

161-00941-00

April 13, 2017

Mr. John Velick, Engineering Manger Town of Collingwood 97 Hurontario Street Collingwood, ON L9Y 2L8

Re:

Site Feasibility and Stormwater Management Design

40 Sandford Fleming Drive Town of Collingwood

Dear Mr. Velick:

WSP was retained by Mr. Ray Smith in order to assess the site feasibility (sanitary and water) and existing and proposed stormwater conditions for his property located at 40 Sandford Fleming Drive in Collingwood. It is understood that the proposed industrial development is to not adversely affect the existing stormwater system on 40 Sandford Fleming Drive.

Water Servicing

The existing 25mm diameter water service will be used for the site. The proposed building will house offices, a few washrooms and room for the industrial process. Industrial water use is limited to bottle washing.

Recent water records for ISOWATER (the tenant) were obtained from their existing site based on Municipal water bills:

Date	Water Usage (m3)	Average Daily Usage (L/day)
January 2017	0.21	10.5
December 2016	0.26	13.0
November 2016	0.36	18.0
October 2016	0.29	14.5

Based on the above water records, the existing service will be sufficient for the site.

Sanitary Servicing

The existing 150mm diameter sanitary service will be used for the site. Wastewater will be limited to a few on site washrooms and some wash water used to clean bottles. Existing water records show minor water usage for an industrial type building. Based on the water records provided above, the existing service will be sufficient for the site.

Stormwater Management

The site previously consisted of a large gravel parking area, storage containers and landscape materials. The remainder of the undevelopable site was forest and brush. Most of the existing stormwater on site currently sheet flows to the front of the property to the ditch on Sandford

Fleming Drive. A portion drains east to the neighbours property and then north to the Sandford Fleming ditch. A small portion at the back of the property flows south to neighbouring lands.

Since Mr. Smith acquired the property, the site has been stripped and tree clearing has occurred for the proposed development.

Test pits were completed at the site on March 29th, 2016. The testpits generally conform as follows: 0.3-0.6m topsoil or gravel, 1.3 m of sandy silt till/gravel. Digging refusal at roughly 1.6m below grade on average due large stones and consolidated the soil into a solid state

See Drawing 161-00941-01 Existing Conditions attached and associated pre-development conditions storm water calculations (2, 5, 10, 25, 50 and 100 year storm events).

The developed area consists of the proposed industrial building, the pedestrian walkways, asphalt parking area to the west of the building and the gravel parking area (including loading areas) south of the building. Further, a fenced in storage area is located to the south of the building and will be constructed of 3/4" clear stone. The remaining site will be sodded or seeded and will include grass lined swales.

The proposed stormwater works include the entire site being directed via two (2) swales to the Sandford Fleming Drive ditch. See Drawing 161-00941-02.

Stormwater calculations were completed for the proposed post – development conditions (2, 5, 10, 25, 50 and 100 year storm events). The gravel parking area was assumed as asphalt for the purposes of the stormwater calculations. The time of concentration was calculated for each catchment area using the Airport formula. A minimum time of concentration of 10min was utilized per the Town standards. C factors were calculated based on MOE design guidelines and increased by 10% for 25-year, 20% for 50-year and 25% for 100-year to account for soil saturation. See attached proposed conditions site plan, 161-00941-03, and associated calculations.

Stormwater from Area P3 will be contained within the clear stone storage area and exfiltrate into the native soils. The storage calculations assume 40% voids in the clear stone. It was found through calculation that the existing sandy soil can infiltrate at 0.84 L/s (see attached calculations). This is considered a conservative calculation as safety factors were applied. In order to determine infiltration from the proposed storage area, the existing soils were reviewed for permeability. Based on the attached tables, a K value was assumed of 5x10⁻⁶ m/s for the sandy silt till/gravel soil. A safety factor of 2 was applied to this value. Over a 72hr period, the area can exfiltrate 217.7m3.

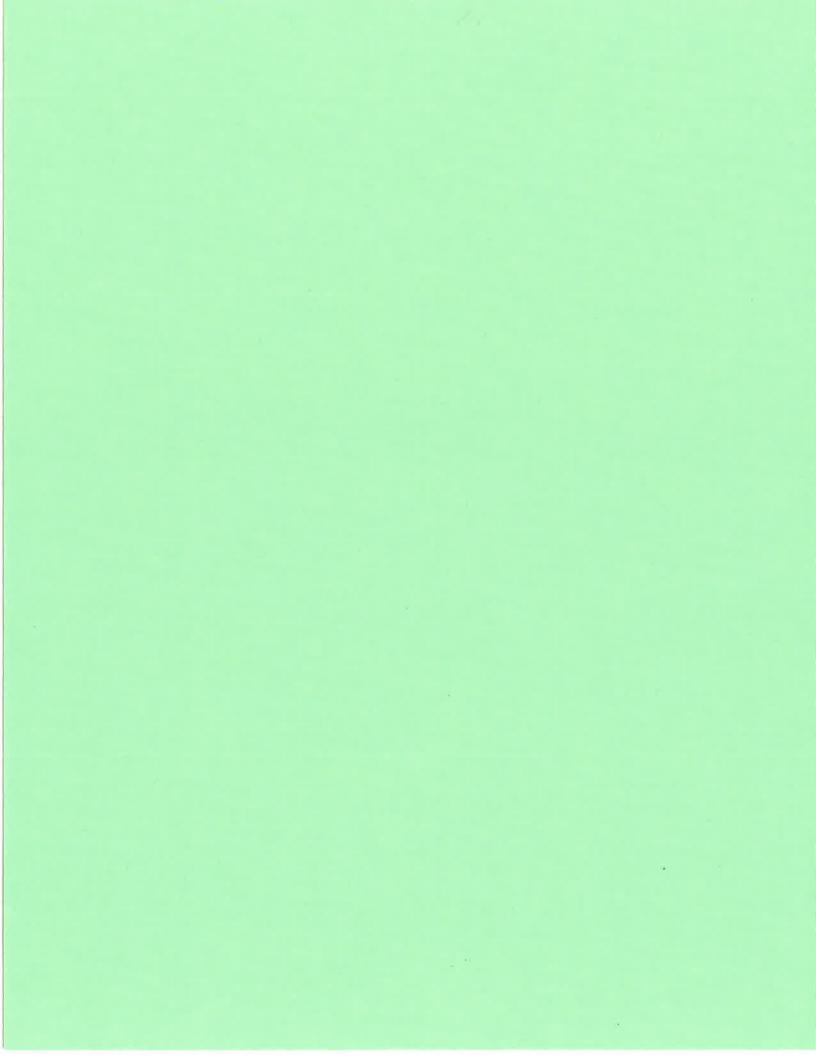
Considering the above, no stormwater control within the swales will be required. Due to the runoff travel distance in long swales on site, permeability of existing soils and proposed sheet flow, the proposed flows to the Sandford Fleming Drive ditch are less than the calculated existing pre-development condition flows.

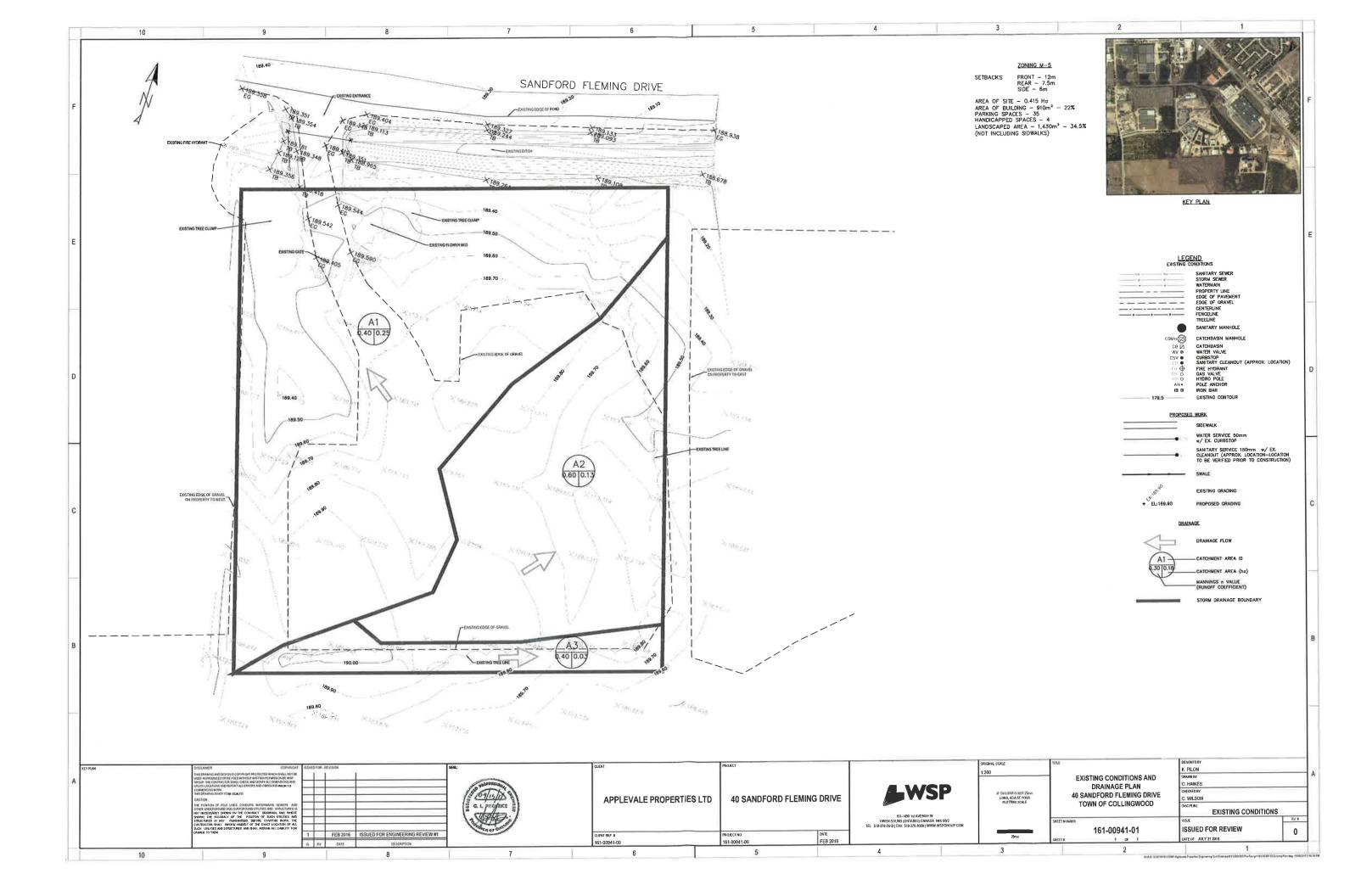
Stormwater quality is being proposed via the grass lined swales on the east and west side of the property.

If you have any questions regarding this report or with the proposed storm water system, please do not hesitate to contact the undersigned at (519) 376-7612 ext. 13218 or at Kim.Pilon@wspgroup.com.

Yours truly,

WSP Canada Inc.


Kim Pilon, EIT


KP/GLP

Encl.

cc: Mr. Ray Smith, Property Owner

George L. Prentice, P. Eng.

Design Chart 1.07: Runoff Coefficients

- Urban for 5 to 10-Year Storms

		Land Use	Runoff Co	efficient
		Suite ope	Min.	Max.
		Pavement - asphalt or concrete - brick	0.80	55 0.95 0.85
pre	->	Gravel roads and shoulders, parking Lot	0.40	0.60
		Roofs	0.70	0.95
		Business - downtown - neighbourhood - light - heavy	0.70 0.50 0.50 0.60	0.95 0.70 0.80 0.90
		Residential - single family urban - multiple, detached - multiple, attached - suburban	0.30 0.40 0.60 0.25	0.50 0.60 0.75 0.40
post	\rightarrow	Industrial - light - heavy	0.50 0.60	0.80 0.90
	i	Apartments Parks, cemeteries Playgrounds (unpaved) Railroad yards Unimproved areas	0.50 0.10 0.20 0.20 0.10	0.70 0.25 0.35 0.35 0.30
180		Lawns - Sandy soil - flat, to 2% - average, 2 to 7% - steep, over 7% - Clayey soil	0.05 0.10 0.15	0.10 0.15 0.20
		- flat, to 2% - average, 2 to 7% - steep, over 7%	0.13 0.18 0.25	0.17 0.22 0.35

For flat or permeable surfaces, use the lower values. For steeper or more impervious surfaces, use the higher values. For return period of more than 10 years, increase above values as 25-year - add 10%, 50-year - add 20%, 100-year - add 25%.

The coefficients listed above are for unfrozen ground.

Design Chart 1.07: Runoff Coefficients (Continued)

- Rural

Land Use & Topography ³		Soil Texture				
	Open Sand Loam	Loam or Silt Loam	Clay Loam or Clay			
CULTIVATED						
Flat 0 - 5% Slopes	0.22	0.35	0.55			
Rolling 5 - 10% Slopes	0.30	0.45	0.60			
Hilly 10-30% Slopes	0.40	0.65	0.70			
PASTURE						
Flat 0 - 5% Slopes	0.10	0.28	0.40			
Rolling 5 - 10% Slopes	0.15	0.35	0.45			
Hilly 10-30% Slopes	0.22	0.40	0.55			
WOODLAND OR CUTOVER		1000				
Flat 0 - 5% Slopes	0.08	0.25	0.35			
Rolling 5 - 10% Slopes	0.12	0.30	0.42			
Hilly 10-30% Slopes	0.18	0.35	0.52			
BARE ROCK	COVERAGE ³					
	30%	50%	70%			
Flat 0-5% Slopes	0.40	0.55	0.75			
Rolling 5 - 10% Slopes	0.50	0.65	0.80			
Hilly 10-30% Slopes	0.55	0.70	0.85			
LAKES AND WETLANDS	0.05					

Terrain Slopes

Sources: American Society of Civil Engineers - ASCE (1960) U.S. Department of Agriculture (1972)

Interpolate for other values of % imperviousness

C Values For Existing Conditions 40 Sandford Fleming Drive

			C Factor	C Factor
		Area (ha)	From Table	Calculated
A1	Total	0.03		0.4
	Gravel	0.011	0.6	
	Grass	0.019	0.25	
A2	Total	0.13		0.6
	Gravel	0.12	0.6	
	Grass	0.01	0.25	
А3	Total	0.25		0.4
	Gravel	0.11	0.6	
	Grass	0.14	0.25	

^{*} The above values are based on the MTO Drainage Manual Design Chart 1.07

40 Sandford Fleming Drive Pre-Development Site Drainage 5 Year Design Storm

		OCATION							
CATCHMENT ID	AREA	WATERSHE		RUNOFF COEFFICIENT, C	INDIV. 2.78 AR	ACCUM. 2.78 AR	TIME OF CONC.	RAINFALL INTENSITY I (mm/hr)	PEAK FLOW Q (L/s)
A1	0.25	65	1.2	0.40	0.278	0.278	17	57.97	16.12
A2 A3	0.130 0.030	52 8	0.85 1.3	0.60 0.40	0.217 0.033	0.217 0.033	12 10	70.06 78.28	15.19 2.61
PROJECT:		40 Sandford F	leming Drive			<u>NOTES</u>			
PROJECT NUMBER :		161-00941-00			$12_{YR} = 807.44$ (t+6.75)^0.828				
CLIENT :		Applevale Properties Ltd.						Designed By :	КР
DATE :		April 13, 2017						Checked By:	

40 Sandford Fleming Drive Pre-Development Site Drainage 5 Year Design Storm

		OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA	WATERSHE D LENGTH	WATERSHE D SLOPE, %	RUNOFF COEFFICIENT, C	INDIV. 2.78 AR	ACCUM. 2.78 AR	TIME OF CONC.	INTENSITY I (mm/hr)	FLOW Q (L/s)
A1	0.25	65	1.2	0.40	0.278	0.278	17	76.22	21.1
A2	0.130	52	0.85	0.60	0.217	0.217	12	91.79	19.90
A3	0.030	8	1.3	0.40	0.033	0.033	10		3.41
					17				
PROJECT:		40 Sandford Fleming Drive			<u>NOTES</u>				
PROJECT NUMBER :		161-00941-00		$I_{5YR} = 1135.4$ (t+7.50)^0.841					
CLIENT :		Applevale Properties Ltd.						Designed By :	KP
DATE :		April 13, 2017						Checked By:	

40 Sandford Fleming Drive Pre-Development Site Drainage 10 Year Design Storm

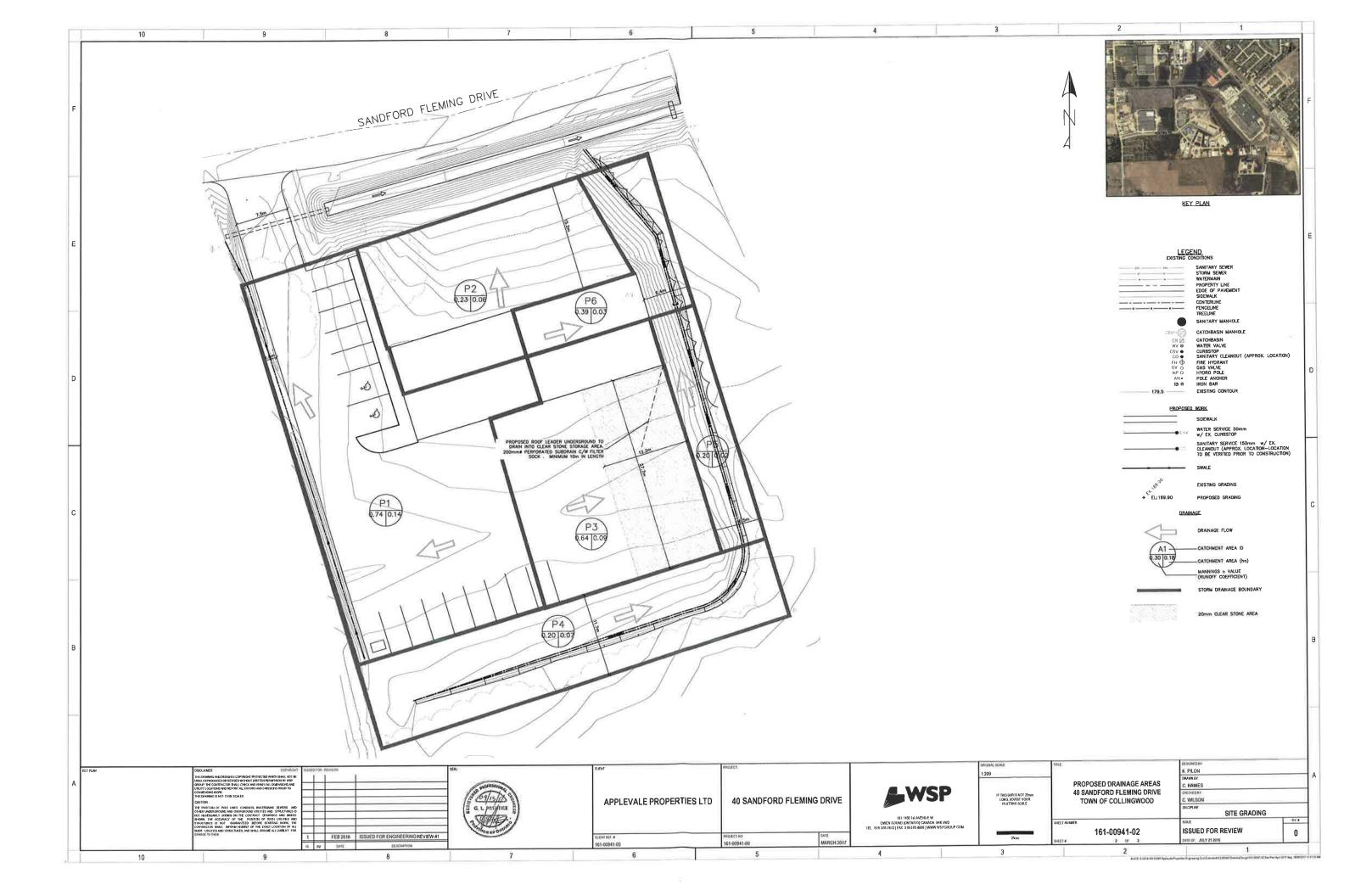
		OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA TOTAL (HA)	WATERSHE D LENGTH		RUNOFF COEFFICIENT, C	INDIV. 2.78 AR	ACCUM. 2.78 AR	TIME OF CONC.	INTENSITY I (mm/hr)	FLOW Q (L/s)
A1 A2 A3	0.25 0.130 0.030	65 52 8	1.2 0.85 1.3	0.40 0.60 0.40	0.278 0.217 0.033	0.278 0.217 0.033	12	88.45 106.36 118.36	24.59 23.06 3.95
					-				
PROJECT :		40 Sandford Fleming Drive			NOTES NOTES				
PROJECT NUMBER ;		161-00941-00			l _{10YR} =	(t+7.97)		,	
CLIENT :		Applevale Properties Ltd.						Designed By :	KP
DATE :		April 13, 2017						Checked By:	

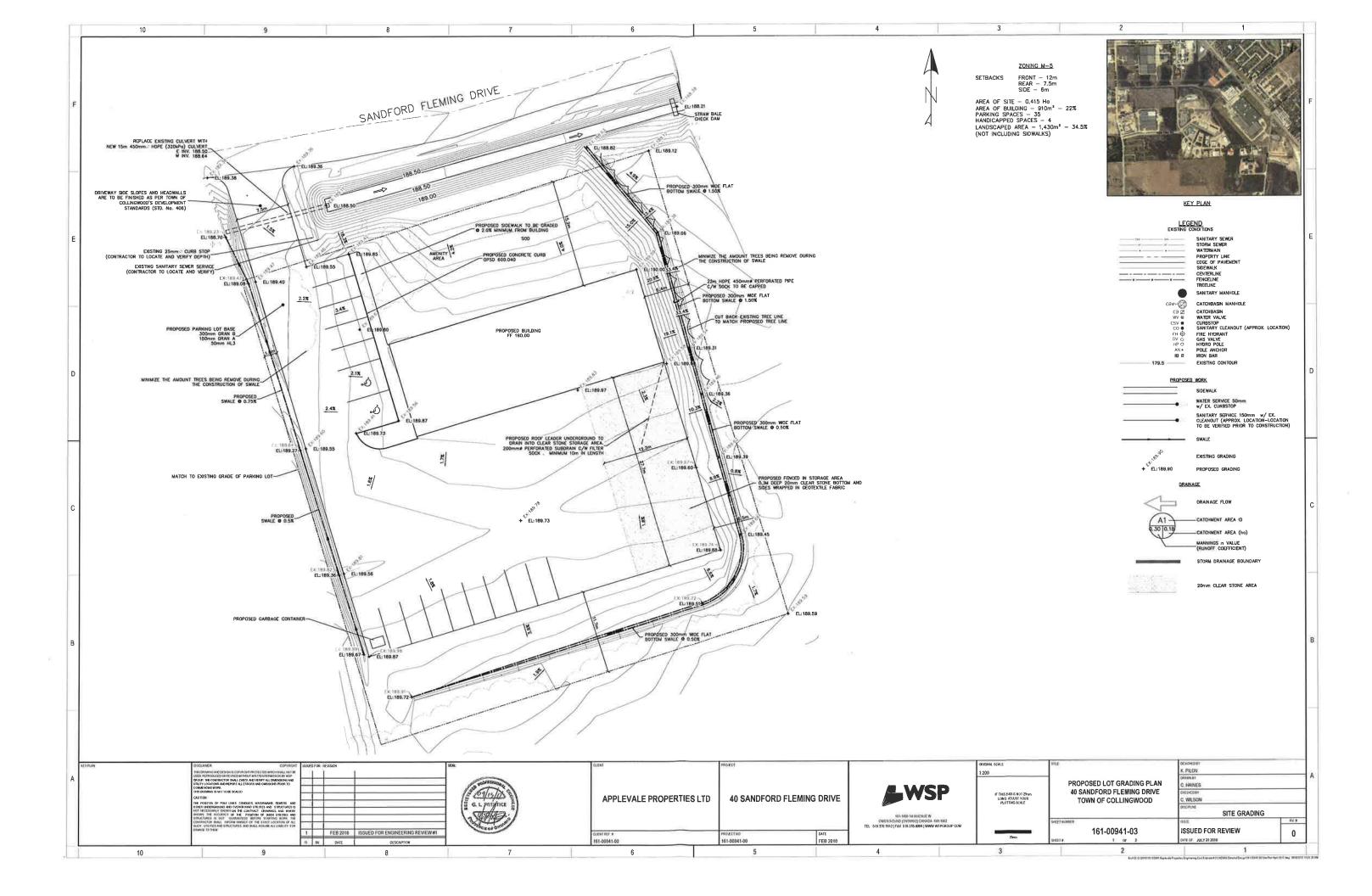
40 Sandford Fleming Drive Pre-Development Site Drainage 25 Year Design Storm

	L	OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA TOTAL		WATERSHE		INDIV.	ACCUM.	TIME OF	INTENSITY	FLOW
	(HA)	D LENGTH	D SLOPE, %	COEFFICIENT, C	2.78 AR	2.78 AR	CONC.	l (mm/hr)	Q (L/s)
A1	0.25	65	1.2	0.44	0.306	0.306	16	107.25	32.80
A2	0.130	52	0.85	0.66	0.239	0.239	11	132.74	31.66
A3	0.030	8	1.3	0.44	0.037	0.037	10	138.40	5.08
,,									
PROJECT :		40 Sandford Fleming Drive				NOTES			
					I _{25YR} =	167	6.2		
PROJECT NUMBER		161-00941-00				(t+8.30)	^0.858		
CLIENT :		Applevale Properties Ltd.						Designed By :	KP
		7						Ohlu- d D	
DATE:		April 13, 2017						Checked By:	

Comments:

40 Sandford Fleming Drive Pre-Development Site Drainage 50 Year Design Storm


		CATION						RAINFALL	PEAK
CATCHMENT ID	AREA	WATERSHE			INDIV.	ACCUM.	TIME OF	INTENSITY	FLOW
	TOTAL (HA)	D LENGTH	D SLOPE, %	COEFFICIENT, C	2.78 AR	2.78 AR	CONC.	l (mm/hr)	Q (L/s)
A1	0.25	65	1.2	0.48	0.334	0.334	15	123.53	41.21
A2	0.130	52	0.85	0.72	0.260	0.260	10		39.86
A3	0.030	8	1.3	0.48	0.040	0.040	10		6.13
PROJECT :		40 Sandford Fleming Drive			<u>NOTES</u>				
DDO IFOT NUMBER		104 00044 00			_{50YR} =	197			
PROJECT NUMBER :		161-00941-00				(t+9.00))^0.868		
CLIENT :		Applevale Properties Ltd.						Designed By :	KP
,								Checked By:	
DATE:		April 13, 2017							


40 Sandford Fleming Drive Pre-Development Site Drainage 100 Year Design Storm

		OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA TOTAL		WATERSHE		INDIV.	ACCUM.	TIME OF	INTENSITY	FLOW
	(HA)	D LENGTH	D SLOPE, %	COEFFICIENT, C	2.78 AR	2.78 AR	CONC.	I (mm/hr)	Q (L/s)
A1	0.25	65	1.2	0.50	0.348	0.348	15	138.24	48.04
A2	0.130	52	0.85	0.75	0.271	0.271	10		45.66
A3	0.030	8	1.3	0.50	0.042	0.042	10	168.45	7.02
					_ X				
PROJECT:		40 Sandford Fleming Drive				<u>NOTES</u>			
					I 100 _{YR} = 219		3.1		
PROJECT NUMBER :		161-00941-00		i i		(t+9.04)^0.871	1	
CLIENT:		Applevale Properties Ltd.						Designed By:	KP
								Checked By:	
DATE:		April 13, 2017							

Comments:

П					
П					
	*				
		9			
U					
				3	
- The state of the					

Design Chart 1.07: Runoff Coefficients

- Urban for 5 to 10-Year Storms

	Land Use	Runoff Co	efficient
	Datid OSC	Min.	Max.
	Pavement - asphalt or concrete - brick	0.80	55 0.95 0.85
pre	Gravel roads and shoulders, parking Lot	0.40	0.60
•	Roofs	0.70	90 0.95
	Business - downtown - neighbourhood - light - heavy	0.70 0.50 0.50 0.60	0.95 0.70 0.80 0.90
	Residential - single family urban - multiple, detached - multiple, attached - suburban	0.30 0.40 0.60 0.25	0.50 0.60 0.75 0.40
906t	Industrial - light - heavy	0.50 0.60	0.80 0.90
	Apartments Parks, cemeteries Playgrounds (unpaved) Railroad yards Unimproved areas	0.50 0.10 0.20 0.20 0.10	0.70 0.25 0.35 0.35 0.30
2	Lawns - Sandy soil - flat, to 2% - average, 2 to 7% - steep, over 7% - Clayey soil - flat, to 2%	0.05 0.10 0.15	0.10 0.15 0.20 0.17
	- average, 2 to 7% - steep, over 7%	0.18 0.25	0.22 0.35

For flat or permeable surfaces, use the lower values. For steeper or more impervious surfaces, use the higher values. For return period of more than 10 years, increase above values as 25-year - add 10%, 50-year - add 20%, 100-year - add 25%.

The coefficients listed above are for unfrozen ground.

Design Chart 1.07: Runoff Coefficients (Continued)

- Rural

Land Use & Topography ³		Soil Texture	SHOW.
	Open Sand Loam	Loam or Silt Loam	Clay Loam or Clay
CULTIVATED			
Flat 0 - 5% Slopes	0.22	0.35	0.55
Rolling 5 - 10% Slopes	0.30	0.45	0.60
Hilly 10-30% Slopes	0.40	0.65	0.70
PASTURE			
Flat 0 - 5% Slopes	0.10	0.28	0.40
Rolling 5 - 10% Slopes	0.15	0.35	0.45
Hilly 10-30% Slopes	0.22	0.40	0.55
WOODLAND OR CUTOVER			
Flat 0-5% Slopes	0.08	0.25	0.35
Rolling 5 - 10% Slopes	0.12	0.30	0.42
Hilly 10-30% Slopes	0.18	0.35	0.52
BARE ROCK	C	COVERAGE ³	
	30%	50%	70%
Flat 0-5% Slopes	0.40	0.55	0.75
Rolling 5 - 10% Slopes	0.50	0.65	0.80
Hilly 10-30% Slopes	0.55	0.70	0.85
LAKES AND WETLANDS		0.05	

² Terrain Slopes

Sources: American Society of Civil Engineers - ASCE (1960) U.S. Department of Agriculture (1972)

Interpolate for other values of % imperviousness

C Values For Proposed Conditions 40 Sandford Fleming Drive

			C Factor	C Factor
		Area (m2)	From Table	Calculated
P1	Total	1102		0.74
	Asphalt	937	0.8	
	Building	57	0.8	
	Grass	108	0.1	
P2	Total	638		0.23
	Building	122	0.8	
	Grass	516	0.1	
P3	Total	837		0.64
	Clear Stone	337	0.4	
	Building	125	0.8	
	Asphalt	375	0.8	
P4	Total	700		0.2
	Grass	700	0.2	
P5	Total	200		0.2
	Grass	200	0.2	
P6	Total	296		0.39
	Building	121	0.8	
	Grass	175	0.1	

^{*} The above values are based on the MTO Drainage Manual Design Chart 1.07

40 Sandford Fleming Drive Post-Development Site Drainage 2 Year Design Storm

1.5	L	OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA TOTAL (HA)	WATERSHE D LENGTH	WATERSHE D SLOPE, %	RUNOFF COEFFICIENT, C	INDIV. 2.78 AR	ACCUM. 2.78 AR	TIME OF CONC.	INTENSITY I (mm/hr)	FLOW Q (L/s)
P1	0.14	67	0.5	0.74	0.288	0.288	12	71.06	20.47
P2	0.06	20	4.3	0.23	0.038	0.038	10		3.00
P3	0.09	40	2.3	0.64	0.160	0.160			12.53
P4	0.07	62	2.0	0.20	0.039	0.039	18		2.18
P5	0.02	38	2.0	0.20	0.011	0.210	33	38.46	8.08
P6	0.03	27	3.5	0.39	0.033	0.243	41	33.04	8.02
PROJECT :	'	40 Sandford F	leming Drive			NOTES			
PROJECT NUMBER :		161-00941-00			l 2 _{YR} =	807 (t+6.75)			
CLIENT :		Applevale Pro	perties Ltd.					Designed By :	KP
DATE :		April 13, 2017						Checked By:	

Comments:

40 Sandford Fleming Drive Post-Development Site Drainage 5 Year Design Storm

								PEAK
AREA	WATERSHE	WATERSHE	RUNOFF	INDIV.	ACCUM.	TIME OF	INTENSITY	FLOW
TOTAL (HA)	D LENGTH	D SLOPE, %	COEFFICIENT, C	2.78 AR	2.78 AR	CONC.	l (mm/hr)	Q (L/s)
								26.81
0.06	20		0.23	0.038				3.92
0.09	40	2.3	0.64	0.160				16.38
0.07	62	2.0	0.20	0.039	0.039	18	73.60	2.86
0.02	38	2.0	0.20	0.011	0.210	33	50.74	10.66
0.03	27	3.5	0.39	0.033	0.243	41	43.61	10.58
	40 Sandford Fleming Drive				NOTES			
				_{5YR} =	113	35.4		
	161-00941-00			,	(t+7.50))^0.841		
	Appleuole Dre	nortico I tel					Designed By:	KP
	Applevale Pro	perties Ltd.						
	April 13, 2017						Checked By:	
	0.14 0.06 0.09 0.07	TOTAL (HA) D LENGTH 0.14 67 0.06 20 0.09 40 0.07 62 0.02 38 0.03 27 40 Sandford F	AREA TOTAL (HA) WATERSHE D SLOPE, % 0.14	AREA TOTAL (HA) D LENGTH D SLOPE, % COEFFICIENT, C 0.14	AREA TOTAL (HA) D LENGTH D SLOPE, % COEFFICIENT, C 2.78 AR 0.14 67 0.5 0.74 0.288 0.06 20 4.3 0.23 0.038 0.09 40 2.3 0.64 0.160 0.07 62 2.0 0.20 0.039 0.02 38 2.0 0.20 0.011 0.03 27 3.5 0.39 0.033 40 Sandford Fleming Drive 40 Sandford Fleming Drive Applevale Properties Ltd.	AREA TOTAL (HA) D LENGTH D SLOPE, % COEFFICIENT, C 2.78 AR 2.78 AR 0.14 67 0.5 0.74 0.288 0.288 0.06 20 4.3 0.23 0.038 0.038 0.09 40 2.3 0.64 0.160 0.160 0.07 62 2.0 0.20 0.039 0.039 0.039 0.02 38 2.0 0.20 0.011 0.210 0.03 27 3.5 0.39 0.039 0.033 0.243 0.03 0.243 0.03 0.03 0.243 0.03 0.03 0.243 0.03 0.03 0.243 0.03 0.243 0.03 0.03 0.243 0.03 0.03 0.243 0.03 0.03 0.243 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.	AREA TOTAL (HA) WATERSHE D SLOPE, % COEFFICIENT, C 2.78 AR CONC. 0.14 67 0.5 0.74 0.288 0.288 12 0.06 20 4.3 0.23 0.038 0.038 10 0.09 40 2.3 0.64 0.160 0.160 10 0.07 62 2.0 0.20 0.39 0.039 18 0.02 38 2.0 0.20 0.011 0.210 33 0.03 27 3.5 0.39 0.033 0.243 41 40 Sandford Fleming Drive 40 Sandford Fleming Drive I SYR = 1135.4	AREA TOTAL (HA) D LENGTH D SLOPE, % COEFFICIENT, C 2.78 AR 2.7

Comments:

40 Sandford Fleming Drive Post-Development Site Drainage 10 Year Design Storm

		00471011							
		OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA	WATERSHE	WATERSHE		INDIV.	ACCUM.	TIME OF	INTENSITY	FLOW
	TOTAL (HA)	D LENGTH	D SLOPE, %	COEFFICIENT, C	2.78 AR	2.78 AR	CONC.	l (mm/hr)	Q (L/s)
P1	0.14	67	0.5	0.74	0.288	0.288	12	107.84	31.06
P2	0.06	20	4.3	0.23	0.038	0.038	10		4.54
P3	0.09	40	2.3	0.64	0.160		10		18.95
P4	0.07	62	2.0	0.20	0.039	0.039	18		3.32
P5	0.02	38	2.0	0.20	0.011	0.210	33		12.39
P6	0.03	27	3.5	0.39	0.033	0.243	41	50.62	12.29
PROJECT :		40 Sandford F	leming Drive			NOTES			
PROJECT NUMBER :		161-00941-00			I _{10YR} =		87)^0.852		
CLIENT :		Applevale Pro	perties Ltd.					Designed By :	KP
DATE :		April 13, 2017						Checked By:	

Comments:

40 Sandford Fleming Drive Post-Development Site Drainage 25 Year Design Storm

		OCATION						RAINFALL	PEAK
CATCHMENT ID	AREA TOTAL (HA)		WATERSHE D SLOPE, %	RUNOFF COEFFICIENT, C	INDIV. 2.78 AR	ACCUM. 2.78 AR	TIME OF CONC.	INTENSITY I (mm/hr)	FLOW Q (L/s)
P1	0.14	67	0.5	0.81	0.317	0.317	10	141.10	44.7
P2	0.06	20	4.3	0.25	0.042	0.042	10		5.8
P3	0.09	40	2.3	0.70	0.176	0.176	10	138.40	24.3
P4	0.07	62	2.0	0.22	0.043	0.043	18	101.49	4.3
P5	0.02	38	2.0	0.22	0.012	0.231	32	70.24	16.24
P6	0.03	27	3.5	0.43	0.036	0.267	40	60.66	16.20
PROJECT :		40 Sandford F	leming Drive			NOTES			
PROJECT NUMBER :		161-00941-00			l _{25YR} =	167 (t+8.30)			
CLIENT:		Applevale Pro	perties Ltd.					Designed By :	KP
DATE :		April 13, 2017						Checked By:	

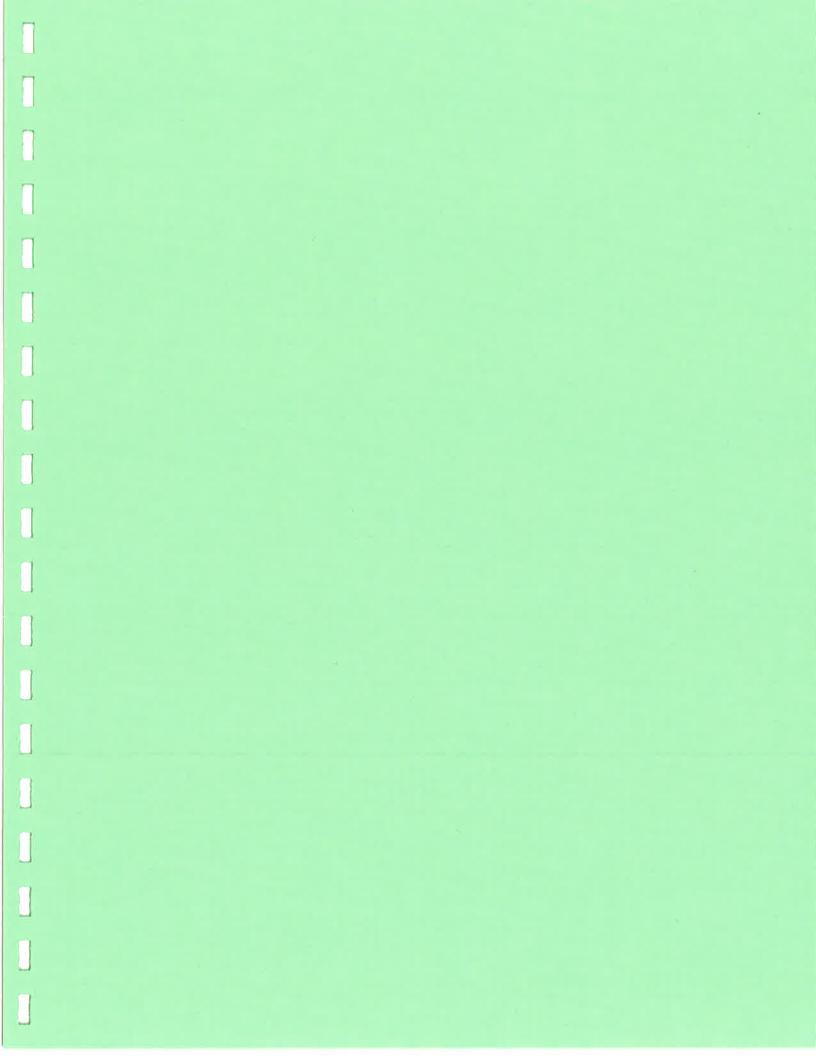
Comments:

40 Sandford Fleming Drive Post-Development Site Drainage 50 Year Design Storm

()		OCATION						RAINFALL	DEAK
CATCHMENT ID	AREA TOTAL (HA)	WATERSHE		RUNOFF COEFFICIENT, C	INDIV. 2.78 AR	ACCUM. 2.78 AR	TIME OF CONC.	INTENSITY I (mm/hr)	PEAK FLOW Q (L/s)
P1	0.14	67	0.5	0.89	0.346	0.346	10	153.18	52.94
P2	0.06	20	4.3	0.28	0.046	0.046	10	153.18	7.05
P3	0.09	40	2.3	0.77	0.192	0.192	10	153.18	29.43
P4	0.07	62	2.0	0.24	0.047	0.047	18	114.52	5.35
P5	0.02	38	2.0	0.24	0.013	0.252	31	79.73	20.11
P6	0.03	27	3.5	0.47	0.039	0.291	38	69.29	20.18
PROJECT :		40 Sandford F	leming Drive			NOTES			
PROJECT NUMBER :		161-00941-00			_{50YR} =	197 (t+9.00	73.1)^0.868		
CLIENT :		Applevale Pro	perties Ltd.					Designed By :	KP
DATE :		April 13, 2017						Checked By:	

Comments:

40 Sandford Fleming Drive Post-Development Site Drainage 100 Year Design Storm


CATCHMENT ID	AREA TOTAL	OCATION WATERSHE	WATERSHE	RUNOFF	INDIV.	ACCUM.	TIME OF	RAINFALL INTENSITY	PEAK FLOW
	(HA)	D LENGTH	D SLOPE, %	COEFFICIENT, C	2.78 AR	2.78 AR	CONC.	l (mm/hr)	Q (L/s)
P1	0.14	67	0.5	0.93	0.360	0.360	10	168.45	60.64
P2	0.06	20	4.3	0.29	0.048	0.048	10		8.08
P3	0.09	40	2.3	0.80	0.200	0.200			33.72
P4	0.07	62	2.0	0.25	0.049	0.049	17	126.73	6.17
P5	0.02	38	2.0	0.25	0.014	0.263	31	88.27	23.19
P6	0.03	27	3.5	0.49	0.041	0.303	38	76.89	23.33
PROJECT:	,,	40 Sandford F	leming Drive			NOTES		***	
					1 100 _{YR} =	219	3.1		
PROJECT NUMBER :		161-00941-00			,	(t+9.04)			
CLIENT		Appleyels Dec	nadiae I td					Designed By:	KP
CLIENT:		Applevale Pro	perties Lta.						
DATE :		April 13, 2017						Checked By:	

Comments:

	E	Existing Co	nditions			
		Q L/	S			
	2-year	5-year	10-year	25-year	50-year	100-year
A1	16.1	21.2	24.6	32.8	41.2	48.0
A2	15.2	19.9	23.1	31.7	39.9	45.7
A3 (Does not outlet to						
Sandford)	2.6	3.4	3.9	5.1	6.1	7.0
Total discharge to Municipal Ditch(L/s) -						
A1+A2	31.3	41.1	47.7	64.5	81.1	93.7

	Proposed Conditions Outlet to Sandford*												
	Q L/s												
	2-year 5-year 10-year 25-year 50-year 100-year												
P1	20.47	26.81	31.06	44.70	52.94	60.64							
P2	3.00	3.92	4.54	5.84	7.05	8.08							
P6	8.02	10.58	12.29	16.20	20.18	23.33							
Total	Total 31.5 41.3 47.9 66.7 80.2 92.6												
Assumes 1	low of P3 in	to swale			***************************************								

	Prop	osed Cond	litions Out	let to Sand	ford*	
			Q L/s			
	2-year	5-year	10-year	25-year	50-year	100-year
P1	20.47	26.81	31.06	44.70	61.09	75.04
P2	3.37	4.38	5.06	6.58	8.00	9.22
P6	2.73	3.60	4.18	5.51	6.86	7.94
Total	26.6	34.8	40.3	56.8	76.0	92.2
Assume	s NO flow of F	3 into swale	9			

PROJECT: EXFITRATION ANALYSIS No.:
40 SANDFORD FLEMING
SUBJECT: 161-00941-00

Sheet no. 1 of 1
Date 4/13/2017

By KP

k soil = 5×10-6 m/s Assume use factor of safety = 2 ·: ksoil = 2,5 × 10 -6 m/s. Clear stone Parking/storage area 27,7 × 12,2 = 337,94 m2. Casarlate hydraulic gradient = i i = h = available head. l Flow distance through pervious soil Assume ground water table at 1,5 mbgl i = 1.5 + 0.1 = 1.07Assume i = 1 Calculate exfithation from clear stone storage area Q= A.K.C Note: Area can drain 217,7m3 = 337.94 · 2.5 × 10 - 6 · 1 = 0,84 4/s In 72 hours. Calculate available storage. 0,3 m deep clean store 40% voids. 40,44 m3 of storage available. DISTRIBUTION:

Soil permeability coefficient

Geotechdata.info - Updated 07.10.2013

The soil permeability is a measure indicating the capacity of the soil or rock to allow fluids to pass through it. It is often represented by the permeability coefficient (k) through the Darcy's equation:

V=ki

Where v is the apparent fluid velocity through the medium i is the hydraulic gradient, and K is the coefficient of permeability (hydraulic conductivity) often expressed in m/s

K depends on the relative permeability of the medium for fluid constituent (often water) and the dynamic viscosity of the fluid as follows.

K= (Gamma_w)*K/ (eta)

where Where Gamma_w is the unit weight of water Eta is the dynamic viscosity of water K is an absolute coefficient depending on the characteristics of the medium (m2)

The permeability coefficient can be determined in the laboratory using <u>falling head permeability test</u>, and <u>constant head permeability test</u>. On the field, the permeability can be estimated using <u>Lugeon</u> test.

Typical values of soil permeability

Some typical values of permeability coefficient are given below for different soil types. It refers to normally consolidated condition unless otherwise mentioned. These values should be used only as guidline for geotechnical problems; however, specific conition of each engineering problem often needs to be considered for an appropriate choice of geotechnical parameters.

Description	USCS	min (m/s)	max (m/s)	Specific value (m/s)	Reference
Well graded gravel, sandy gravel, with little or no fines	GW	5.00E-04	5.00E-02		[1],
Poorly graded gravel, sandy gravel, with little or no fines	GP	5.00E-04	5.00E-02		[1],
Silty gravels, silty sandy gravels	GM	5.00E-08	5.00E-06	+1	[1],
Alluvial sand and gravel	(GM)	4.00E-04	4.00E-03		[2&3 in 4]
Clayey gravels, clayey sandy gravels	GC	5.00E-09	5.00E-06		[1],
Well graded sands, gravelly sands, with little or no fines	sw	1.00E-08	1.00E-06		[1],
Very fine sand, very well sorted	(SW)			8.40E-05	[5] ,
Medium sand, very well sorted	(SW)			2.23E-03	[5] ,
Coarse sand, very well sorted	(SW)			3.69E-01	[5] ,
Poorly graded sands, gravelly sands, with little or no fines	SP	2.55E-05	5.35E-04		[1], [2&3 in 4]

Clean sands (good aquifers)	(SP-SW)	1.00E-05	1,00E-02	[5],
Uniform sand and gravel	(SP-GP)	4.00E-03	4.00E-01	[2&3 in 4]
Well graded sand and gravel without fines	(GW-SW)	4.00E-05	4.00E-03	[2&3 in 4]
Silty sands	SM	1.00E-08	5,00E-06	[1],
Clayey sands	sc	5.50E-09	5.50E-06	[1], [5]
Inorganic silts, silty or clayey fine sands, with slight plasticity	ML	5.00E-09	1.00E-06	[1],
Inorganic clays, silty clays, sandy clays of low plasticity	CL	5.00E-10	5.00E-08	[1],
Organic silts and organic silty clays of low plasticity	OL	5.00E-09	1.00E-07	[1],
Inorganic silts of high plasticity	МН	1.00E-10	5.00E-08	[1],
Inorganic clays of high plasticity	СН	1.00E-10	1,00E-07	[1],
Compacted silt	(ML-MH)	7.00E-10	7.00E-08	[2&3 in 4]
Compacted clay	(CL-CH)	_	1.00E-09	[2&3 in 4]
Organic clays of high plasticity	ОН	5.00E-10	1.00E-07	[1],
Peat and other highly organic soils	Pt	_	_	

Empirical relations for dtermine the soil permeability coefficient

For Sands, the coefficient of permeability can be estimated from the Hazen's equation:

$$k = 10^{-2} D_{10}^2$$

 $D_{\rm 10}$ is the effevtive size in mm.

REFERENCES

- 1. Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers
- 2. Carter, M. and Bentley, S. (1991). Correlations of soil properties. Penetech Press Publishers, London.
- 3. Leonards G. A. Ed. 1962, Foundation Engineering. McGraw Hill Book Company
- 4. Dysli M. and Steiner W., 2011, Correlations in soil mechanics, PPUR
- 5. West, T.R., 1995. Geology applied to engineering. Prentice Hall, 560 pp.

Citation:

Geotechdata.info, Soil void ratio, http://geotechdata.info/parameter/permeability.html (as of October 7, 2013).

Table 1 Subsurface Field Investigation – 40 Sandford Fleming Drive Soil Test Pit Log Project Number 161 - 00941 - 01

Test Pit Identification	Depth Below Surface (metres)	Soil Moisture	Staining / Odour	Sample Number	Stratigraphy Description
TP1	0 - 0.30 m	Wet	None	None	Dark brown Humic Topsoil.
	0.30 - 1.52 m	Moist - Dry	None	TP1 - GS1	Light brown Sandy Silt TILL with Gravel. Compacted, some boulders. Some wet sandier pockets within TILL.
	@ 1.52 m				End of Hole. Refusal due to compacted soil and boulders.

Testpit excavated March 29, 2016, using a minihoe excavator.

Test Pit Identification	Depth Below Surface (metres)	Soil Moisture	Staining / Odour	Sample Number	Stratigraphy Description
TP2	0 - 0.61 m	Wet	None	None	FILL – Gravel, crushed stone, cobbles, concrete fragments, sand, silt.
	0.30 - 1.68 m	Moist	None	TP2- GS1	Light brown Sandy Silt TILL with Gravel. Seems sandier than TP1. Compacted, some boulders
	@ 1.68 m				End of Hole. Refusal due to compaction of TILL.

Testpit excavated March 29, 2016, using a minihoe excavator.

Test Pit Identification	Depth Below Surface (metres)	Soil Moisture	Staining / Odour	Sample Number	Stratigraphy Description
TP3	0 - 0.61 m	Wet - Saturated	None	None	Some minimal gravel on surface then dark brown Humic Topsoil.
	0.61 - 1.83 m	Moist - Wet	None	TP3 - GS1	Light brown Sandy Silt TILL with Gravel. Compacted. Seems sandier than TP1 and TP2. Water seeping in through tree root channels at 1.10 mbgl
	@ 1.83 m				End of Hole. Refusal due to compacted soil and boulders.

Testpit excavated March 29, 2016, using a minihoe excavator.

G:\2016\161-00941 Applevale Properties Engineering Cost Estimate\3.0 Technical\Testpit logs - March 29, 2016.doc

Table 1 Subsurface Field Investigation – 40 Sandford Fleming Drive Soil Test Pit Log Project Number 161 - 00941 - 01

Test Pit Identification	Depth Below Surface (metres)	Soil Moisture	Staining / Odour	Sample Number	Stratigraphy Description
TP4	0 - 0.61 m	Wet - Saturated	None	None	Some minimal gravel on surface then dark brown Humic Topsoil. Water seeping in through root channels.
	0.61 - 1.68 m	Moist - Dry	None	TP4 - GS1	Light brown Sandy Silt TILL with Gravel and Cobbles. Compacted.
	@ 1.68 m				End of Hole. Refusal due to compacted soil and cobbles.

Testpit excavated March 29, 2016, using a minihoe excavator.

Test Pit Identification	Depth Below Surface (metres)	Soil Moisture	Staining / Odour	Sample Number	Stratigraphy Description
TP5	0 - 0.61 m	Wet - Saturated	None	None	FILL – Gravel, crushed stone, cobbles. Water is flowing into testpit rapidly.
	0.61 - 1.22 m	Moist - Wet	None	None	Light brown Sandy Silt TILL with Gravel and Cobbles. Compacted.
	@ 1.22 m				End of Hole. Refusal due to compacted soil and cobbles and caving of saturated upper Fill layer.

Testpit excavated March 29, 2016, using a minihoe excavator.