY OUT THE COMMON TO	190.98	3	SS2	SPT	0 ,		
EMPLATE.GDT 22-2-4]	GRAVELLY SILT TILL: Grey, some sand, moist							
EMPL/		Borehole terminated at 4.6 m.						Water Level Readin <u>Date Depth (m) Elev.</u>	gs: (<u>m)</u>
TA TE								2022-01-21 0.6 194	.7
M DA									
021 E									
G2S									
GPJ									
OGS.									
OLEL									
REH									
66 BC									
S213									
96 62									
LE LO									
SEE SEE									
H BO									
OTEC									
S GE									
2021 G2S GEOTECH BOREHOLE LOG G2S21366 BOREHOLE LOGS.GPJ G2S 2021 BH DATA T									
\approx L									

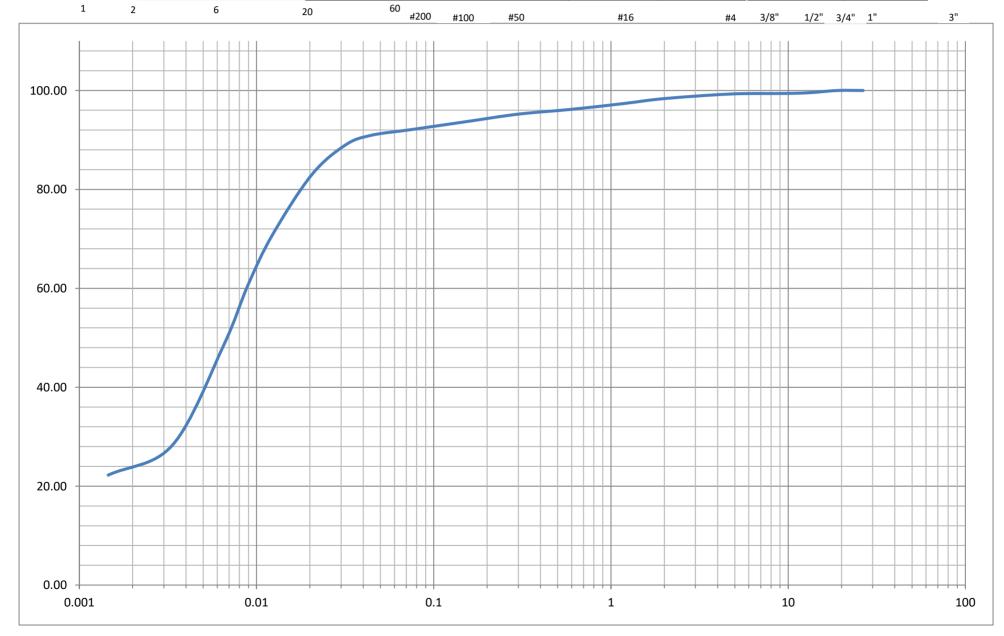

Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031A

Borehole/Sample No.: BH102-SS5

CLAY		SILT			SAND			GRAVEL	
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse

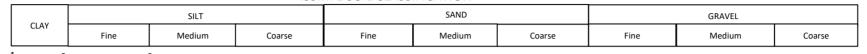

Project No.: G2S21366B

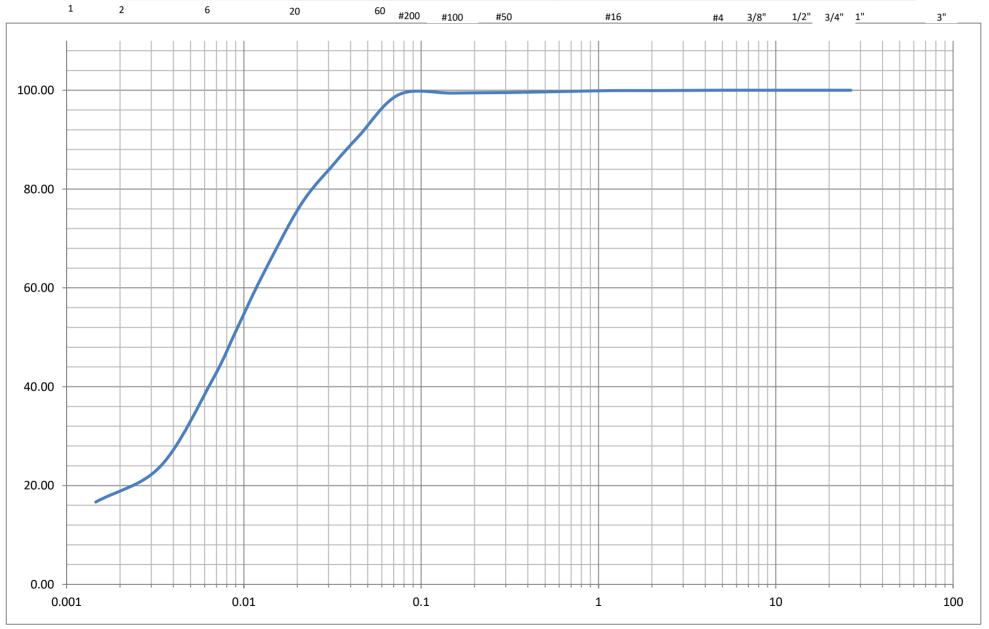
Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031B

Borehole/Sample No.: BH103-SS4

GI AV		SILT			SAND		GRAVEL			
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
1 -		_						,		

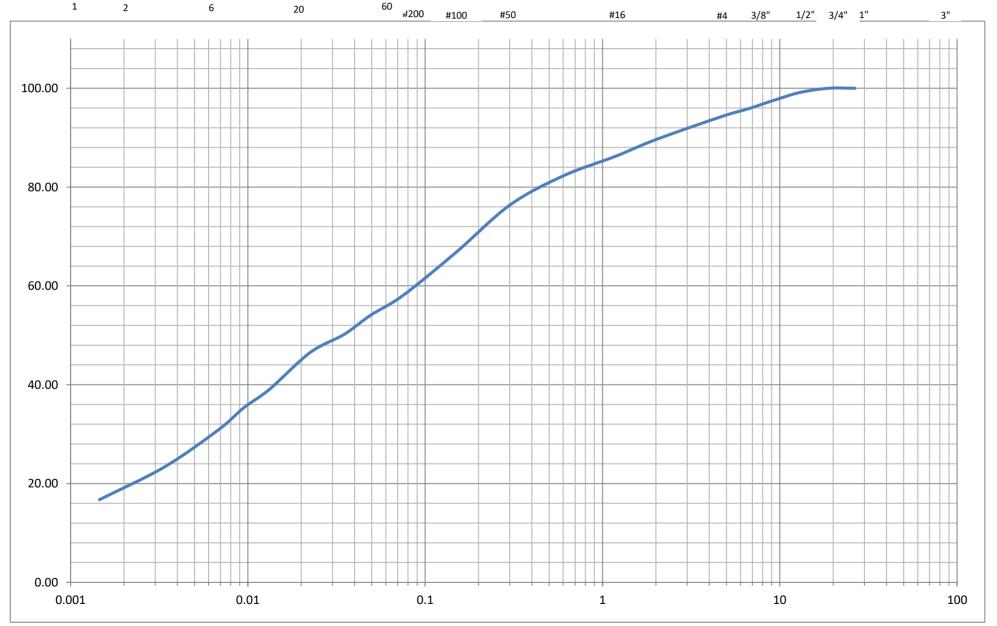



Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031C

Borehole/Sample No.: BH105-SS4

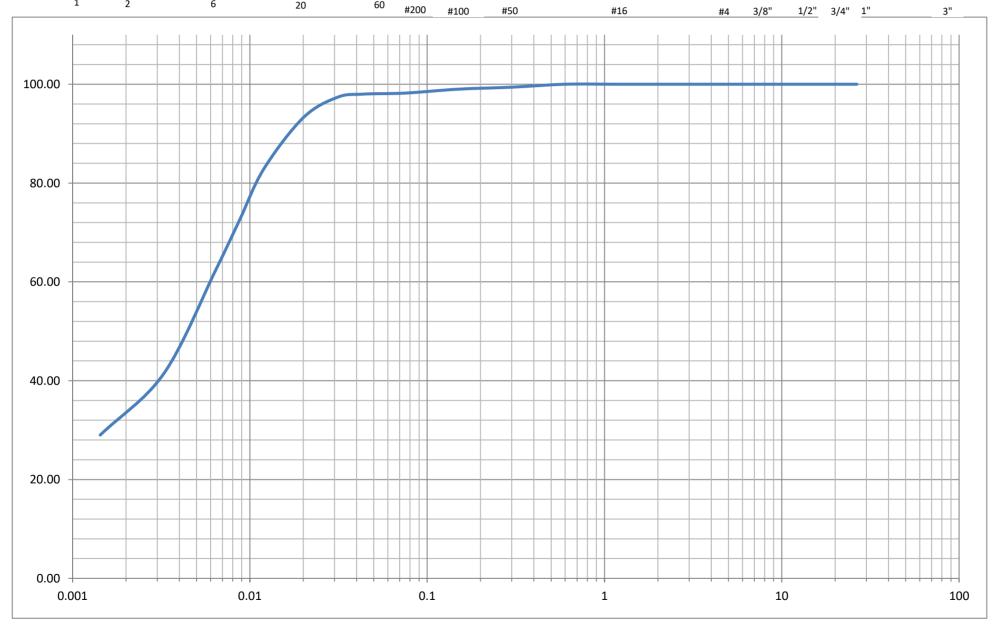

Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031D

Borehole/Sample No.: BH107-SS5

			SILT			SAND		GRAVEL			
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
1					0		•	-	-		

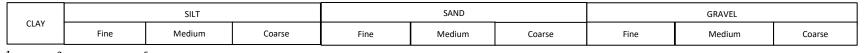

Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St. & 7564 Poplar St.

Lab No.: # 21031E

Borehole/Sample No.: BH109-SS3

81.417		SILT			SAND		GRAVEL			
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	


Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031F

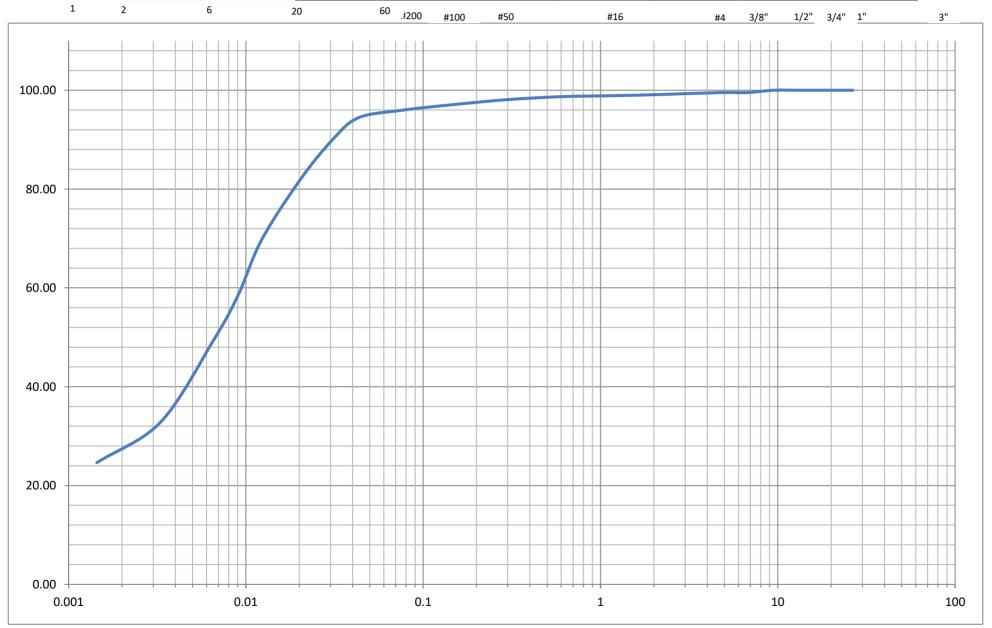
Borehole/Sample No.: BH113-SS6

ISSMFE SOIL CLASSIFICATION

60 #200 20 #100 #50 #16 #4 3/8" 1/2" 3/4" 1" 3" 100.00 80.00 60.00 40.00 20.00 0.00 0.001 0.01 0.1 1 10 100

Particle Size (mm)

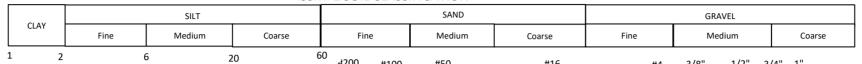
`

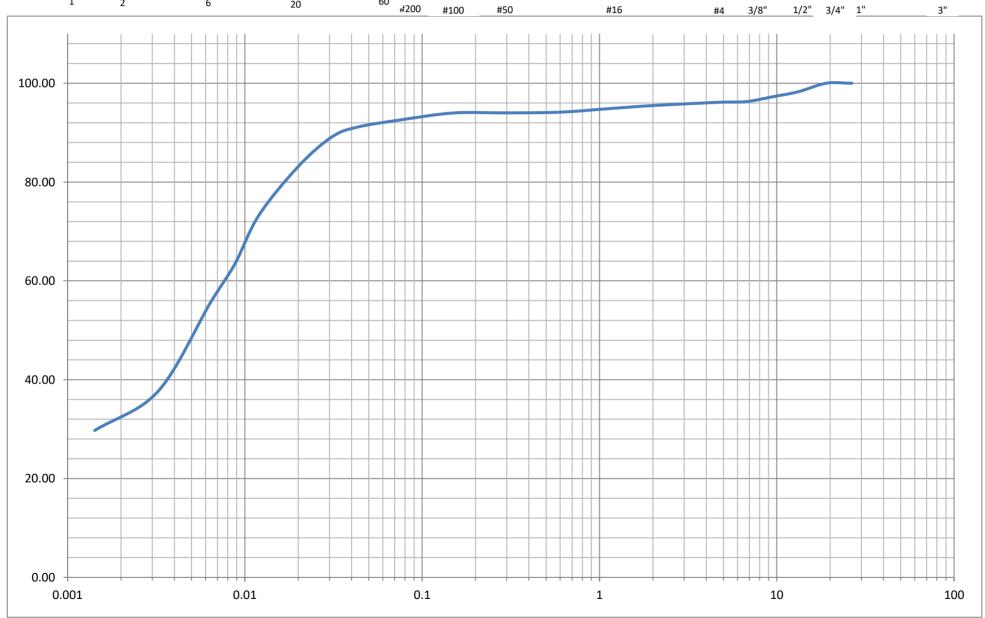

Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St. & 7564 Poplar St.

Lab No.: # 21031G

Borehole/Sample No.: BH113-SS5

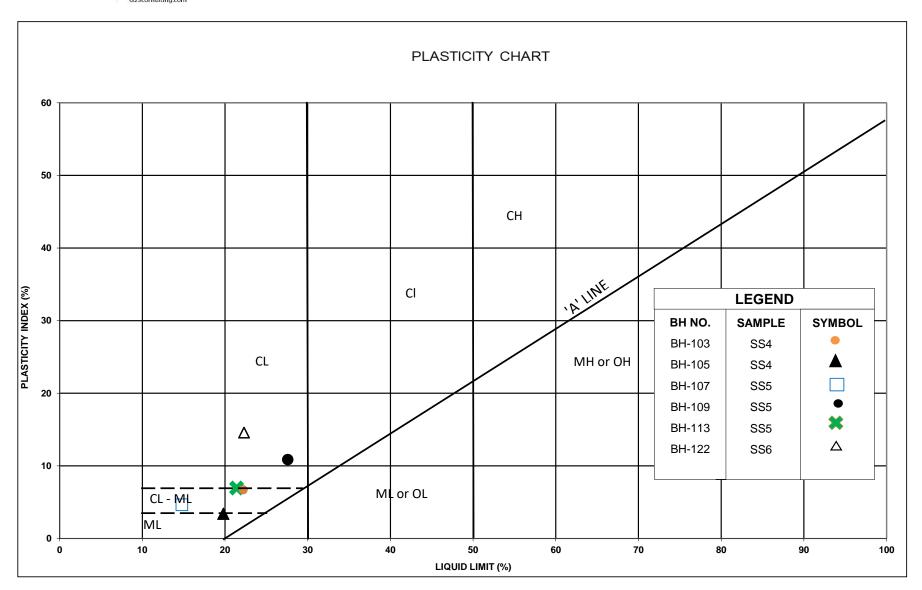



Project No.: G2S21366B

Project Name: 839 & 869 Hurontario St.&7564 Poplar St.

Lab No.: # 21031H

Borehole/Sample No.: BH122-SS6



 Project No.:
 G2S21366
 Lab No.:
 21031

Project Name 839 & 869 Hurontario St. & 7564 Poplar Side Rd. Borehole/Sample No.:

