

Report on Geotechnical Investigation and Slope Stability Analysis Charleston Homes Residential Subdivision Development High Street and Poplar Sideroad, Collingwood, Ontario.

Prepared For: Charleston Homes c/o C.C Tatham & Associates Ltd.

SPL Project No.: 10001514 (Revision 2) Report Date: December 2015

© 2015 SPL Consultants Limited

Table of Contents

1.	INTR	INTRODUCTION1				
2.	FIELI	D AND LA	BORATORY WORK	2		
3.	SUB	SURFACE	CONDITIONS	2		
			litions vater Conditions			
4.	DISC	USSION A	ND RECOMMENDATIONS	6		
	4.1 4.2 4.3	The Proje	and General Discussion ect Stripping, Subexcavation and Grading Construction Drainage	6 6 7 7		
	4.4	Sewers 4.4.1 4.4.2 4.4.3	Trenching, Excavation, Trench Support, and Dewatering Bedding Backfilling of Trenches	8 8 . 10		
	4.5	Engineer	ed Fill			
	4.6	Foundati 4.6.1 4.6.2 4.6.3 4.6.4	on Conditions Footings on Native Soils Foundations on Engineered Fill Floor Slab Construction and Drainage Other Comments on Foundations	. 14 . 14 . 14		
	4.7	Storm W	ater Management Pond (SWMP)	.16		
	4.8	Slope Sta 4.8.1 4.8.2 4.8.3 4.8.4 4.8.5 4.8.6 4.8.7	ability Investigation Slope Inspection and Mapping Soil Parameters and Groundwater Toe Erosion Allowance Stability of Existing Slope Long Term Stable Slope Development Setback Other Comments on Slope Stability	. 18 . 19 . 20 . 20 . 21 . 22 . 22		
5.	GENERAL COMMENTS					
6.	LIMITATIONS OF REPORT					

Drawings

Borehole Location Plan	1
Drainage and Backfill Recommendations	2
Slope Location and Photograph Location Plan	3
Existing Soil Profiles & Long-Term Stable Top of Slope (LTSTOS)	4 - 16
Long-Term Stable Top of Slope Line (LTSTOS)	17
Slope Stability Analysis Results	18 and 19

Appendix A

Draft Plan of Proposed Charleston Homes Residential Development

Appendix B

Explanation of Terms Used in the Record of Borehole (Encl. No. B1) Borehole Logs (Encl. Nos. B2 to B19)

Appendix C Grain Size Analyses

Appendix D General Requirements for Engineered Fill

Appendix E Photographs

Appendix F Chemical Characterization of Soils

1. INTRODUCTION

SPL Consultants Limited (SPL) was retained by Charleston Homes c/o C.C. Tatham & Associates Ltd. to undertake a geotechnical investigation and slope stability study for the proposed Charleston Homes residential development on a property located at the northwest corner of the intersection of High Street and Poplar Sideroad in Collingwood, Ontario.

The subject property (site) is situated on the tableland of the valley slope associated with Black Ash Creek. The site is irregular in shape, and comprises of agricultural and undeveloped lands and is bounded by High Street to the east, Poplar Sideroad to the south, and is wooded on the north side. Black Ash Creek meanders along the west side of the site in the wooded area.

The proposed Draft Plan of the subdivision was provided to SPL and is enclosed in Appendix A. Based on the Draft Plan, we understand that the proposed development will entail the construction of single detached dwellings and townhouses, and will include internal roads, and associated municipal sewers and water supply. We also understand that two stormwater management ponds (SWMP) will be part of the development, one of them will be constructed in the northwest portion and the second will be constructed in the southwest portion of the development.

The purpose of this geotechnical investigation was to obtain information about the subsurface conditions by means of 18 boreholes and from the findings in the boreholes to make recommendations pertaining to the geotechnical design of site grading, underground utilities, subdivision roads, and to comment on the foundation conditions for general house construction.

This report also includes the results of the slope stability study which was conducted to assess the longterm stability and erosion risks of the valley slope. The study includes a detailed site specific slope stability analysis based on borehole investigation, and provides geotechnical engineering recommendations for the long-term stable slope crest location.

This report is provided on the basis of the terms of reference presented above and on the assumption that the design will be in accordance with the applicable codes and standards. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario. The format and contents are guided by client specific needs and economics and do not conform to generalized standards for services. Laboratory testing follows ASTM or CSA Standards or modifications of these standards that have become standard practice.

This report has been prepared for Charleston Homes c/o C.C Tatham & Associates Ltd. and their designers. Third party use of this report without SPL Consultants Limited consent is prohibited.

2. FIELD AND LABORATORY WORK

The field investigation consisted of drilling eighteen (18) boreholes (BH15-01 through BH15-09, BH15-12, BH15-13, and BH15-15 through BH15-21) at the site between March 10 and 13, 2015. The boreholes were drilled to depths ranging from 4.7 m to 8.2 m below existing ground surface with solid stem continuous flight auger equipment, supplied and operated by a drilling sub-contractor under the direction and supervision of SPL Consultants Limited personnel. Samples were retrieved at regular intervals with a 50 mm O.D. split-barrel sampler driven with a hammer weighing 624 N and dropping 760 mm in accordance with the Standard Penetration Test (ASTM D 1586) method. This sampling method recovers samples from the soil strata, and the number of blows required to drive the sampler 0.3 m depth into the undisturbed soil (SPT 'N'-values) gives an indication of the compactness condition or consistency of the sampled soil material. The SPT 'N' values are indicated on the Borehole Logs (Enclosures B2 to B19, Appendix B).

Soil samples were visually classified in the field and later re-evaluated by a senior engineer in our laboratory. All soil samples were tested for moisture contents. Laboratory Grain Size Analyses were carried out on eight samples, and the results are enclosed in Appendix C.

Water level observations were made during drilling and in the open boreholes at the completion of the drilling operations. Groundwater level was measured in the monitoring wells installed at BH15-01, BH15-04, BH15-09, BH15-15 and BH15-18 on as part of a monthly groundwater level monitoring program from March to November 2015. The annual monitoring program will continue until March 2016.

Selected soil samples were subjected to chemical analysis to assess the environmental quality of the soils to assist in determining off-site disposal options. Chemical Testing Results are presented in Appendix F.

The ground surface elevations of the boreholes were estimated from the topographic survey drawing provided by C.C. Tatham & Associates Ltd.

3. SUBSURFACE CONDITIONS

The borehole locations are shown on Drawing 1. Notes on soil sample descriptions are presented on Enclosure B1 in Appendix B. The subsurface conditions at the boreholes (BH15-01 through BH15-09, BH15-12, BH15-13, and BH15-15 through BH15-21) are presented on the individual borehole logs (Enclosures B2 to B19) enclosed in Appendix B, and are summarized in the following paragraphs.

3.1 Soil Conditions

Topsoil: A layer of surficial topsoil ranging from 125 to 350 mm in thickness was encountered at each of the borehole locations. It should be noted that topsoil quantities should not be calculated from the borehole information, as large variations in depth may exist between boreholes.

Disturbed Soils: A layer of disturbed soils was encountered at each borehole location (BH15-01 to BH15-21) below topsoil, and extended to approximately 0.8 m below existing ground surface. The disturbed soils consisted of silty sand to sandy silt materials, with inclusions of rootlets. The reworked soil was typically in a loose state.

Native Soils: Underlying the topsoil, the predominant native soils are glaciolacustrine soils of nearshore and beach deposits such as silt, sandy silt to silty sand, sand, and sand and gravel. Clayey silt/silty clay layers of 0.9 m to 1.5 m in thickness were encountered in BH15-05 and BH15-06. In boreholes BH15-01, BH15-06 and BH15-13, the clayey silt/silty clay deposit was encountered at depths ranging between 2.3 m and 4.6 m and extended beyond the explored depths.

The grinding of augers during drilling in various boreholes (such as BH14-04, BH15-17, BH15-18 etc.) indicated that cobbles and boulders exists within the cohesionless deposits.

Two (2) tested samples of the silt and sand (BH15-09/SS7 and BH15-18/SS7) contain 1 to 3% gravel, 32 to 40% sand, 50 to 62% silt and 5 to 7% clay size particles. The grain size distribution curves for the samples are presented on Drawing C1 in Appendix C.

Two (2) tested samples of the silt (BH15-15/SS5 and BH15-16/SS4) contain 0% gravel, 1 to 9% sand, 83 to 86% silt and 8 to 13% clay size particles. The grain size distribution curves for the samples are presented on Drawing C2 in Appendix C.

One (1) tested sample of the sand and gravel (BH15-04/SS7) contains 47% gravel, 39% sand, 11% silt and 3% clay size particles. The grain size distribution curves for the samples are presented on Drawing C3 in Appendix C.

One (1) tested sample of the sand (BH15-20/SS2) contains 1% gravel, 78% sand, 17% silt and 4% clay size particles. The grain size distribution curves for the samples are presented on Drawing C4 in Appendix C.

Two (2) tested samples of the silty clay (BH15-01/SS4 and BH15-05/SS5) contain 0% gravel, 1 to 3 % sand, 72% silt and 25 to 27% clay size particles. The grain size distribution curves for the samples are presented on Drawing C5 in Appendix C.

The cohesionless soils were in a moist to very moist state, and in a loose to very dense relative density. The soils were in general in a compact to very dense state below 1.5 m depth.

The cohesive soils were in a firm to hard consistency.

3.2 Groundwater Conditions

During drilling and at the completion of drilling, wet conditions were observed in boreholes BH14-01 to BH14-08, BH15-10 to BH15-17 and BH15-19 to BH15-21 to depths ranging from 1.0 m to 7.1 m below existing grade, and boreholes BH15-09 and BH15-18 were found dry.

3

The water levels observed in the monitoring wells installed at borehole locations BH 15-01, BH 15-04, BH 15-09, BH 15-15 and BH 15-18 as part of a monthly groundwater level monitoring program from March to November 2015. The annual monitoring program will continue until March 2016. The water level monitoring indicates that the water levels ranged between 0.3 m to 5.3 m below existing grades and ranged in elevation from 206.0 to 196.1 m, with the seasonal high levels observed in March and April, as well as November 2015. The water level measurements are summarized in Table 1 below.

BH No.	Date of Drilling	Date of Water Measurement	Depth of Groundwater below existing ground (m)	Elevation of Groundwater (m)
		March 17, 2015	0.26	199.44
		April 16, 2015	0.78	198.62
		May 22, 2015	0.94	198.76
		June 30, 2015	0.51	199.19
BH 15-01	March 12, 2015	July 31, 2015	2.43	197.27
		August 27, 2015	2.87	196.83
		October 1, 2015	3.56	196.14
		October 30, 2015	3.50	196.20
		November 30, 2015	0.78	198.92
	March 12, 2015	March 17, 2015	3.36	198.34
		April 16, 2015	3.55	198.15
		May 22, 2015	3.77	197.93
		June 30, 2015	3.56	198.14
BH 15-04		July 31, 2015	4.01	197.69
		August 27, 2015	4.19	197.51
		October 1, 2015	4.43	197.27
		October 30, 2015	4.30	197.40
		November 30, 2015	3.79	197.91
DU 15 00	March 12, 2015	March 17, 2015	4.30	201.70
BH 15-09		April 16, 2015	4.04	201.96

Table 1: Groundwater Levels Observed in Boreholes

Project: 10001514 (Revision 2)
Report on Geotechnical Investigation and Slope Stability Analysis
Charleston Homes Residential Subdivision Development, High Street and Poplar Sideroad, Collingwood, Ontario.

BH No.	Date of Drilling	Date of Water Measurement	Depth of Groundwater below existing ground (m)	Elevation of Groundwater (m)
		May 22, 2015	4.46	201.54
		June 30, 2015	4.51	201.49
		July 31, 2015	4.83	201.17
		August 27, 2015	5.11	200.89
		October 1, 2015	5.31	200.69
		October 30, 2015	5.38	200.62
		November 30, 2015	5.04	200.96
		March 17, 2015	0.44	205.96
		April 16, 2015	0.67	205.73
	March 11, 2015	May 22, 2015	0.83	205.57
		June 30, 2015	0.65	205.75
BH 15-15		July 31, 2015	1.00	205.40
		August 27, 2015	1.38	205.02
		October 1, 2015	1.44	204.96
		October 30, 2015	1.13	205.27
		November 30, 2015	0.76	205.64
		March 17, 2015	2.52	205.98
		April 16, 2015	2.87	205.63
	March 11, 2015	May 22, 2015	3.08	205.42
		June 30, 2015	2.85	205.65
BH 15-18		July 31, 2015	3.61	204.89
		August 27, 2015	3.66	204.84
		October 1, 2015	3.78	204.72
		October 30, 2015	3.39	205.11
		November 30, 2015	3.74	204.76

5

It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to major weather events.

4. DISCUSSION AND RECOMMENDATIONS

4.1 The Site and General Discussion

The subject site is situated on a relatively flat to gently sloping tableland, and abuts Poplar Sideroad on the south side and High Street on the east side. A densely vegetated/forested slope is located along the west boundary, and Black Ash creek meanders through it. The property currently is undeveloped and vacant, and is used for agricultural purposes.

Cohesionless deposits of silt, sandy silt/silty sand, sand, and sand and gravel are predominant on the site and encountered in all boreholes. Most of the site is characterized to have high groundwater levels, ranging between 0.3 m and 5.3 m below existing ground surface.

4.2 The Project

Based on the Draft Plan of the subdivision (Appendix A) provided to us and our discussions with the client, we understand that the proposed development would include the following:

- 1. Single detached dwellings and townhouse buildings at locations shown on the Draft Plan enclosed in Appendix A;
- The development will include two stormwater management ponds, one of them will be constructed in the northwest portion and the second will be constructed southwest portion of the site; and
- 3. The subdivision will include internal roads. It is understood that the residential subdivision will be serviced by municipal sewers and water supply.

4.3 Roads

The investigation has shown that the predominant subgrade soil after stripping any topsoil and loose surface material, or any organic or otherwise unsuitable soils will be sandy silt to silty sand soils.

Based on the above and assuming that traffic usage will be residential minor local or local, the following minimum pavement thickness is recommended:

50 mm HL3 Asphaltic Concrete 50 mm HL8 Asphaltic Concrete 150 mm Granular 'A' 300 mm Granular 'B'

For bus routes and collector roads, the following minimum pavement thickness is recommended:

50 mm HL3 Asphaltic Concrete 90 mm HL8 Asphaltic Concrete 150 mm Granular 'A' 400 mm Granular 'B'

These values may need to be adjusted according to Town of Collingwood Standards. The site subgrade and weather conditions (i.e. if wet) at the time of construction may necessitate the placement of geogrid/filter fabric and/or thicker granular sub-base layer in order to facilitate the construction. Furthermore, heavy construction equipment may have to be kept off the newly constructed roads before the placement of asphalt and/or immediately thereafter, to avoid damaging the weak subgrade by heavy truck traffic.

4.3.1 Stripping, Subexcavation and Grading

The site should be stripped of all topsoil, disturbed soils and fill (if any) and any organic or otherwise unsuitable soils to the full depth of the roads, both in cut and fill areas.

Following stripping, the site should be graded to the subgrade level and approved. The subgrade should then be proof-rolled, in the presence of the Geotechnical Engineer, by at least several passes of a heavy compactor having a rated capacity of at least 8 tonnes. Any soft spots thus exposed should be removed and replaced by select fill material, similar to the existing subgrade soil and approved by the Geotechnical Engineer. The subgrade should then be recompacted from the surface to at least 98% of its Standard Proctor Maximum Dry Density (SPMDD). The final subgrade should be cambered or otherwise shaped properly to facilitate rapid drainage and to prevent the formation of local depressions in which water could accumulate. Proper cambering and allowing the water to escape towards the sides (where it can be removed by means of subdrains) is considered to be beneficial for this project. Otherwise, any water collected in the granular sub-base could be trapped thus causing problems due to softened subgrade, differential frost heave, etc. For the same reason, damaging the subgrade during and after the placement of the granular materials by heavy construction traffic should be avoided.

Any fill required for re-grading the site or backfill should be select, clean material, free of topsoil, organic or other foreign and unsuitable matter. It should be noted that some of the excavated native materials will be wet and must be aerated and left to dry out before they can be used for backfill. The fill should be placed in thin layers and compacted to at least 95% of its SPMDD. The degree of compaction should be increased to 98% within the top 1.0 m of the subgrade, or as per Town Standards. The compaction of the new fill should be checked by frequent field density tests.

4.3.2 Construction

Once the subgrade has been inspected and approved, the granular base and sub-base course materials should be placed in layers not exceeding 200 mm (uncompacted thickness) and should be compacted to

at least 100% of their respective SPMDD. The grading of the material should conform to current OPS Specifications.

The placing, spreading and rolling of the asphalt should be in accordance with OPS Specifications or, as required by the local authorities.

Frequent field density tests should be carried out on both the asphalt and granular base and sub-base materials to ensure that the required degree of compaction is achieved.

4.3.3 Drainage

Installation of full-length subdrains is required on all roads. The subdrains should be properly filtered to prevent the loss of (and clogging by) soil fines.

All paved surfaces should be sloped to provide satisfactory drainage towards catchbasins. As discussed in Section 4.3.1, by means of good planning any water trapped in the granular sub-base materials should be drained rapidly towards subdrains or other interceptors.

4.4 Sewers

As a part of the site development, a network of new storm and sanitary sewers is to be constructed in the subdivision area.

4.4.1 Trenching, Excavation, Trench Support, and Dewatering

We understand that trenches will probably be 2.5 m to 4.0 m below the existing ground levels.

As indicated in the boreholes, the trenches will be dug generally through cohesionless soils (silt, sandy silt to silty sand, sand, and sand and gravel) which includes cohesive layers at some locations. As noted above, at the time of investigation, the groundwater levels were encountered at between 0.3 m (elevation 199.4 m) and 4.0 m (elevation 201.9 m) below the existing grades, across much of the site. Dewatering will be required for any excavation in the sandy silt to silty sand, or sand and gravelly below the water table. Where the anticipated trench base is below the groundwater level, positive dewatering such as well points/eductors will be required to lower the water table to at least 1.0 m below the excavation base. Otherwise, it will result in an unstable base and flowing sides. A hydrogeological investigation would assess potential dewatering rates and determine the need for a Permit to Take Water from the MOE, and should be considered for this site.

Excavation of the soils can be carried out with heavy hydraulic backhoes. Provisions must be made in the excavation contract for the removal of possible boulders in native soils.

All excavations must be carried out in accordance with the most recent Occupational Health and Safety Act (OHSA). In accordance with OHSA, the cohesionless soils (sand, sandy silt, silt, sand and gravel etc.) and the firm to stiff silty clay to clayey silt can be classified as Type 3 soil above groundwater table and

Type 4 below groundwater table. Very stiff silty clay to clayey silt can be classified as Type 2 soil above groundwater table and Type 3 below groundwater table.

In the planning of the trenches' shoring and excavation, the presence of any adjacent existing buried service pipes should be considered. In addition to the stability of these existing adjacent pipes, which must be maintained without detrimental settlements, the backfill in these trenches and especially the granular bedding surrounding the existing service pipes, manholes, etc. may be a source of water, which, if encountered, must be dealt with.

In the silt and sandy silt deposits where the soil exhibits dilatancy during construction, the soils may have to be stabilized. Any form of soil stabilization and/or dewatering to facilitate construction (e.g. well points, etc.) must be designed and performed being cognizant of the fact that dewatering may induce settlements of existing structures in the vicinity, including existing service pipes. Although unlikely, basal instability could possibly occur if a relatively coarser stratum (such as silty sand) under excess hydrostatic pressure occurs below the base of the excavation comprised of relatively impervious soils (e.g. siltyclay/clayey silt). Should this occur, these layers must be depressurized. For this reason the bases of the excavated trenches should be monitored for evidence of basal heave.

For all these reasons, it would be prudent to open the trenches in relatively short sections and carry out the laying of the pipe and backfilling expeditiously in order to reduce the length of time the trench would be open.

The earth pressure acting on the sheeting and bracing can be evaluated by the following formula:

	Above groundwater table:	$p = K (\gamma z + q)$		
	Below groundwater table:	$p = K \{\gamma h_1 + \gamma_1(z - h_1) + q\} + p_w$		
where p	= Lateral earth and water pre	essure in kPa acting at depth z;		
Z	z = Depth below ground surface, in metres;			
К	K = Earth pressure coefficient, K=0.33;			
γ	γ = Unit weight of soil above groundwater table, assuming 20 kN/m ³ ;			
γ1	γ_1 = Submerged unit weight of soil below water table, assuming 10 kN/m ³			
h1	h ₁ = Thickness of soil above groundwater table, in metres;			
q	 Value of surcharge in kPa; 			
pw	p _w = Hydrostatic water pressure.			

All excavated spoil should be placed at least the depth of the trench away from the edge of the trench for safety reasons.

It is recommended that the excavations for service trenches below the groundwater table be carried out in short sections using a suitable 'geofabric' below the bedding (fine migration prevention) and backfilling the trench section immediately after service placement.

4.4.2 Bedding

The soils above the groundwater level, or properly dewatered if encountered below the groundwater level, will provide adequate support for the sewer pipes and allow the use of normal Class B type bedding. The recommended minimum thickness of granular bedding below the invert of the pipes is 150 mm. The thickness of the bedding may, however, have to be increased depending on the pipe diameter or in accordance with local standards or if wet or weak subgrade conditions are encountered, especially when the soil at the trench base level consists of wet, dilatant silt. The bedding material should consist of well graded granular material such as Granular 'A' or equivalent. After installing the pipe on the bedding, a granular surround of approved bedding material, which extends at least 300 mm above the obvert of the pipe, or as set out by the local Authority, should be placed.

To avoid the loss of soil fines from the subgrade, uniformly graded clear stone should not be used unless, below the granular bedding material, a suitable, approved filter fabric (geotextile) is placed. The geotextile should extend along the sides of the trench and should be wrapped all around the poorly graded bedding material.

Localized, wet and unstable soils encountered within generally stable soil zones can be stabilized by 'punching' a 50 mm clear crushed limestone or 50 mm well graded crusher run limestone pad into the soft subgrade prior to bedding placement. The thickness of the 'pad' will depend on field conditions.

In areas where the soils become wet, unstable and dilatant (easily disturbed) such as saturated silts, careful construction techniques and dewatering should be followed, as discussed earlier. If the pipes are laid on disturbed, dilatant soil, significant post-construction settlements could occur after the trenches are backfilled. In such cases, the bottom of the trenches will have to be stabilized by dewatering.

Sewer pipe bedding recommended for wet, unstable soils is a Class 'A' bedding. The rigid concrete bedding (lean mix) should be laid from manhole to manhole and this concrete 'pad' may sit directly on disturbed native subgrade. In isolated situations, where exposed subgrade tends to be wet and unstable, the concrete 'pad' should be poured on a HL-6 stone layer. It is recommended that the HL-6 bed be encircled with an approved filter fabric to prevent the migration of fines.

Where the sewer pipe is placed in water bearing soils below the water table, the joints connecting the sewer sections should be very well sealed to prevent piping of fines into the sewer pipe and manhole catch basin risers.

4.4.3 Backfilling of Trenches

The excavated soils can be used as construction backfill provided their moisture content at the time of placement is within 2% of the optimum moisture content. Some moisture conditioning may be required is excess pore air and pore water pressures are generated during compaction process. If bulking is noted, delaying the placement of subsequent lifts may be necessary, to allow for the dissipation of such induced excess pressures.

For the granular soils, smooth drum type vibratory rollers are recommended. The cohesive soils can be best compacted with sheepsfoot type vibratory compactors. Loose lifts of soil, which are to be compacted, should not exceed 300mm.

It is preferable that the native soils be re-used from approximately the position at which they are excavated so that frost response characteristics of the soils after construction remain essentially similar. Consideration may also be given to backfilling trenches with a well graded, compacted granular soil such as Granular 'B' material. The use of such material, if thoroughly compacted, would reduce the post construction settlements to a negligible amount and may also expedite the compaction process. In this instance, however, frost response characteristics of non-frost susceptible granular fill and the frost susceptible indigenous soils would be different giving rise to differential frost heave. In this case, it would be prudent to use as backfill the on-site excavated naturally occurring soils to match the existing conditions within the frost zone (i.e. within about 1.5 m below the road surface elevation) as well as to provide a frost taper zone (i.e. to provide a zone of taper to prevent a sudden change in frost heave characteristics to reduce the effects of frost heave).

It should be noted that the excavated soils are subject to moisture content increase during wet weather which would make these materials too wet for adequate compaction. Stockpiles should therefore be compacted at the surface or be covered with tarpaulins to help minimize moisture uptake.

The degree of compaction of the trench backfill under the roads or other areas where future settlements would be of concern should be at least 98% Standard Proctor Maximum Dry Density (SPMDD) within 2 m of the road surface. The granular pavement sub-base and base materials should be compacted to at least 100% of their respective SPMDD.

4.5 Engineered Fill

In the areas where earth fill is required for site grading purposes, an engineered fill may be constructed below house foundations, roads, boulevards, etc.

General guidelines for the placement and preparation of engineered fill are presented on Appendix D. A geotechnical reaction of 150 kPa at the serviceability limit states (SLS), and a factored geotechnical resistance of 225 kPa at the ultimate limit states (ULS) can be used on engineered fill, provided that all requirements on Appendix D are adhered to. To reduce the risk of improperly placed engineered compacted fill, full-time supervision of the contractor is essential. Despite full time supervision, it has

been found that contractors frequently bulldoze loose fill into areas and compact only the surface. The owner and his representatives must accept the risk involved in the use of engineered fill and offset this risk with the monetary savings of avoiding deep foundations. This potential problem must be recognized and discussed at a pre-construction meeting. Procedures can then be instigated to reduce the risk of settlement resulting from un-compacted fill.

The following is a recommended procedure for an engineered fill:

- 1. Prior to site work involving engineered fill, a site meeting to discuss all aspects must be convened. The surveyor, contractor, design engineer and geotechnical engineer must attend the meeting. At this meeting, the limits of the engineered fill will be defined. The contractor must make known where all fill material will be obtained and samples must be provided to the geotechnical engineer for review, and approval before filling begins.
- 2. Detailed drawings indicating the lower boundaries as well as the upper boundaries of the engineered fill must be available at the site meeting and be approved by the geotechnical engineer.
- 3. The building footprint and base of the pad, including basements, garages, etc. must be defined by offset stakes that remain in place until the footings and service connections are all constructed. Confirmation that the footings are within the pad, service lines are in place, and that the grade conforms to drawings, must be obtained by the owner in writing from the surveyor and SPL Consultants Limited. Without this confirmation no responsibility for the performance of the structure can be accepted by SPL Consultants Limited. Survey drawing of the pre and post fill location and elevations will also be required.
- 4. The area must be stripped of all topsoil, disturbed soils, loose fill (if any) and any organic or otherwise unsuitable soils. Subgrade must be proof-rolled. Soft spots must be dug out. The stripped native subgrade must be examined and approved by a SPL Consultants Limited engineer prior to placement of fill.
- 5. The approved engineered fill must be compacted to 100% Standard Proctor Maximum Dry Density throughout. Granular Fill preferred. Engineered fill should not be placed (where it will support footings) during the winter months. Engineered fill compacted to 100% SPMDD will settle under its own weight approximately 0.5% of the fill height and the structural engineer must be aware of this settlement. In addition to the settlement of the fill, additional settlement due to consolidation of the underlying soils from the structural and fill loads will occur.
- 6. Full-time geotechnical inspection by SPL Consultants Limited during placement of engineered fill is required. Work cannot commence or continue without the presence of the SPL representative.

- 7. The fill must be placed such that the specified geometry is achieved. Refer to sketches for minimum requirements. Take careful note that the projection of the compacted pad beyond the footing at footing level is a minimum of 2 m. The base of the compacted pad extends 2 m plus the depth of excavation beyond the edge of the footing.
- 8. A geotechnical reaction of 150 kPa at the serviceability limit states (SLS), and a factored geotechnical resistance of 225 kPa at the ultimate limit states (ULS) can be used on engineered fill, provided that all requirements on Appendix D are adhered to. A minimum footing width of 500 mm (20 inches) is suggested and footings should be provided with nominal steel reinforcement.
- 9. All excavations must be done in accordance with the Occupational Health and Safety Regulations of Ontario.
- 10. After completion of the pad a second contractor may be selected to install footings. All excavations must be backfilled under full time supervision by SPL Consultants to the same degree as the engineered fill pad. Surface water cannot be allowed to pond in excavations or to be trapped in clear stone backfill. Clear stone backfill can only be used with the approval of SPL Consultants.
- 11. After completion of compaction, the surface of the pad must be protected from disturbance from traffic, rain and frost.
- 12. If there is a delay in construction, the engineered fill pad must be inspected and accepted by the geotechnical engineer. The location of the structure must be reconfirmed that it remains within the pad.

The inorganic sandy silt to silty sand, and silts encountered on the site are considered suitable for use as engineered fill, provided that their moisture contents at the time of construction are at or near optimum. Soils excavated from below the groundwater level will have higher than optimum in-situ moisture content, and will have to be aerated prior to use as engineered fill. It is therefore imperative that the earth works are carried out in summer months, at favorable conditions, so there is an opportunity to aerate the soils prior to their re-use.

4.6 Foundation Conditions

As noted above in Section 4.2, single detached dwellings and townhouses with one level of basement are proposed to be constructed.

Based on the borehole information, the proposed building can be supported by conventional spread and strip footings founded on either on native soils or on engineered fill.

14

4.6.1 Footings on Native Soils

The boreholes in the subdivision area show that below the disturbed soil layer, the native soils in their undisturbed state are suitable to support the proposed single family dwellings and townhouses, and a geotechnical reaction of 150 kPa at the serviceability limit states (SLS), and a factored geotechnical resistance of 225 kPa at the ultimate limit states (ULS) at depths from about 0.8 to 1.5 m below existing ground can be utilized. In BH15-01, relatively weak (firm) silty clay was encountered below a depth of 4.6 m. Prior to raising grades (if any) in vicinity of BH15-01, SPL should be consulted to comment on the bearing capacity and settlement.

4.6.2 Foundations on Engineered Fill

For the construction of single family dwellings or townhouses, where the grades needs to be raised, proposed structures supported by spread and strip footings founded on engineered fill can be designed for a geotechnical reaction of 150 kPa at SLS, and a factored geotechnical resistance of 225 kPa at ULS, provided the requirements in preceding section 4.5 and Appendix D are adhered to. As noted in Section 4.6.1, prior to raising grades (if any) in vicinity of BH15-01, SPL should be consulted.

Prior to the placement of the engineered fill, all of the existing fill and surficially softened/loosened native soils must be removed and the exposed subgrade proof-rolled. Any soft spots revealed during proof-rolling must be sub-excavated and re-engineered. To reduce the risk of improperly placed engineered compacted fill, full-time supervision of the contractor is essential.

Where engineered fill is used to support the foundations, the floor slab can also be supported by engineered fill.

4.6.3 Floor Slab Construction and Drainage

The basement floor slabs can be placed on undisturbed native soils or on engineered fill. For bedding and moisture barrier purposes, a 200 mm thick layer of 19 mm clear crushed stone must be provided under the concrete basement floor slab. Where wet and/or fine grained soil conditions exist, the subdrains and moisture barrier should be separated from the subgrade by a geotextile fabric to avoid loss of soil/fines and settlement problems.

Underfloor and perimeter drainage will be required in the basements. A hydrogeological study must be carried out to investigate the feasibility of perimeter and underfloor drainage for basement floors below the groundwater table.

4.6.4 Other Comments on Foundations

Dewatering will be required for any excavation in the sandy silt to silty sand, or gravelly sand below the water table. Otherwise, it will result in an unstable excavation base and flowing sides. The groundwater table must be lowered one meter below the lowest excavation level. Test pit should be carried out in

the area prior to the excavation to further explore the groundwater and seepage conditions. A specialized dewatering contractor should install the dewatering system.

It is recommended to keep footings as high as possible to avoid or minimize penetration below groundwater levels.

Variations in the soil conditions are expected in between the borehole locations, and during construction, the soil bearing pressures should be confirmed by the Geotechnical Engineer.

Foundations designed to the specified bearing values are expected to settle less than 25 mm total and 20 mm differential.

All footings exposed to seasonal freezing conditions should be provided with at least 1.5 m of earth cover or equivalent thermal insulation against frost.

Where it is necessary to place footings at different levels, the upper footing must be founded below an imaginary 10 horizontal to 7 vertical line drawn up from the base of the lower footing. The lower footing must be installed first to help minimize the risk of undermining the upper foundations.

Note, the silty/sandy soils at the base of footings can be easily disturbed by construction machinery and foot traffic or lose their strength in contact with surface water. We recommend that an allowance to be made for placing a 50 mm thick skim coat of concrete on the founding subgrade immediately after its approval, to prevent its disturbance by construction activities and from ground or surface water, where necessary.

During winter construction, foundations and slab on grades must not be poured on frozen soil. Foundations must be adequately protected at all times from cold weather and freezing conditions.

In the vicinity of the existing buried utilities, all footings must be lowered to undisturbed native soils, or alternatively the services must be structurally bridged.

Standard geotechnical site investigations will not determine dewatering requirements for situation where there is planned excavation or construction below the groundwater table. To quantify conditions for dewatering purposes and to apply for required permits, both for construction and long term drainage, hydrogeologic study and carefully controlled pumping tests are necessary to adequately engineer a construction dewatering system and/or permanent groundwater control. SPL Consultants Limited advises that the geotechnical conditions at this site require such hydrogeologic study and analysis. The company is qualified and prepared to undertake this analysis upon proper authorization. Otherwise SPL accepts no responsibility for the design and construction of the dewatering details.

It should be noted that a permit to take water, issued by the Ontario Ministry of the Environment, will be required if the dewatering system/sumps result in a water taking of more than 50 m^3 /day. In addition, a permit to discharge the collected water to the sewer system/water body will be required from the applicable agency.

It is essential that imported free-draining OPSS Granular 'B' type fill be used as backfill against foundation walls and used as 'under-floor' (structural fill). Backfilling of the footing wall excavations (and under-floor) is recommended to be placed in 200 mm thick lifts, compacted to 100% SPMDD to proposed sub-grade elevations (see Drawing 2).

It should be noted that the recommended bearing capacities have been calculated by SPL from the borehole information for the design stage only. The investigation and comments are necessarily ongoing as new information of the underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field inspections provided by SPL to validate the information for use during the construction stage.

4.7 Storm Water Management Pond (SWMP)

We understand that two stormwater management ponds (SWMP) will be part of the development, one of them will be constructed in the northwest portion and the second will be constructed in the southwest portion of the development.

Boreholes BH15-04 and BH15-18 were drilled at the locations of SWMP to be constructed in the northwest portion and southwest portion of the proposed development, respectively. These boreholes, beneath the topsoil encountered disturbed soils to about 0.8 m, followed by compact to very dense cohesionless soils consisting of sandy silt, sand and silt, silty sand, and sand and gravel.

The highest groundwater table measured in monitoring wells installed at BH15-04 was 3.3 m (Elev. 198.3 m), and at BH15-18 was 2.5 m (Elev. 206 m). It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to major weather events.

The depth of the ponds is not known at the time of writing this report. Based on borehole information, the sides and bottom of SWMP will consist of cohesionless soils. We recommend that the side slopes be no steeper than 3H : 1 V above water level and 5H:1V below water level, and the bottom and sides of the stormwater pond be provided with an impermeable liner.

The liner may consist of a natural soil material (such as clay or clayey silt) or a synthetic membrane liner (such as a High Density Polyethylene, Geo-synthetic Clay Liner, or PVC). A natural soil liner may be preferable based on the following considerations:

- Low permeability clayey silt materials may be available locally for the construction of the liner.
- A clay liner is readily constructed using locally available construction equipment and manpower.
- A synthetic liner requires more elaborate design and construction considerations with respect to fabrication and protection of the completed liner.

However, a synthetic liner would perform satisfactorily and could be considered if a suitable and sufficient clay source were not available.

The clay liner must cover the bottom and sides of the pond, and should be compacted to at least 98 percent SPMDD.

It is recommended that the minimum liner thickness for clay soils be 0.6 m, and that the liner be inspected on an annual basis, to deal with these considerations. The clay liner should not be left to dry out, as shrinkage will occur and the liner will crack thus inducing excessive seepage. The liner must be covered with a minimum of 300 mm of sand and gravel or other suitable material.

The liner must be constructed of low permeability materials (clayey silt or clay) in order to perform adequately and to provide a liner bulk permeability on the order of 1×10^{-7} cm/s. The liner material should consist of inorganic soil. The grain size distribution of the liner material must conform to the following:

- no particle greater than 100 mm dimension
- not greater than 15 percent of the material larger than 4.8 mm (No. 4 sieve)
- minimum 20 percent finer than 0.002 mm (clay size)
- plasticity index of minimum 6.0

A strict control and monitoring of the liner material must be maintained to collect samples to verify its composition based on laboratory test results and to identify any variation in the material. The liner material must be placed at water contents 2 to 4 percent wet of the optimum moisture content. This is required to ensure that the material is compacted to a homogenous mass, and does not remain as distinct "clods" or "clumps". The liner should be constructed in thin lifts (not exceeding 150 mm thick) and be heavily compacted to a minimum of 95 percent SPMDD. Liner materials should not contain any frozen soil should the construction proceeds under winter conditions.

The liner construction must be conducted under the full time supervision of a qualified geotechnical engineer.

Alternatively, as noted before, a synthetic liner (such as HDPE, Geosynthetic Clay Liner or PVC) may be used. Manufacturer's specifications and recommendations must be referred for the design and construction of a synthetic liner.

All excavations must be carried out in accordance with the most recent Occupational Health and Safety Act (OHSA). In accordance with OHSA, the cohesionless soils (sand, sandy silt, silt, sand and gravel etc.) and the firm to stiff silty clay to clayey silt can be classified as Type 3 soil above groundwater table and Type 4 below groundwater table. Very stiff silty clay to clayey silt can be classified as Type 2 soil above groundwater table and Type 3 below groundwater table.

The design of SWMP must be reviewed by SPL. Also, a detailed pond slope stability analysis should be carried out once the design details of the SWMP are finalized.

4.8 Slope Stability Investigation

A detailed site specific slope stability study was carried out based on seven boreholes (BH15-04, BH15-05, BH15-09, BH15-13, BH15-17, BH15-18, and BH15-21). These boreholes were advanced on the tableland, in the proximity of the valley slope crest to assess the long-term stability of the subject slope. This study included a visual inspection of the slope within the study area to assess existing slope conditions with respect to any obvious signs of instability concerns, and a detailed slope stability analysis of selected slope cross-section using computer software.

4.8.1 Slope Inspection and Mapping

A visual inspection of the subject slope was conducted on April 4, 2015. General information pertaining to existing slope features such as slope profile, slope drainage, watercourse features, vegetation cover, structures in the vicinity of the slope, as well as erosion and slope slide features was obtained during the inspection. A brief summary of the results of the visual inspection is presented below.

A topographic survey of the property including the tableland and the valley slope was provided by C.C. Tatham & Associates Limited. Thirteen (13) slope cross-sections (Section A-A to Section M-M) inferred from the available topographic information supplemented by our field observations were used to prepare a slope model for the long-term slope stability analysis. The cross-sections were selected on the basis of the slope height and inclination to represent a critical slope condition present within the study area. The sections included a portion of the tableland and extending across the slope down to the creek. The location of the selected slope cross-sections are presented on Drawing 3, and the details of the slope profile are presented on Drawing 4 through Drawing 16.

The subject property is situated on a relatively flat to gently sloping tableland. The tableland is currently used for agricultural purposes. The west property boundary is associated with densely vegetated/forested valley slope, and Black Ash Creek meanders through it, and at few locations, comes in contact with the toe of the slope. Bank undercutting of slope toe was noted at various locations within the study area (refer photographs 5 to 9, 12 and 14, Appendix E).

Table 3 summarizes the slope height and inclination for the plotted sections (Drawings 4 to 16):

Section	Slope Height (m)	Slope Inclination
A-A	± 5 m	5.1 H : 1 V
B-B	±1 m	Gently Sloping
C-C	± 3.7 m	2.5 H : 1 V
H-H	± 6.3 m	± 2.5 H : 1 V
E-E	± 3.5 m	3.3 H : 1 V
F-F	± 6 m	3.1 to 7.4 H : 1 V
G-G	± 6 m	Nearly horz. to 4.2 H : 1V
Н-Н	± 4.5 m	± 1.9 H : 1 V
I-I	± 2 m	8.4 H : 1 V
J-J		Gently Sloping
К-К	± 1.5 m	2.5 H : 1 V
L-L		Gently Sloping
M-M	± 5 m	± 4.7 H : 1 V

TABLE 3: Approximate Height and Inclination of Slope at specified Locations

The slope is generally well vegetated with numerous young and mature trees and bush growth. Except for a couple of fallen and leaning trees, the tree trunk growth was noted to be generally straight and upright.

4.8.2 Soil Parameters and Groundwater

Based on the borehole information, soil parameters used in the slope stability analyses are given on Table 4.

	Soil	Long-term Strength	
Soil Type	Density (kN/m³)	c' (kPa)	φ' (degree)
Sandy Silt (Loose to Compact)	18	0	29
Sandy Silt/Silty Sand (very Dense)	21	0	34
Clayey Silt (hard)	20.5	5	32

Table 4: Soil Parameters for Slope Stability Analyses

The above soil strength parameters are based on the effective stress analysis for long-term slope stability.

The stabilized groundwater table observed in the monitoring well installed in BH15-09 was at 4.0 m below existing ground surface, corresponding to elevation 202.0 m as of April 17, 2015. A groundwater table of 203.5 m was used in the computer model to simulate normal groundwater table.

4.8.3 Toe Erosion Allowance

The regression of the slope toe due to erosion over the design life of the structure (typically 100 years for long-term) is compensated by the introduction of an erosion allowance (setback) which is measured as a horizontal distance from the existing creek bank. The erosion allowance is based on the type of the slope toe material and the stream characteristics including the distance between the stream edge and the slope toe, bankfull width as well as the current toe erosion condition. An erosion allowance is recommended in areas where the watercourse position is within 15 m of the slope toe.

At this site, Black Ash creek meanders within the wooded area, and comes in contact with the toe of the slope at few locations. Bank cutting/erosion conditions were evident. Based on borehole information, the toe of slope comprise of dense to very dense cohesionless soils or stiff to hard cohesive soils.

The MNR Policy Guidelines recommends a toe erosion allowance of 5 to 8 m for stiff/hard cohesive soils, and 8 to 15 m for fine granular (sand, silt), for active toe erosion conditions.

At this site, the slope surface is well vegetated with grass, weed, bushes, young to mature trees, and the slope inclination on average is gentle. In consideration of the prevailing soil and site conditions, it is recommended that a 10 m erosion set-back allowance be used for toe erosion.

4.8.4 Stability of Existing Slope

As stated in section 4.8.1, SPL inferred thirteen slope profiles (Sections A-A to M-M), of which Section H-H was the critical. A detailed engineering analysis of slope stability was carried out for the selected slope cross-section (Section H-H) utilizing computer software (SLIDE by Rocscience). For purposes of this study, the Morgenstern-Price limit equilibrium method of analysis was conducted. This method of analysis permits the calculation of Factors of Safety for generated or assumed failure surfaces.

The analysis was carried out by preparing a model of the slope/site geometry and subsurface conditions, and analyzing numerous failure surfaces in search of the minimum or critical Factor of Safety in order to assess the stability of the slope. The pertinent data obtained from the topographic and borehole information (Sections 4.8.1 and 4.8.2 above) was input in the slope stability analysis. Many calculations were carried out to examine the Factors of Safety for varying depths for potential failure surfaces. The minimum factor of safety for the existing slope at Section H-H is summarized in Table 5 below:

Section	Average Inclination	Type of Slope Slide	Minimum Factor of Safety for Potential Slope Slides (Based on Borehole information)
Section H-H	1.9 H : 1.0 V	Circular Slope Slide	1.40 (see Drawing No. 18)

Table 5: Computed Factors of Safety for Existing Slope Section

For land development and planning, the MNR Policy Guidelines allow a minimum Factor of Safety of 1.3 to 1.5 for slope stability. The computed minimum factor of safety for Section H-H for the existing slope was 1.4. This factor of safety is lower than the minimum required factor of safety of 1.5, and suggests that the existing slope, in its current condition, is not stable in the long-term.

Therefore, additional slope stability analyses were carried out to determine the stable slope inclination for the subject slope. In order to establish the stable slope inclination, the section was subjected to a number of representative trial profiles of the slope with flatter inclinations but similar slope height and subsurface conditions and was analyzed to obtain a minimum factor of safety of 1.5, in conformance to the policy guidelines.

The results of the slope stability analysis conducted for hypothetical slope profile with a flatter inclination of 2.25 horizontal to 1.0 vertical for the soil with similar sub-surface conditions as that of Section H-H is summarized in Table 6:

Section	Average Inclination	Type of Slope Slide	Minimum Factor of Safety for Potential Slope Slides (Based on Borehole information)
Section H-H	2.25 H : 1.0 V	Circular Slope Slide	1.55 (see Drawing No. 19)

Table 6: Computed Factors of Safety for Assumed Slope Section

For long-term stability of slope, minimum factors of safety of 1.5 is recommended for planning and development. For Section H-H, the above minimum computed factors of safety (for slope profile with an inclination of 2.25 horz. to 1.0 vert.) of 1.55 is considered satisfactory and adequate.

4.8.5 Long Term Stable Slope

The Long-term Stable Slope Top of Slope (LTSTOS) location was calculated based on the applicable erosion and stability setbacks. The slope stability analysis completed in section 4.8.5 concludes that a slope inclination of 2.25 horizontal : 1 vertical or flatter is required for the long-term stability of the slope at this site. Drawings 4 to 16 in sections, and Drawing 17 in plan present the estimated location of the Long-term Stable Top of Slope Line in sections and plan (S1-S2-S3-S4-S5-S6-S7-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16-S17-S18-S19-S20-21-S22-S23-S24-S25-S26-S27-S28). Where the existing slope

inclination is gentler than the computed stable slope inclination of 2.25 horizontal : 1 vertical, the existing top of slope is the Long-term Stable Top of Slope Line. The Drawings 4 to 16 delineate the location of the Long-term Stable Top of Slope Line where it is located either behind (inland, towards the tableland) or along the Physical Top of Bank for the subject slope.

4.8.6 Development Setback

In addition to the stability and erosion setbacks an access allowance/development setback is typically required from the identified slope hazard area (long-term Stable Top of Slope Line location) to take into account possible external conditions which could have an adverse effect on the existing natural condition of the slope, and to provide access to the slope in emergencies. This setback generally varies depending upon the policies of individual authorities. The determination of the setback value depends on a number of factors including but not limited to, the watershed classification, type of development, site specific conditions and available access to the slope. The structures may be allowed to be located closer to the long-term Stable Top of Slope Line but only if approved by the concerned conservation authority.

4.8.7 Other Comments on Slope Stability

Additional comments related to any future construction at this property, and in terms of slope stability at the site are as follows:

- 1. Limit the direct run-off in an uncontrolled fashion over the crest of the slope.
- 2. A sediment control fence must be erected and maintained during construction to isolate work area from the adjoining slope and valley system.
- 3. The existing slope vegetation should be maintained. Any slope areas disturbed by construction should be restored with suitable native vegetation.

4.9 Chemical Characterization of Soils

Twelve selected soil samples and two duplicate samples were subjected to chemical analysis to assess the environmental quality of the soils to assist in determining off-site disposal options. The chemical testing report and results are enclose in Appendix F.

5. GENERAL COMMENTS

SPL Consultants Limited should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, SPL Consultants Limited will assume no responsibility for interpretation of the recommendations in the report.

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes and test pits required to determine the localized underground conditions between boreholes and test pits affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole and test pit results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

6. LIMITATIONS OF REPORT

This report is intended solely for the Client named. The material in it reflects our best judgment in light of the information available to SPL Consultants Limited at the time of preparation. Unless otherwise agreed in writing by SPL Consultants Limited, it shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. No portion of this report may be used as a separate entity, it is written to be read in its entirety.

The conclusions and recommendations given in this report are based on information determined at the test hole locations. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated. Subsurface and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction, which could not be detected or anticipated at the time of the site investigation. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

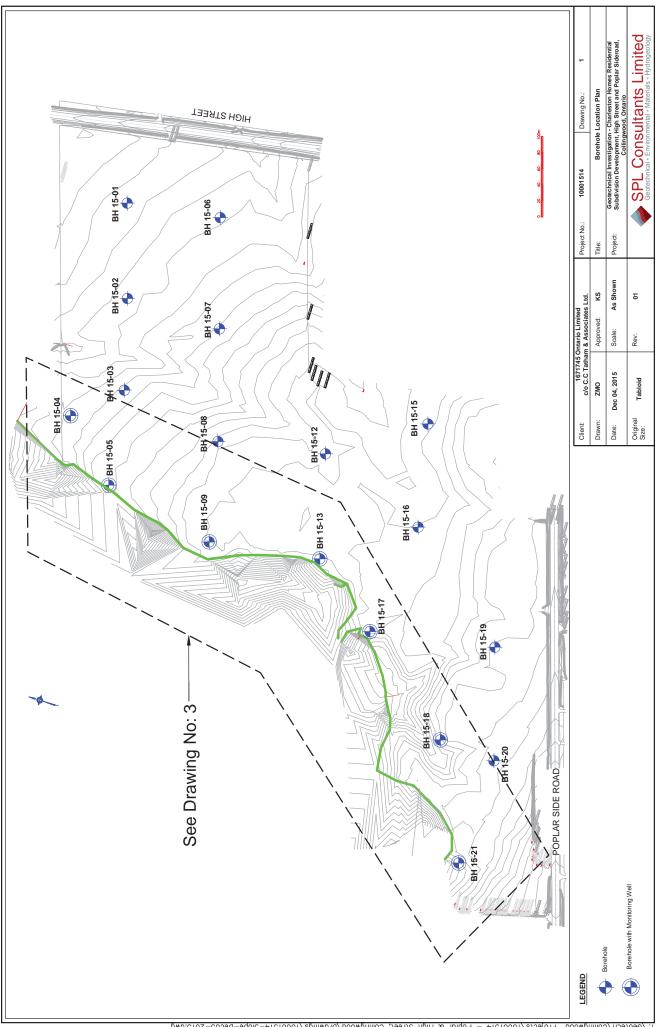
The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report.

The comments made in this report on potential construction problems and possible methods are intended only for the guidance of the designer. The number of test holes may not be sufficient to determine all the factors that may affect construction methods and costs. For example, the thickness of surficial topsoil or fill layers may vary markedly and unpredictably. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work. This work has been undertaken in accordance with normally accepted geotechnical engineering practices.

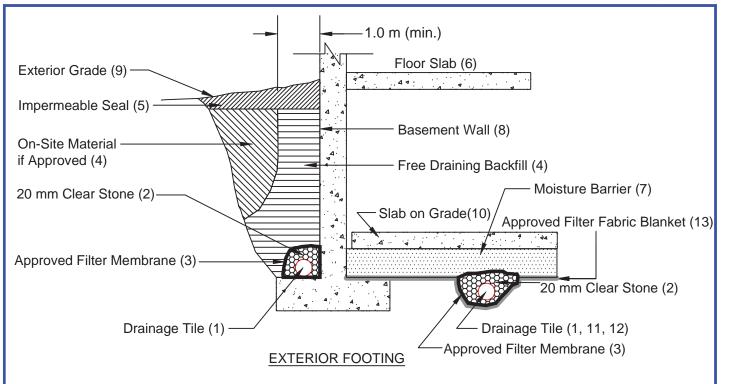
Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. SPL Consultants Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.


SPL CONSULTANTS LIMITED

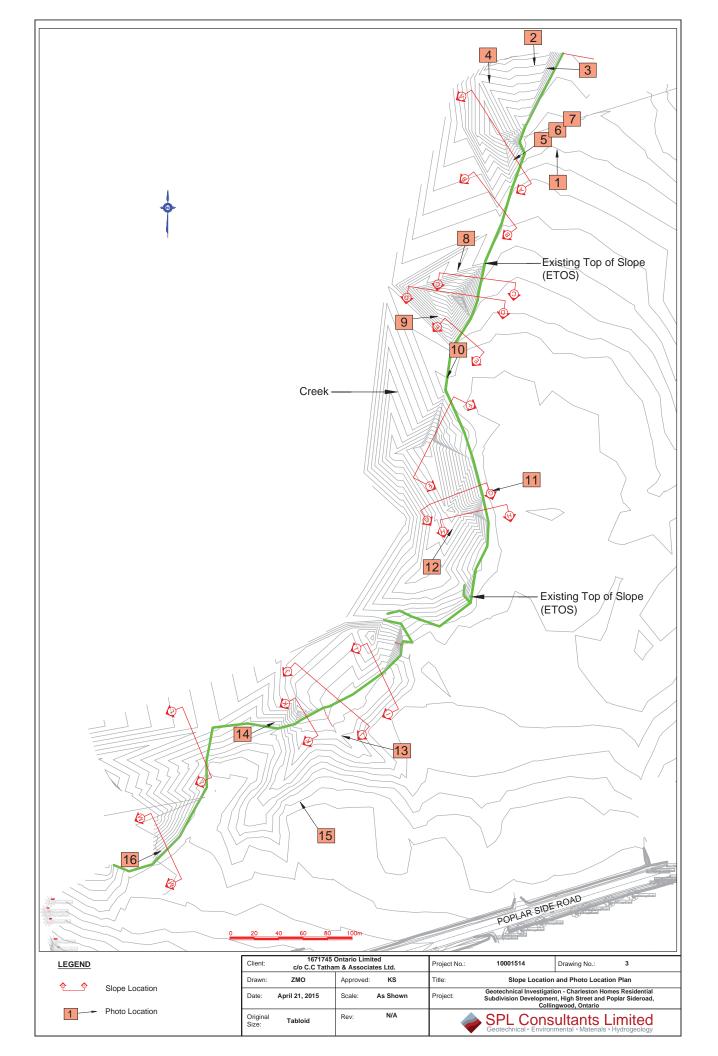
State PROFESSION 9 JGINEER 100052179 PROFESSIONAL FLAINER Kulbir Singh, M.Eng., P.Eng. PROVINCE OF ONTP Fanyu Zhu, Ph.D., P.Eng. BOLINCE OF ONTARIO PROFESSIONAL FURT Shabbir Bandukwala, M. . 20IL S.S. BANDUKWALA 2218113 PROVINCE OF ONTAR

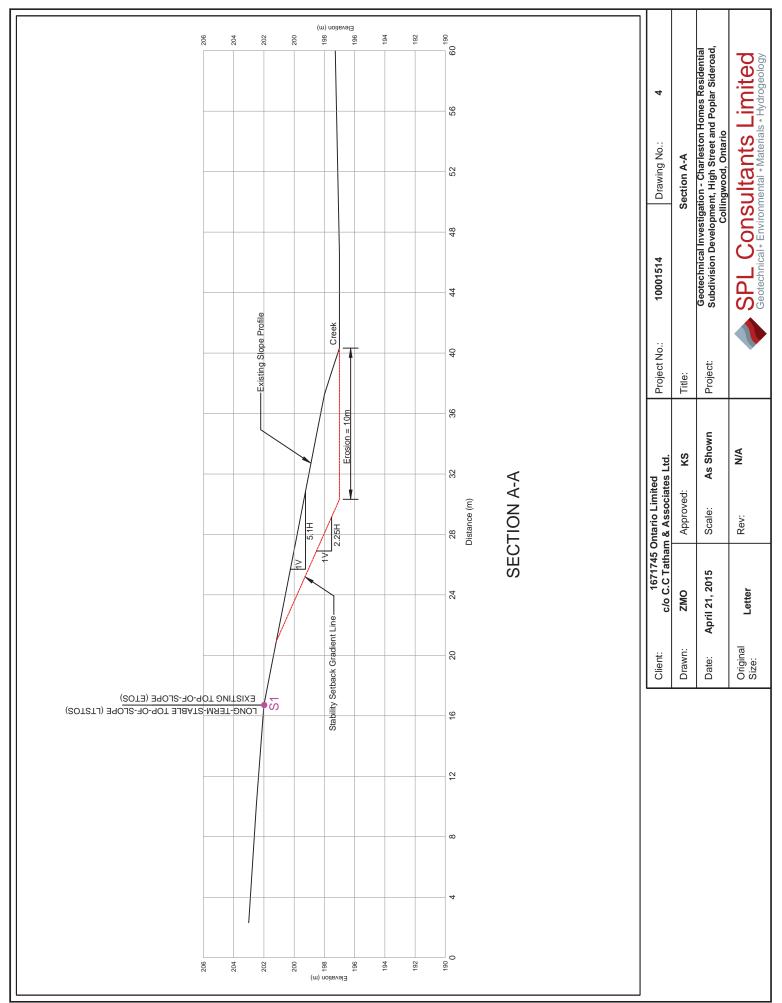


DRAWING

- Borehole Location Plan (Drg. 1)
- Drainage and Backfill Recommendations (Drg. 2)
- Slope Location and Photograph Location Plan (Drg. 3)
- Existing Soil Profiles & Long-Term Stable Top of Slope (LTSTOS) (Drgs. 4 – 16)
- Long-Term Stable Top of Slope Line (LTSTOS) (Drg. 17)
- Slope Stability Analysis Results (Drgs. 18 & 19)

T:/Geotech/Collingwood Projects/10001514 — Poplar & High Street, Collingwood/Drawings/10001514-Slope-Dec05-2015.dwg

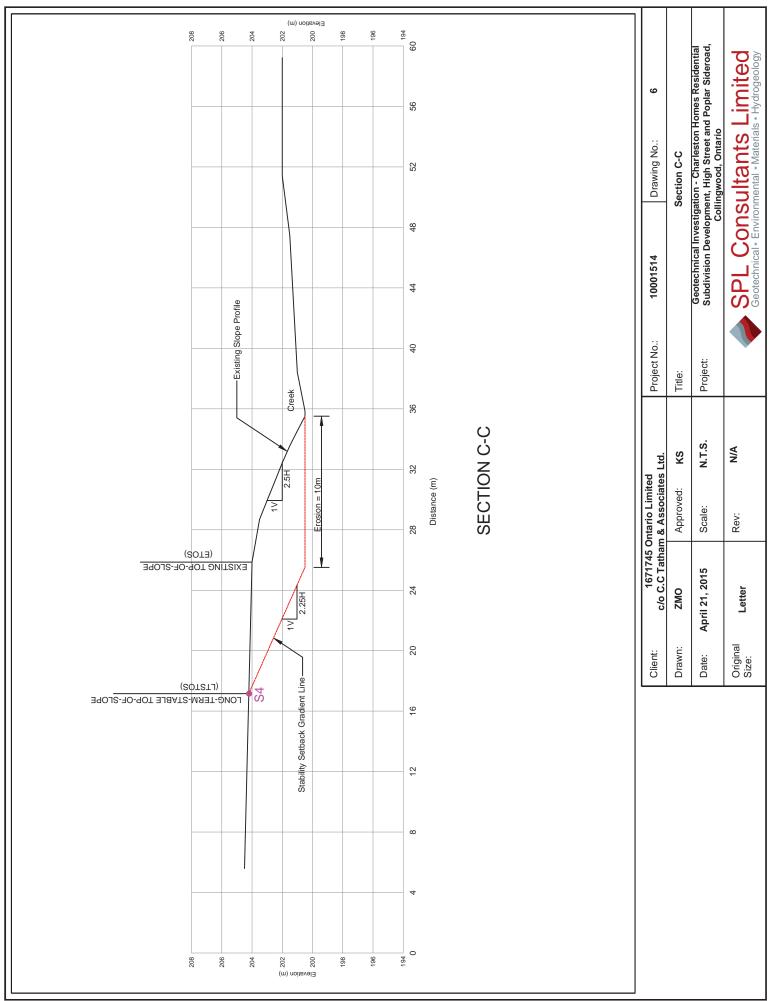


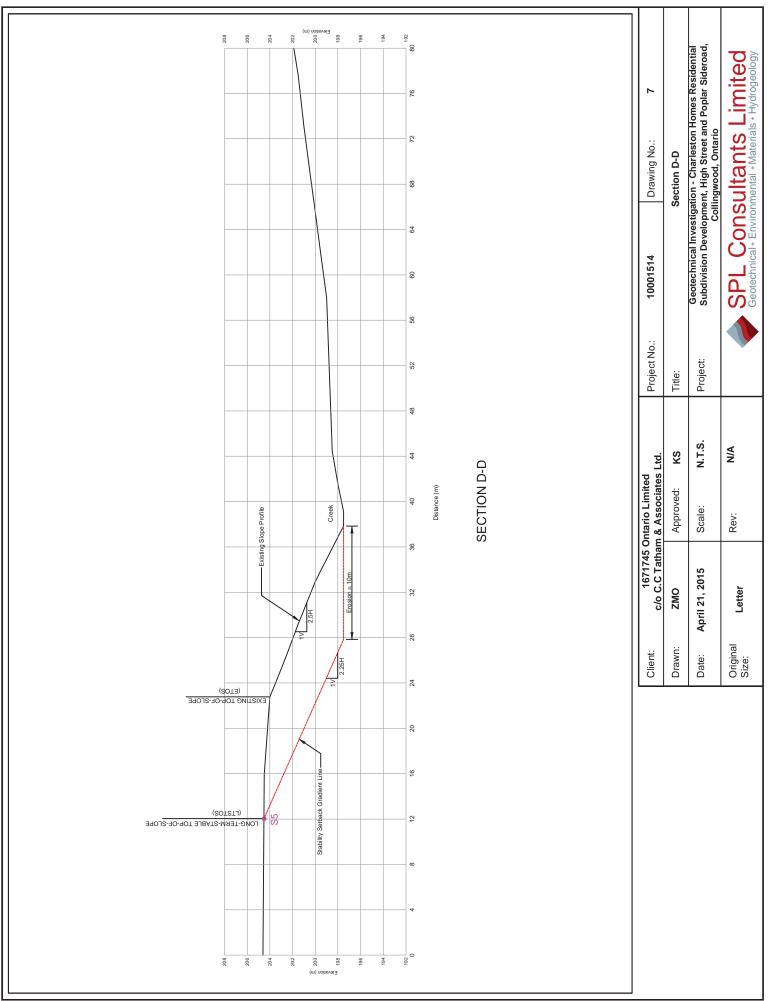

Notes

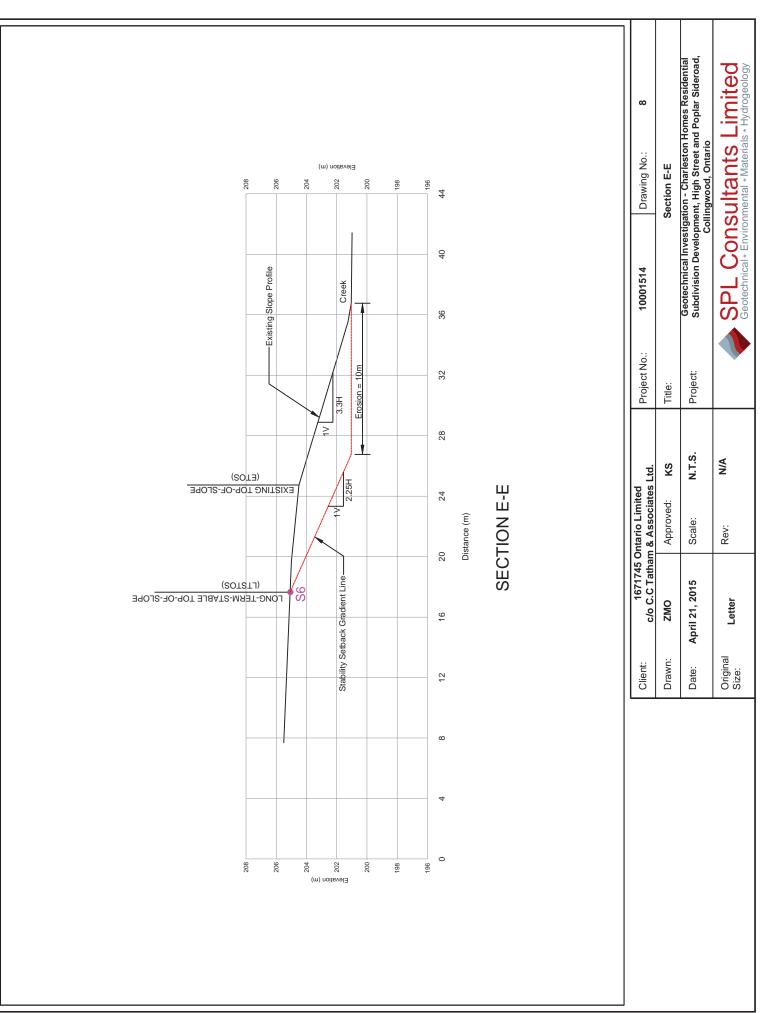
- 1. Drainage tile to consist of 100 mm (4") diameter weeping tile or equivalent perforated pipe leading to a positive sump or outlet.
- 2. 20 mm (3/4") clear stone 150 mm (6") top and side of drain. If drain is not on footing, place100 mm (4 inches) of stone below drain .
- 3. Wrap the clear stone with an approved filter membrane (Terrafix 270R or equivalent).
- 4. Free Draining backfill OPSS Granular B or equivalent compacted to the specified density. Do not use heavy compaction equipment within 450 mm (18") of the wall. Use hand controlled light compaction equipment within 1.8 m (6') of wall. The minimum width of the Granular 'B' backfill must be 1.0 m.
- 5. Impermeable backfill seal compacted clay, clayey silt or equivalent. If original soil is free-draining, seal may be omitted. Maximum thickness of seal to be 0.5 m.
- 6. Do not backfill until wall is supported by basement and floor slabs or adequate bracing.
- 7. Moisture barrier to be at least 200 mm (8") of compacted clear 20 mm (3/4") stone or equivalent free draining material. A vapour barrier may be required for specialty floors.
- 8. Basement wall to be damp proofed /water proofed.
- 9. Exterior grade to slope away from building.
- 10. Slab on grade should not be structurally connected to the wall or footing.
- 11. Underfloor drain invert to be at least 300 mm (12") below underside of floor slab.
- 12. Drainage tile placed in parallel rows 6 to 8 m (20 to 25') centers one way. Place drain on 100 mm (4") clear stone with 150 mm (6") of clear stone on top and sides. Enclose stone with filter fabric as noted in (3).
- 13. The entire subgrade to be sealed with approved filter fabric (Terrafix 270R or equivalent) if non-cohesive (sandy) soils below ground water table encountered.
- 14. Do not connect the underfloor drains to perimeter drains.
- 15. Review the geotechnical report for specific details.

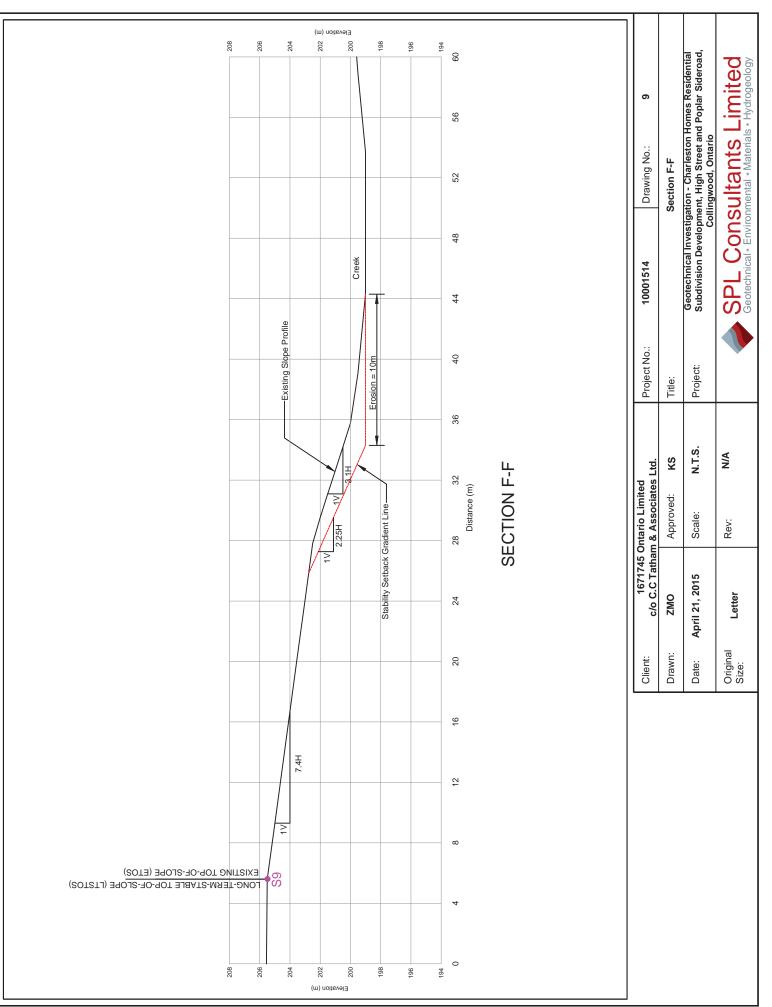

DRAINAGE AND BACKFILL RECOMMENDATIONS Basement with Underfloor Drainage

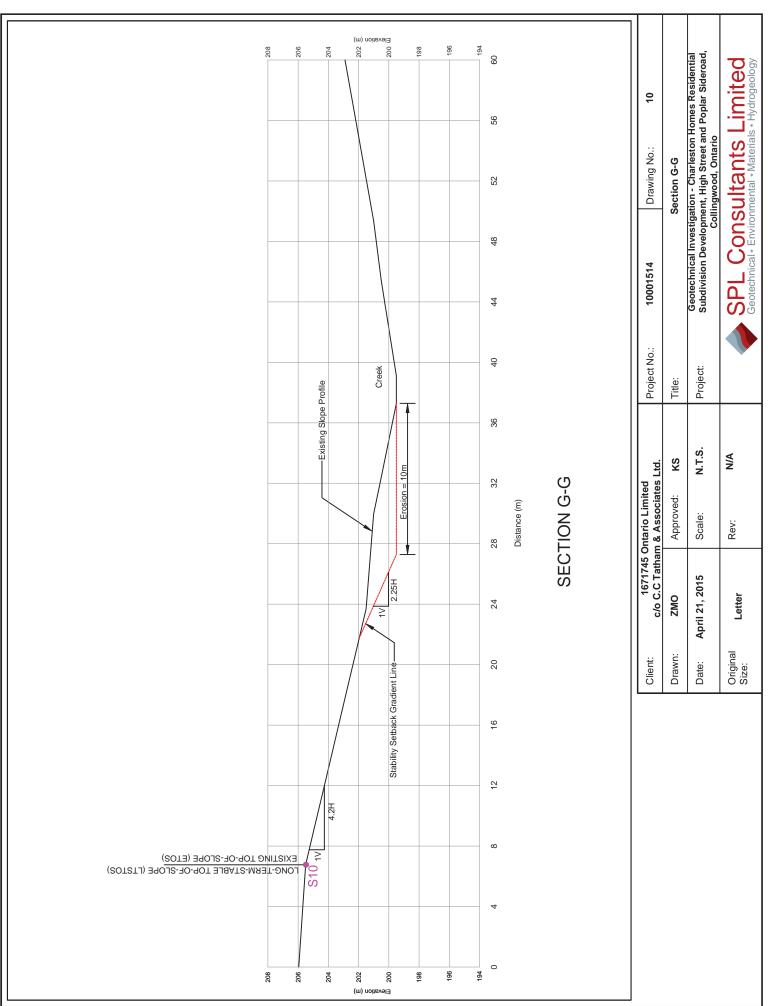
(not to scale)

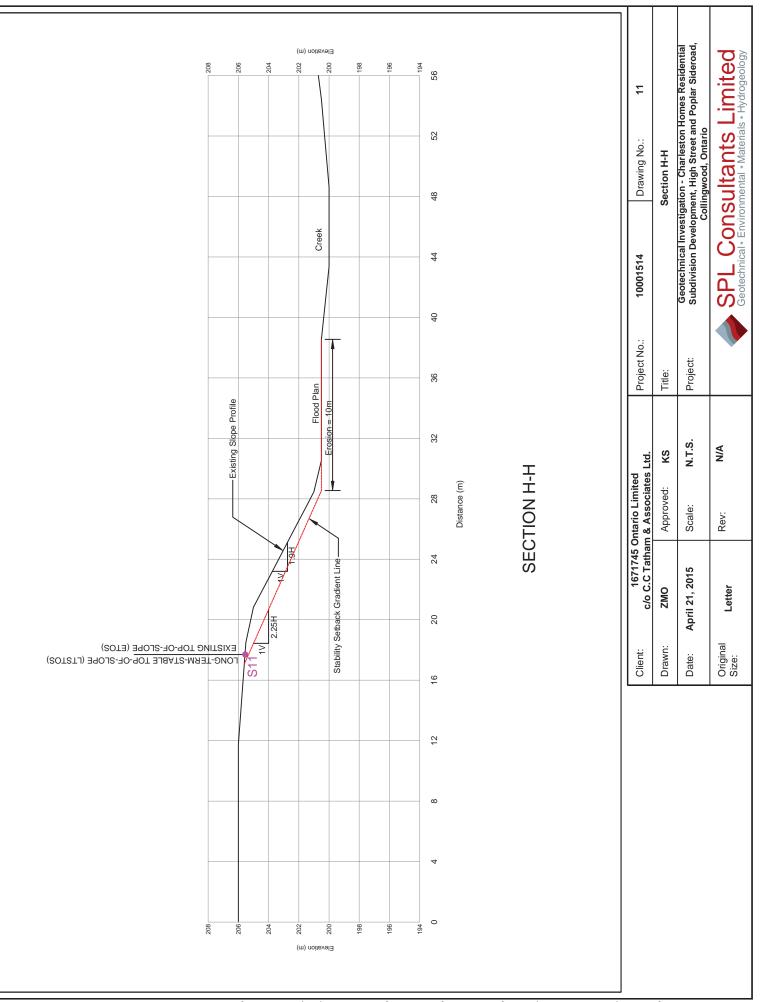



SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April21-2015.dwg

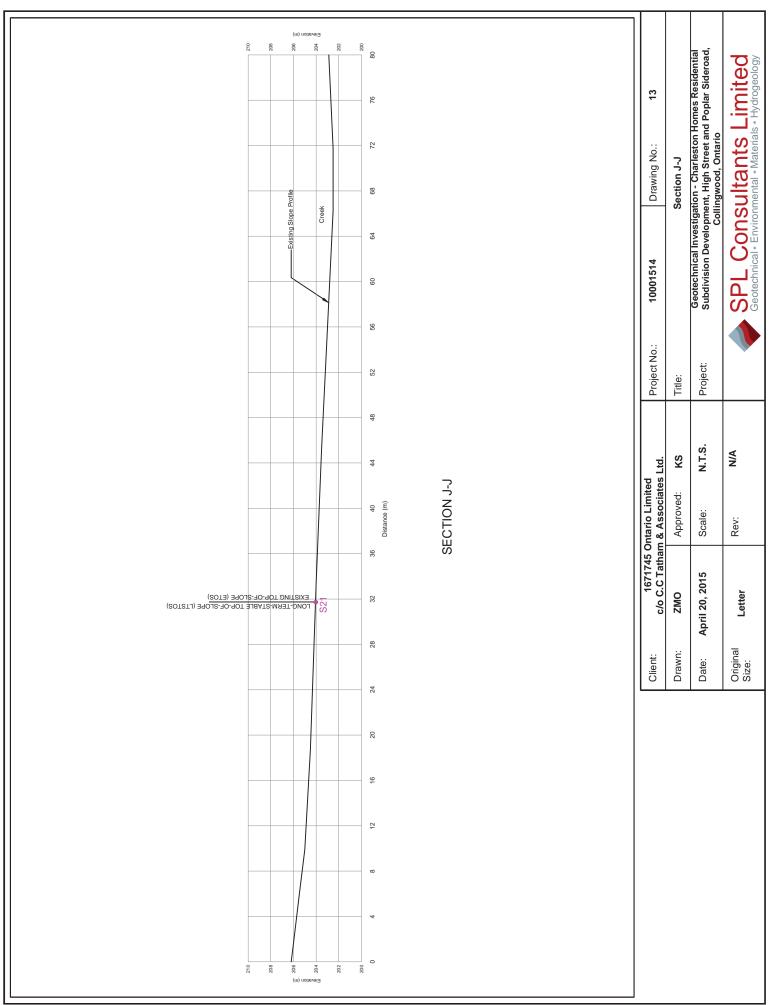

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001544-Slope-April2


SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April21-2015.dwg

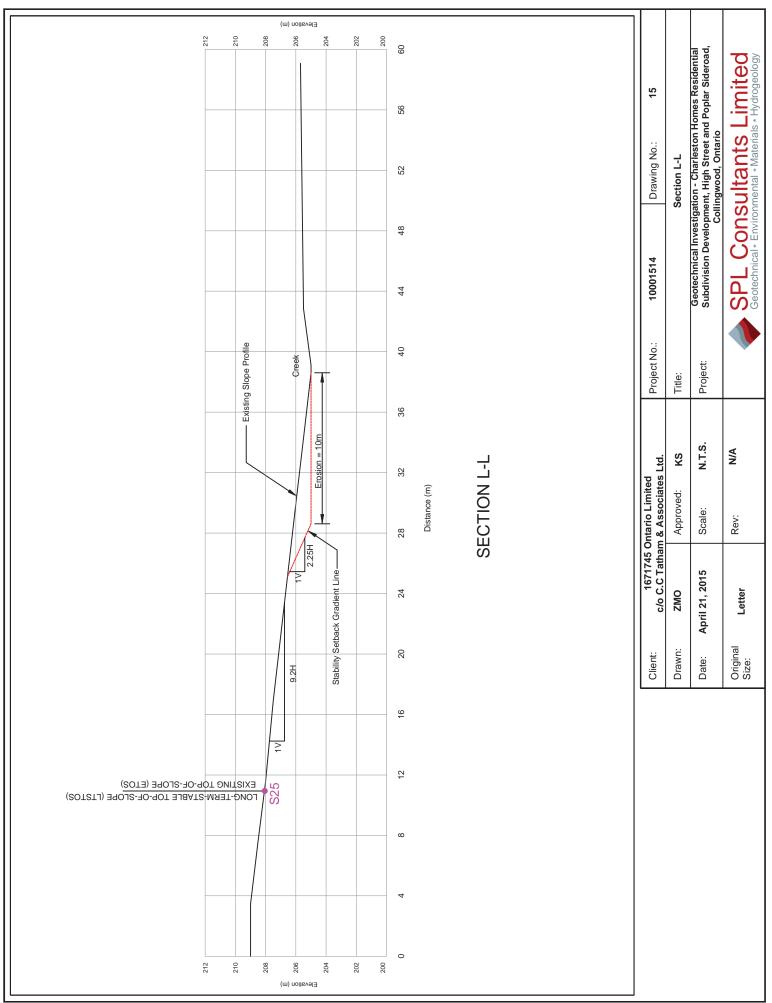

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April2

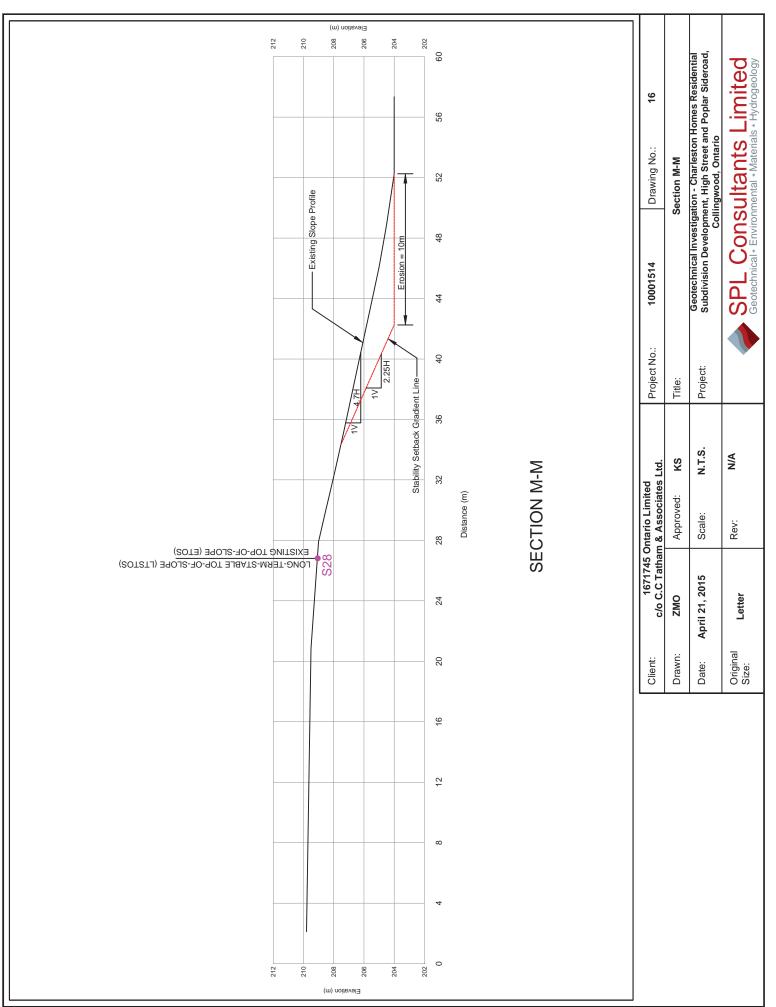

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April21-2015.dwg

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April2

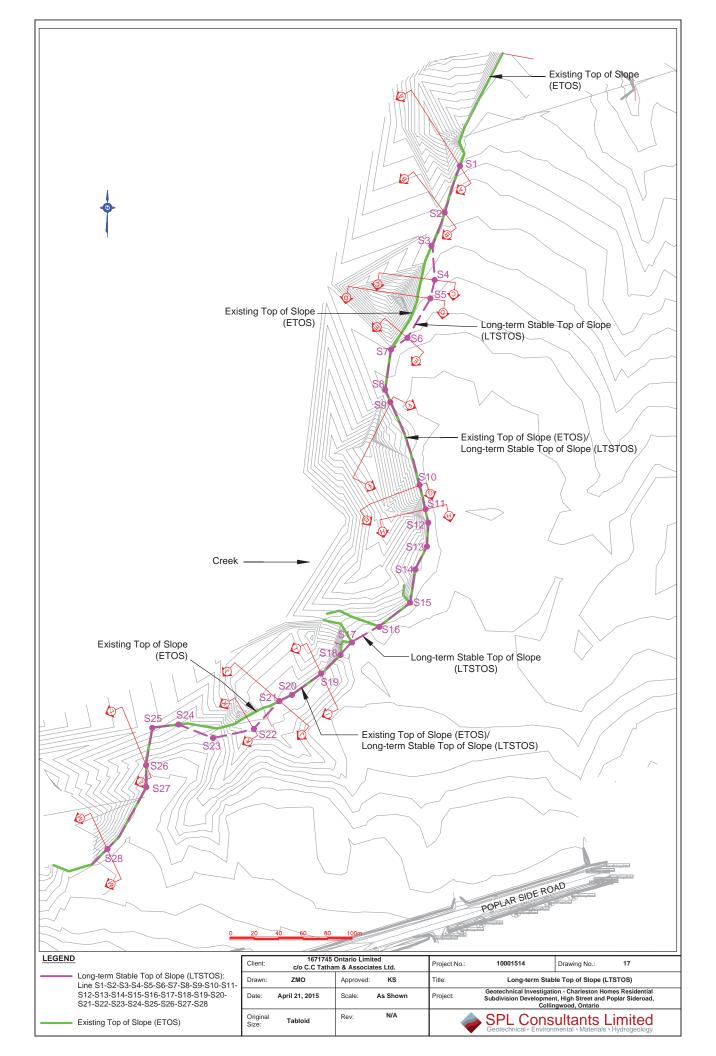

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April2-Cubug

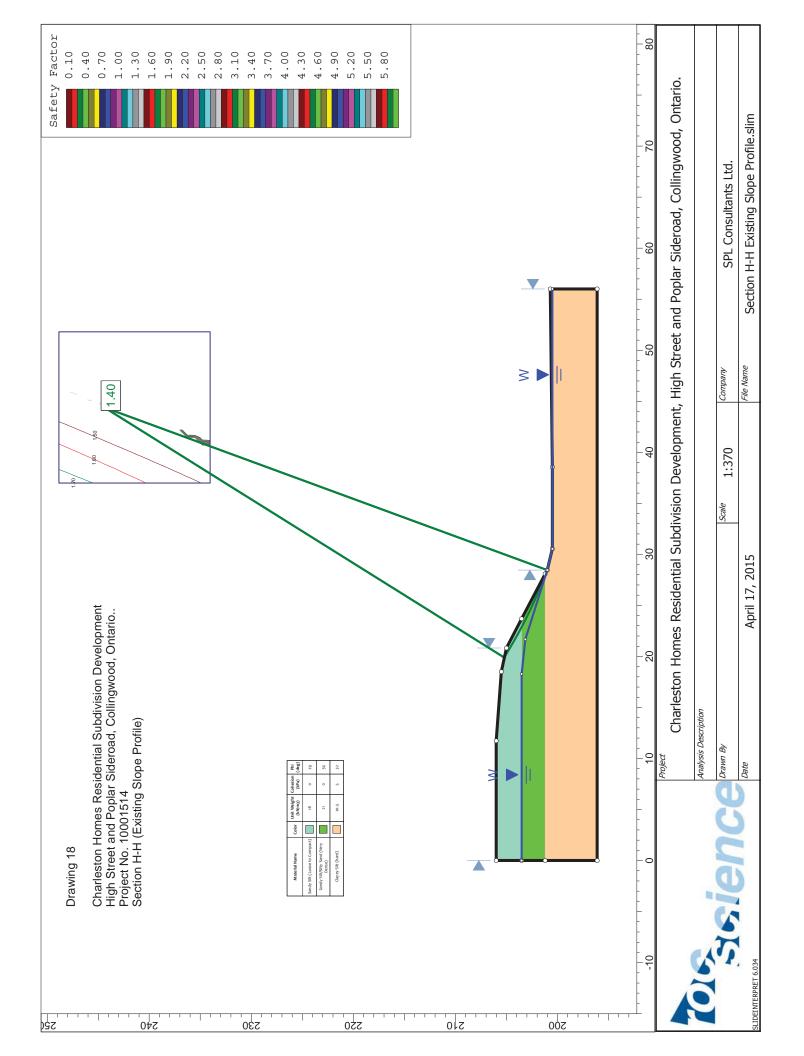
SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April21-2015.dwg

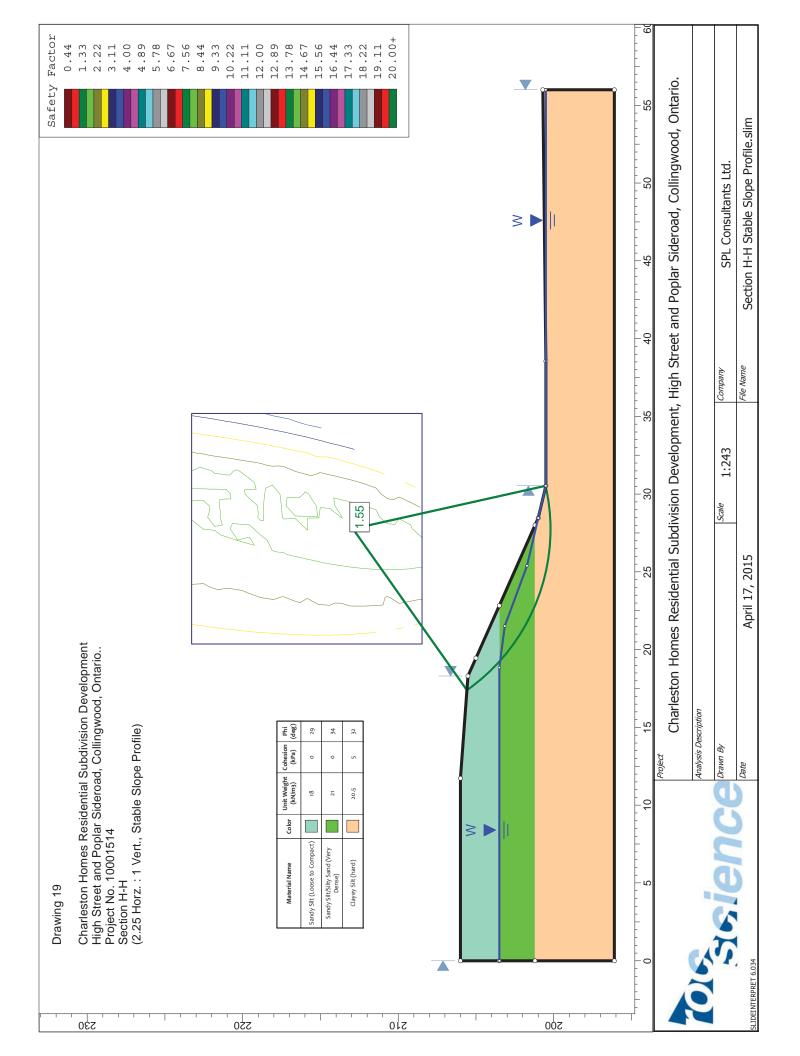

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April2


SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April21-2015.dwg

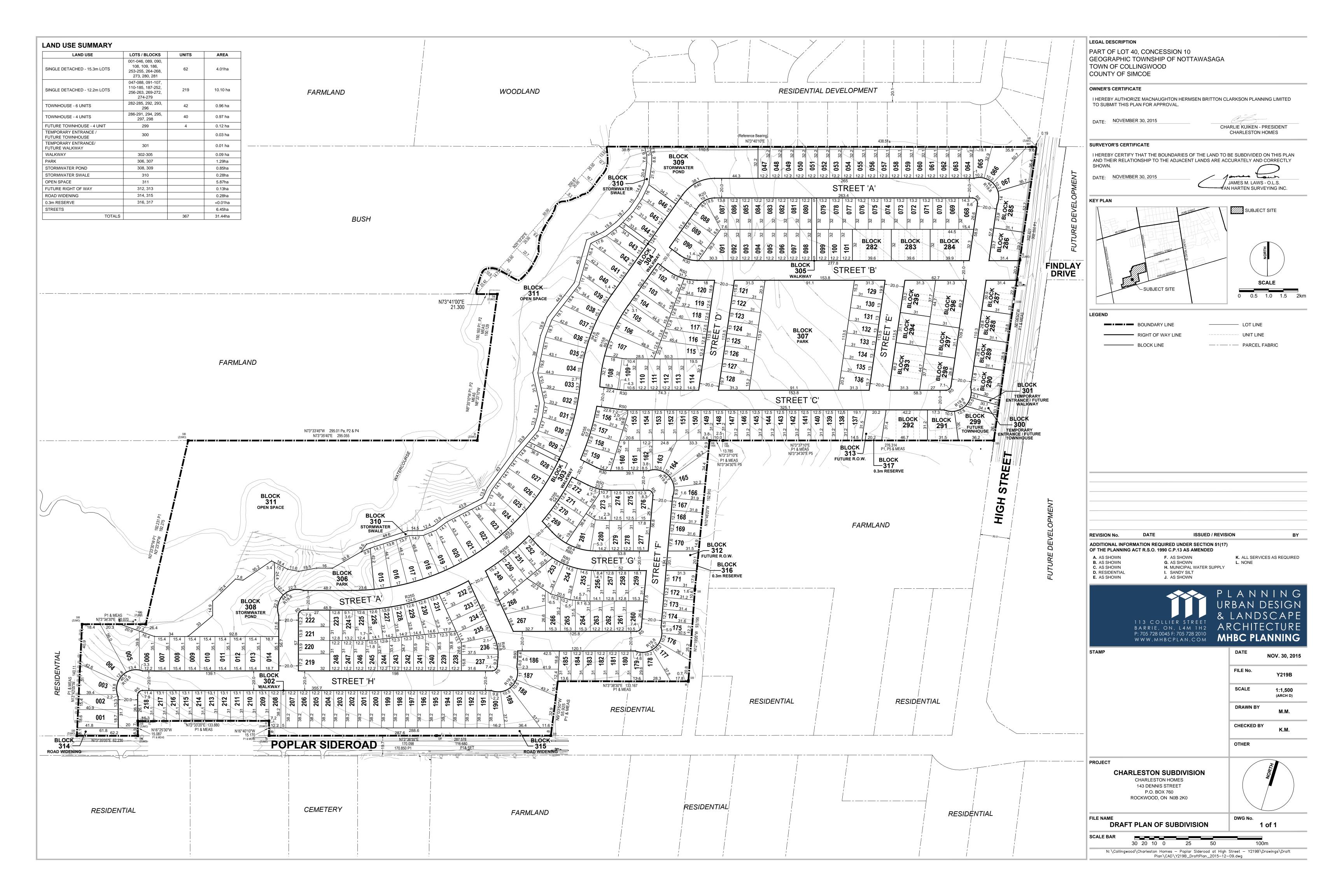
28 39 19 19 19 19 19 19 19 19 19 1	10001514 Drawing No.: 14	Section K-K	Geotechnical Investigation - Charleston Homes Residential Subdivision Development, High Street and Poplar Sideroad, Collingwood, Ontario	SPL Consultants Limited Geotechnical * Environmental * Materials * Hydrogeology
	Project No.:	Title:	Project:	
SECTION K-K	1671745 Ontario Limited c/o C.C Tatham & Associates Ltd.	Approved: KS	Scale: N.T.S.	Rev: N/A
U U U U U U U U U U U U U U U U U U U	1671745 On c/o C.C Tatham 8		April 21, 2015	Letter
Elevation (ii)	Client:	Drawn:	Date:	Original Size:


SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April21-2015.dwg




SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April2

SERVER/Geotech/Collingwood Projects/10001514 - Poplar & High Street, Collingwood/Drawings/10001514-Slope-April2



APPENDIX A

• Draft Plan of Proposed Charleston Homes Residential Development

APPENDIX B

- Explanation of Terms Used in the Log of Borehole (Encl. 1)
- Borehole LOGs (Encls. B2 to B19)

Notes On Sample Descriptions

 All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by SPL also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

					ISSMFE	SOIL CLAS	SIFICATIO	ON				
CLAY		SILT			SAND			GRA	/EL		COBBLES	BOULDERS
	FINE	MEDIUM	COARS	FINE	E MEDIL	JM COAF	RSE FINE	MED	UM C	COARSE		
C).002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	20)0
	·	·		EQUIVA	LENT GRA	AIN DIAME	FER IN MIL	LIMETRES	3			

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE						
SILT (NONPLASTIC)	SAND GRAVEL										
				211							

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/12/2015

Method: Solid Stem Auger

REF. NO.: 10001514 ENCL NO.: B2

BH LC	OCATION:																					
	SOIL PROFILE		s	AMPL	ES	~		RESIS	TANCE	NE PEN PLOT		HON		PLAST		URAL	LIQUID		Υ		MARKS	;
(m)		5				GROUND WATER CONDITIONS			1	0 6		1	00	L'IIII	CON	ITENT	LIMIT	PEN.	NATURAL UNIT WT (kN/m³)		AND AIN SIZI	F
ELEV	DESCRIPTION	STRATA PLOT	~		BLOWS 0.3 m	D NOI	EVATION	SHEA	AR ST	RENG ⁻ INED	TH (kf	Pa)		W _P		w -0	WL	CKET (kF	RAL ((kN/m			
DEPTH		RAT/	NUMBER	ш			LAV		NCONF	INED RIAXIAL	+ ×	& Sensit LAB V		WA	TER CO	ONTEN	T (%)	9 <u>0</u>	NATU		(%)	
199.7		STR	NN	ТҮРЕ	ž	GRO	E			0 6			00	1	10 2	20	30		-	GR S	A SI	CL
0.0	TOPSOIL: 230mm	7 <u>11</u>					1	-														_
- 199.5 - 0.2	SANDY SILT: trace clay, trace	4	1	SS	5			F							0							
- 0.2	organics, brown to dark brown,		'	33	5	_	W. L.	199.4														
	disturbed and inclusive of rootlets, loose						iviar 1	7, 2015 -) 													
- 198.9							199															
- 0.8	SANDY SILT: trace clay, some oxidization stains, brown, moist,							F														
-	dense		2	SS	31			È.							0							
-								-														
100.0								-														
_1 <u>98.2</u> - 1.5								È .														
-							198	-														
-			3	SS	37		1	-							0							
-2								È .														
197.4] 目		F						1								
2.3	SILTY CLAY: trace sand, stratified, grey, moist, very stiff	X				1日		Ē														
-	grey, moist, very still	X	4	SS	20	日日	i.	t i							0					0 1	1 72	27
-							197							-						-		
-		X					t.	F														
<u>-3196.7</u> - 3.1		H.	-			目	2 2	È.														
- 0.1						目目	i l	F														
-		H	5	SS	11		4 94	-							0							
-		Ŵ						È.														
-						自目	196	-														
Ē		1.						F														
-		ĥ					1	È.														
-								╞														
-						目		-														
-195.1							-	t														
4.6	firm	H					195															
-		W.	6	SS	6			-							0							
- 1015								È .														
194.5 5.2	END OF BOREHOLE					-	+							1								_
	Notes:																					
	 Water level was 4.21m below 													1								
/12	ground upon completion 2. 50 mm dia. monitoring well was																					
12/3	installed upon completion,																					
5	screened from 2.1m to 4.5m. 3. Water Level Measurements in																					
	Monitoring Well																					
	DateW.L. Depth (m)W.L. Elev. (m) March 17, 2015 0.26 199.44													1								
GP	April 16, 2015 0.78 198.92																					
8 S	May 22, 2015 0.94 198.76 June 30, 2015 0.51 199.19																					
뷞	July 31, 2015 2.43 197.27													1								
514 [Aug. 27, 2015 2.87 196.83 Oct. 1, 2015 3.56 196.14																					
0016	Oct. 31, 2015 3.50 196.20													1								
19	Nov. 30, 2015 0.78 198.92													1								
Ŭ I																						ſ
														1								
SPL SOIL LOG 10001514 BH LOGS.GPJ SPL.GDT 12/3/15																						
ע					I	GRAPH		↓ √3. I				ε =3%	1		1	1	1	L				

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

DRILLING DATA Method: Solid Stem Auger

Date: Mar/12/2015

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DATUM: Geodetic

BH LOCATION:

DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE LIMIT CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND LIMIT 40 60 NATURAL UNIT 20 80 100 (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m Wp w WL

 SHEAR STRENGTH (kPa)

 O UNCONFINED
 +

 PUICK TRIAXIAL
 ×

 LAB VANE

 ELEVATION ELEV DEPTH DISTRIBUTION ь. -0 -1 DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE ŗ 40 60 80 100 10 20 30 20 GR SA SI CL 200.7 TOPSOIL: 310mm 41 0.0 200.4 1 SS 5 SANDY SILT: trace clay, trace organics, brown to dark brown, 0.3 disturbed and inclusive of rootlets, 200 loose 199.9 SANDY SILT: trace clay, brown, 0.8 wet, compact SS 2 15 199 3 SS 17 0 198.4 SILT: some clay, some sand, sand 2.3 seams, stratified, grey, moist, compact SS 27 0 4 198 3 SS 5 23 0 197 <u>196.1</u> 4.6 trace sand 196 SS 0 6 19 195 5.2 END OF BOREHOLE Notes: 1. Borehole caved to 1.2m and was wet at 1.2m upon completion

REF. NO.: 10001514 ENCL NO.: B3

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/12/2015

Method: Solid Stem Auger

REF. NO.: 10001514 ENCL NO.: B4

DATUM: Geodetic BH LOCATION:

DITLO	DOATION:		-																	
	SOIL PROFILE		s	AMPL	ES			DYNAI RESIS	MIC CO TANCE	NE PEN PLOT		TION			ΝΛΤΙ	IDAI			L	REMARKS
						Ë						30 1	00	PLASTI LIMIT	C NATI	TURE	LIQUID LIMIT	z	Σ	AND
(m)		D L			<u>_</u>	VAT VS	-							WP		TENT N	WL	₹PE	N. C	GRAIN SIZE
ELEV	DESCRIPTION	⊿ PL	щ		BLOWS 0.3 m	2 2	é	SHE/	AR STI		TH (ki	Pa) FIELD V	ANE	i—		э <u> </u>		NO N	(kN/	DISTRIBUTION
DEPTH		EAT,	ABE	ш		N N	A		UICK TF		+	& Sensit LAB V/	ivity ANF	WA	TER CO	ONTEN	T (%)	d S	NATURAL UNIT WT (kN/m ³)	(%)
202.2		STRATA PLOT	NUMBER	ТҮРЕ	z	GROUND WATER CONDITIONS	ELEVATION						00				30		1	GR SA SI CL
- 202.2	TOPSOIL: 130mm	<u>117</u>	-		-															
- 0.1	SILTY SAND: trace clay, trace	17					202													1
-	organics, brown to dark brown,	臣臣	1	SS	10			-							0	}				1
	disturbed and inclusive of rootlets, loose to compact	招告																		1
-	loose to compact	臣臣	· —					-												1
201.4		井井						-												1
0.8	light brown, wet, loose	招告	1					F												1
1		臣臣	2	SS	8			ŀ								0				1
		뷰뷰	1	00	ľ		201											1		1
-		하는					201	-												1
_200.7		甘井				1														1
- 1.5	SANDY SILT: trace clay, some							-												1
-	oxidization stains, brown, moist, compact			~ ~				F												1
_	compact		3	SS	11			-							0					1
2			1					-												1
- 100 0			-				200													1
199.9 2.3	SILT: some clay, some sand,	· .				-		-												1
	stratified, greyish brown, moist, very																			1
-	dense		4	SS	55			-							0					1
-								-												1
-								[1
<u>3199.2</u>								ŀ												1
3.1	trace clay, grey, dense						199	-												1
-			5	SS	36		199	ŀ							0					1
-			5	33	30			ŀ												1
-								[1
-								-												1
																				1
_4								-												1
t I							198	-												1
-							190	-												1
-								-												1
- <u>197.6</u> 4.6	SAND AND GRAVEL: trace clay,	<u>li U</u>				-														1
	trace silt, clayey silt pockets, grey,	0	6	SS	94 foi 280mn	1		-							0					1
- 197.4 4.9	wet, very dense		1		2001111			-						<u> </u>				-		l
4.9	END OF BOREHOLE																			
	Notes:																			1
	1. BH caved to 3.7m and was wet																	1		1
	at 3.7m upon completion																			
																				1
																				1
																				1
																		1	1	1
																				1
																				1
																				1
																		1	1	1
																		1	1	1
																				1
																				1
																				1
																		1	1	1
																		1	1	1
																				1
																		1		1
																		1	1	1

GROUNDWATER ELEVATIONS

Measurement

 $\frac{\text{GRAPH}}{\text{NOTES}} + {}^3, \times {}^3: \begin{array}{c} \text{Numbers refer} \\ \text{to Sensitivity} \end{array}$

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

Method: Solid Stem Auger

DRILLING DATA

Date: Mar/12/2015

REF. NO.: 10001514 ENCL NO.: B5

DATUM: Geodetic BH LOCATION:

BH LC	DCATION:					1		DYNA		NF PFN	FTRAT	ION		1				1			
	SOIL PROFILE	SAMPL	.ES	~		RESIS	TANCE	NE PEN PLOT	\geq			PLAST			LIQUID		ΜŢ		ARKS		
(m)			GROUND WATER CONDITIONS		2	0 4	0 60) 8(0 1	00	LIMIT W _P	CON	ITENT W	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (kN/m ³)		ND N SIZE			
ELEV	DESCRIPTION	BLOWS 0.3 m		ELEVATION			RENGT	1	FIÉLD V	ANE	- WP		°	WL	CKEI CU	IRAL (KN/m		BUTION			
DEPTH		STRATA PLOT	NUMBER	щ			LAN		NCONF	RIAXIAL	+ ,	& Sensi LAB V	tivity	WA	TER CO	ONTEN	T (%)	P S	NATU	(c	%)
201.7			R	ТҮРЕ	ŗ	80	E			0 60			00	1	0 2	20 ;	30			GR SA	SI CL
209:8	TOPSOIL: 230mm	<u>ZI 17</u>					3	-													
0.2	SANDY SILT: trace clay, trace organics, brown to dark brown,		1	SS	4			F							0						
200.9	disturbed and inclusive of rootlets,	•	-				201														
0.8	SANDY SILT: trace clay, some							F													
	oxidization stains, light brown, very		2	SS	14			Ē							0						
200.2	moist, compact		┢					-													
1.5	stratified, greyish brown, moist						200	_													
-			3	SS	28		200	-							0						
- 199.4								Ē													
- 2.3	grey, dense							ŀ													
			4	SS	34		199	_							0						
							100	-													
3.1	SILT: some clay, some sand, trace							-													
-	gravel, stratified, grey, moist, dense		5	SS	38	∇	W/ 1	E							0						
							W. L. Mar 17														
4								É													
								-													
107.1								È -													
-1 <u>97.1</u> 4.6	some gravel, trace clay, very dense	$\left + \right +$	-				197														
- ₅196.7			6	SS	50		107	È -							0						
5.0	SILTY SAND: trace clay, trace	T.	_					Ē													
-	gravel, grey, very moist, very dense							-													
		閭					196														
-		HH.				「目		-													
<u>6195.6</u> - 6.1	SAND AND GRAVEL: some silt,		_				1	-												auger o	grinding
-	trace clay, very dense, grey, wet	° C	5 7	SS	62			F						0						47 39	
-		0					195	_													
-		0. (-													
		0	1				<u> </u>	Ē													
-		. O						-													
		o C	š		70 600		194														
_ ≝193.7		0	8	SS	79 for 280			-						0							
8.1	END OF BOREHOLE	<u>nu ~</u> .	1											1				1			
	Notes:													1							
3/15	1. Water level was 5.9m below																				
12/	ground upon completion 2. 50 mm dia. monitoring well was																				
	installed upon completion,																				
ЪГ.(screened from 5.5m to 7.0m. 3. Water Level Measurements in																				
R I	Monitoring Well													1							
S.G	DateW.L. Depth (m)W.L. Elev. (m) March 17, 2015 3.36 198.34																				
Ŭ	April 16, 2015 3.55 198.15													1							
표	May 22, 2015 3.77 197.93 June 30, 2015 3.56 198.14																				
1514	July 31, 2015 4.01 197.69 Aug. 27, 2015 4.19 197.51																				
000	Oct. 1, 2015 4.43 197.27													1							
<u>ں</u>	Oct. 31, 2015 4.30 197.40 Nov. 30, 2015 3.79 197.91																				
	100.00,2010 0.19 191.91																				
SPL SOIL LOG 10001514 BH LOGS.GPJ SPL.GDT 12/3/15														1							
SPL SPL																					
						GRAPH			Number			E -3%						-			

SPL SOIL LOG 10001514 BH LOGS GPJ SPL GDT 12/3/15

<u>GRAPH</u> NOTES + ³, \times ³: Numbers refer to Sensitivity

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/12/2015

Method: Solid Stem Auger

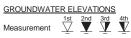
DATUM: Geodetic

BHLC	SOIL PROFILE			AMPL	ES			DYNA	MIC CO STANCE		NETRA	TION						<u> </u>			
	GOILT ROTILL					GROUND WATER CONDITIONS					\sim		00	PLASTI LIMIT	C NAT	URAL STURE	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m³)		ARKS ND
(m)		STRATA PLOT			SIE	WAT NS	z					30 1	1	W _P		NTENT W	WL	POCKET PEN. (Cu) (kPa)	L UNI	GRA	N SIZE
ELEV DEPTH	DESCRIPTION	TAP	ER		BLOWS 0.3 m		ELEVATION	0 U	AR ST	INED	л п (к +	FIELD V & Sensit	ANE			0		(OCK	TURA (kN		BUTION %)
		LRA-	NUMBER	ТҮРЕ			EV/				- ^	LAD V				ONTEN		L	'AN		
203.2		5		ŕ	Ž	ΰŭ	Ш	2	20 4	6	50 1	30 1	00	1	0 2	20	30	<u> </u>		GR SA	SI CL
203.8	TOPSOIL: 180mm	<u></u>					203	-													
0.2	SILTY SAND: trace clay, trace organics, brown to dark brown,	臣	1	SS	4		203	ŀ								0					
	disturbed and inclusive of rootlets,	LH.						-													
-	loose	뭠	-					-													
<u>- 202.4</u> - 0.8	SILTY SAND: trace clay and	₽₽¦₽						F													
-	gravel, brown, very moist, loose	66						ŀ													
-		臣	2	SS	6		000	ŀ							0	C					
-		臣					202	-										1			
201.7		樹						ŀ													
- 1.5	SANDY SILT: some clay, clay pockets, light brown, very moist,							-													
-	compact		3	SS	29			-							0						
2			ľ	00				ŀ													
-								-													
200.9	SILT: some clay, trace sand,	· .].					201	-										1			
	stratified, grey, moist, very dense		4	SS	64 for 290mm			Ł							0						
-								-													
-								F													
- 								Ł													
3.1	SILTY CLAY: trace sand, stratified,	H						F													
	grey, moist, hard	K	1_				200	-										1			
-		B	5	SS	47			ŀ							0					0 3	72 25
-		K						-													
		R						F													
4		K						-													
-		K						-													
		R					199											1			
-		ĥ						-													
- <u>198.6</u> 4.6	SILT: some gravel and clay, trace	KA	1					-													
	sand, stratified, grey, moist, very							-													
-	dense		6	SS	62			-						0							
-								ļ													
							198											1			
-								-													
F								-													
								F													
6								-													
-								-													
-			7	SS	64 for 290mm		197					-		0				1			
196.8 6.4	END OF BOREHOLE																	+			
0.4																					
	Notes: 1. Borehole caved to 6.0m and was																				
	wet at 6.0m upon completion																				
- - - - - - - - - - - - - - - - - - -																					
		I	-					ļ		L	I	1		L	L	I		1			

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

DRILLING DATA


Date: Mar/13/2015

Method: Solid Stem Auger

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm DATUM: Geodetic

BH LOCATION.

DHL	JCATION.																			
	SOIL PROFILE		s	SAMPL	ES			DYNA RESIS	MIC CO	NE PEI		TION			ΝΔΤΙ	IRAI				REMARKS
						GROUND WATER CONDITIONS						30 1	00	LIMIT	C NATU MOIS CON	TURE	LIQUID LIMIT	zi	NATURAL UNIT WT (kN/m ³)	AND
(m)		STRATA PLOT			ଷ୍ଟ	NS NST	z		1	1	1	1	1	WP		W	WL	POCKET PEN. (Cu) (kPa)	IN ()	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	AP	L.		BLOWS 0.3 m	Q P	Ē		AR ST		IН (КІ +	Pa) FIELD V	ANE			0		NO N	(KN/	DISTRIBUTION
DEPTH		RAT	NUMBER	щ		NO IQ	ELEVATION	• Q	UICK TH		. ×	& Sensit LAB V/	ivity ANE	WA	FER CC	ONTEN	T (%)	100	ILAN	(%)
200.9				ТҮРЕ	ž	<u></u> К О						80 1		1	0 2	20	30			GR SA SI CI
0.0	TOPSOIL: 210mm	<u>x1 1//</u>						-												
200.7	CILITY CAND: troop along troop							-												
- 0.2	SILTY SAND: trace clay, trace organics, brown to dark brown,	뷰뷰	1	SS	4			-							0					
200.4	 disturbed and inclusive of rootlets, 	.ЦЦ	-					-												
0.5	loose	招店	<u> </u>					-												
	SILTY SAND: trace clay, brown, very moist, loose to compact	惊						-												
-	very moist, loose to compact	답답					200	-										-		
199.8			2	SS	14			[с	>				
_ 1.1	CLAYEY SILT: some sand, some oxidized stains, light brown, very							-												
	moist, stiff to very stiff	HH.	1					Ŀ												
-		11	1					-												
		M	1																	
F			3	SS	18			-								0				
2		HH	1				199									-		1		
-		11	1					[
198.6		FH.						-												
2.3	SILT: some clay, trace sand,		1					Ľ												
-	dilatant, greyish brown, wet, compact							-												
t I	compact		4	SS	15										0					
-								-												
- 							198											1		
- 3.1	SILTY CLAY: some gravel, trace	₩						-												
-	sand, stratified, grey, moist, stiff		1					-												
		K.	5	SS	10			Ľ.							c	•				
-		11	1					-												
		KK	1																	
-		17	1					-												
4		KX	1				197											1		
F		K.	1					-												
-		11	1					-												
		KK	1					-												
-		ĥ						-												
		K	1					t i												
-					40			-												
5		11	6	SS	12		196									0		1		
195.7		KK						-												
5.2	END OF BOREHOLE													1				\square	1	
	Notes:																			
	1. Borehole caved to 1.1m and was																			
	wet at 1.1m upon completion																			
į	-																		1	
-																				
i i																				
5																				
S																				
																			1	
																			1	
3																			1	
š I																				
5																				

 \odot $^{\pmb{\epsilon}=3\%}$ Strain at Failure

1 OF 1

REF. NO.: 10001514

ENCL NO.: B7

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/13/2015

Method: Solid Stem Auger

REF. NO.: 10001514 ENCL NO.: B8

DATUM: Geodetic BH LOCATION:

		OIL PROFILE SAMPLES DYNAMIC CONE PENETRA RESISTANCE PLOT																	-	
	SOIL PROFILE		1	SAMPL	ES			DYNA RESIS	MIC CO	NE PEN		TION			ΝΔΤ	IRΔI				REMARKS
						GROUND WATER CONDITIONS							00	PLASTI LIMIT	C MOIS	TURE		ż	₹	AND
(m)		STRATA PLOT			<u></u> ω_	VAT VS	7	4	AR STI				1	Wp		IENI W	W	T PE KPa)	IN CE	GRAIN SIZE
ELEV	DESCRIPTION	API	Ľ.		BLOWS 0.3 m	_d 5	ELEVATION	SHE/			TH (kł	7a) FIELD V	ANE	i—		0		NO N	KN/	DISTRIBUTION
DEPTH		AT,	ABE	ш		N N	A		NCONF UICK TI		+	& Sensit LAB V/	ivity ∆NE	WA	TER CO	ONTEN	T (%)	PG S	L F F	(%)
202.6		STR	NUMBER	ТҮРЕ	ž	N O	L	- ~	0.0			0 1				20 3	30		1	GR SA SI CL
0.0	TOPSOIL: 310mm	<u>11/2</u>	+-	-	-												+	-		
								F												
202.3	CILITY CAND: come alout trace	4.5	1	SS	6			-								0				
- 0.3	organics brown to dark brown	招告						E .												
F I	SILTY SAND: some clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets,	日日					202											-		
201.8	loose	빌						-												
0.8	SILTY SAND: trace clay, light	招告																		
1	brown, wet, compact	日日						-												
-		집합	2	SS	14			F								P				
		퉡																		
-		i¦i				-		-												
201.1		분분				-		-												
- 1.5	10050	답답					201	-										1		
-		11 H	3	SS	9			-								0				
2		법물	Ĩ					-												
F		답답						Ĺ												
200.3		甘甘				1		-												
2.3	SANDY SILT: some clay, some					1		-												
	oxidization stains, grey, moist,							-												
-	compact		4	SS	18		200	-							- 0			-		
								-												
						4		-												
<u> </u>		<u> </u> .				1		-												
3.1	SILT: some clay, some sand, sand							t												
	seams, stratified, grey, moist, dense				40			-												
-			5	SS	42			-							0					
							199	-												
-						1	199	-												
-								-												
4																				
-								-												
								ŀ												
								-												
-198.0								-												
4.6	very dense					1	198											1		
[[
-			6	SS	55			-						0						
5								ŀ												
⁻ 197.4	END OF BOREHOLE	+						F												
5.2			1																	
	Notes:																			
	1. Borehole caved to 1.1m and was																			
	wet at 1.1m upon completion		1																	
Ŝ.																				
i i																				
2																				
			1															1	1	
ġ			1															1	1	
			1										1				1			
			1										1				1			
<u>t</u>			1										1				1			
			1										1				1			
			1										1				1			
			1															1	1	
4			1										1				1			
			1															1	1	
<u>ا</u> ا			1															1	1	
5																<u> </u>				

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

DRILLING DATA Method: Solid Stem Auger

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm DATUM: Geodetic Date: Mar/11/2015

BH LOCATION:

DITLO	JCATION.																			
	SOIL PROFILE		5	SAMPL	ES			DYNA RESIS	MIC CO	NE PEI		TION			o NAT	URAL			⊢	REMARKS
()		L				GROUND WATER CONDITIONS							00	PLASTI LIMIT		TURE	LIQUID LIMIT	Ľ.	NATURAL UNIT WT (kN/m ³)	AND
(m)		STRATA PLOT			Sε	.WA	z			1	1		1	W _P		N	WL	POCKET PEN. (Cu) (kPa)	μ Γ Γ	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	TAF	ШШ		BLOWS 0.3 m	DN DE	DIT O	0 U	AR STI	INED	+	FIELD V & Sensit	ANE			0		ŠŐ.	L R S	DISTRIBUTION (%)
		RA-	NUMBER	ТҮРЕ			ELEVATION	• Q	UICK TH	RIAXIAL	- ×	LAB V/	ANE			ONTEN		L.	Ϋ́	(70)
205.2			ž	F -	ž	50		2	20 4	ю е	50 E	30 1	00	1	0 2	20 3	30			GR SA SI CI
0.0 205.0	TOPSOIL: 200mm	<u>711</u>					0.05	-												
0.2	SILTY SAND: trace clay, trace	11	1	SS	5		205	-								0		1		
-	organics, brown to dark brown, disturbed and inclusive of rootlets,	招出						ŀ												
-	loose	間						-												
204.4			-					F												
0.8	SILTY SAND: trace clay, trace gravel, light brown, wet, loose	臣臣						-												
1	gravel, light sternil, thet, leeve	围	2	SS	7			Ł								6				
-		臣臣					204											-		
		招						-												
203.7		井井						-												
- 1.5	stratified, compact	間						-												
-			3	SS	20			-								0				
2		臣																		
-		出	<u> </u>					ŀ												
202.9	CANDY OIL To trace along some					-	203	-										1		
2.3	SANDY SILT: trace clay, some oxidization stains, grey, moist, very							-												
-	dense		4	SS	51			-							0					
-								-												
F. I			<u> </u>					F												
<u>-</u> 202.2 3.1	SILT: some clay, some sand, sand	· .				-		ŀ												
- 3.1	seams, grey, moist, very dense		5	SS	69 foi 280mn	1	202											-		
			\vdash		2001111			t												
-								-												
								-												
-								-												
4																				
-								ŀ												
							201	-										1		
-								-												
-2 <u>00.6</u> 4.6	trace gravel	++ +			77 60	-		-												
- 200.3			6	SS	77 foi 280mn			-						0						
4.9	END OF BOREHOLE							[-		
	Notes: 1. Borehole caved to 1.09m and																			
	was wet at 1.09m upon completion																			
																			1	
																			1	
		_	_	_	_			_		_	_			_		_		_		

REF. NO.: 10001514

ENCL NO.: B9

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA Method: Solid Stem Auger

Date: Mar/12/2015

REF. NO.: 10001514 ENCL NO.: B10

DATUM: Geodetic

BHLC	DCATION:											TION										
	SOIL PROFILE		s	AMPL	.ES	~~~		RESIS	STANCE	NE PEN PLOT		TION		PLAST			LIQUID		Υ		MARK	S
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER	ELEVATION	SHE/ 0 U • Q	AR ST NCONF UICK TI	IO 6 RENG INED RIAXIAL IO 6	TH (k + ×	FIELD V & Sensiti LAB V/	00 I ANE ivity ANE 00	WA			LIMIT WL T (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GR. DIST	AND AIN SIZ RIBUT (%)	ION
206.0 - 20 9.9		<u>, 17</u>	Z	-	F		, Ш • •		-					'			1	-		GRS	A SI	CL
205.2 0.8	SILTY SAND: trace gravel and clay, trace organics, brown to dark brown, disturbed and inclusive of cootlets, loose SILTY SAND: trace clay, brown, very moist, loose		1	SS SS	7		205	-						0	0			-				
204.5 1.5								-														
203.7			3	SS	11		204	-								0						
2.3	SANDY SILT: some clay, some oxidization stains, light brown, very moist, compact		4	SS	21			-							C	>						
<u>203.0</u> 3.1	trace clay, stratified, greyish brown, moist, dense		5	SS	44		203	-							0							
- - - -						¥	202 W. L. 2	201 7										-				
-201.4	SILT: some sand to sandy, some	•					Mar 17															
- - - -	clay, trace gravel, grey, moist, very dense		6	SS	80		201	-							0			-				
- - - 199.9							200	-										-				
- 6.1 -1 <u>99.4</u> - 6.6	SANDY SILT TO SILT AND SAND: trace clay, trace gravel, grey, very moist, very dense 50mm coarse sand layer, wet	· · ·	7	SS	62		199	-							0			-		1 3	2 62	5
- - <u>198.4</u> - 7.6	some clay		8	SS	55		198	-							0							
<u>197.8</u> 8.2	END OF BOREHOLE	·					130															
	Notes: 1. Borehole dry upon completion 2. 50 mm dia. monitoring well was installed upon completion , screened from 5.7m to 7.3m. 3. Water Level Measurements in Monitoring Well DateW L. Depth (m)W.L. Elev. (m) March 17, 2015 4.30 201.70 April 16, 2015 4.04 201.96 May 22, 2015 4.46 201.54 June 30, 2015 4.51 201.49 July 31, 2015 4.51 201.49 July 31, 2015 5.31 200.69 Oct. 1, 2015 5.38 200.62 Nov. 30, 2015 5.04 200.96																					
i						GRAPI	+ , 3					8 =3%										

SPL SOIL LOG 10001514 BH LOGS GPJ SPL GDT 12/3/15

GROUNDWATER ELEVATIONS

 \odot $^{\pmb{\epsilon}=3\%}$ Strain at Failure

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/11/2015

Method: Solid Stem Auger

REF. NO.: 10001514 ENCL NO.: B11

DATUM: Geodetic

DIL	JCATION:																				
	SOIL PROFILE		5	SAMPL	ES			DYNA RESIS	MIC CO STANCE	NE PEN PLOT		TION		DIAST	NAT	URAL	LIQUID		F	REMAR	RKS
(m)		F				GROUND WATER CONDITIONS			20 4	10 6	i0 8	30 1	00	LIMIT	IC NAT MOIS CON	STURE	LIQUID LIMIT WL T (%)	Ľ.	× ⊢z	AND)
ELEV		STRATA PLOT			BLOWS 0.3 m	AW ONS	z	SHE	AR ST	RENG	TH (k	Pa)	1	W _P		w	WL	(KPa	JD (° K k l	GRAIN S	
DEPTH	DESCRIPTION	TA	NUMBER		0.3 0.3		ELEVATION										T (04)	DO DO	JUL S	DISTRIBL (%)	
		TRA	NM	ТҮРЕ	I.	ONE ONE				RIAXIAL 10 6		LAB V. 30 1	ANE 00		TER CO		1 (%) 30	 	Ž	(,	
205.8	TOPSOIL: 250mm	0 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		⊢ –	f	00	ш	4	20 4		3 0			- ·		20 ;	50	-	-	GR SA S	SI CL
- 205.6								È .													
- 0.3		ΪÌÌ	1	SS	12			╞								0					
	trace clay, trace organics, brown to dark brown, disturbed and inclusive	招						-													
205 0	of rootlets, loose to compact	間	-					Ł													
- 205.0	SILTY SAND TO SANDY SILT:	十日				-	205	-										-			
- 1	trace clay, light brown, very moist,	旧						Ŀ													
-	loose	招	2	SS	7			ŀ								þ					
		围						Ŀ													
_204.3		捐捐	-					ŀ													
- 1.5		邗	-		<u> </u>			È.													
-		間						ŀ													
			3	SS	16		204	-							С			1			
2		臣臣						ŀ													
203.5		間						F													
2.3	some clay, stratified, grey, moist,	甘片						F													
F	very dense	招						-													
		同時	4	SS	77			Ŀ							0						
-							203											-			
- 		旧						È .													
- 3.1	SILT: some clay, some sand, grey,	Ť			1			-													
	moist, very dense		_					È													
-			5	SS	76			-							D						
-								-													
-							202	ŀ													
F.							202	-													
4								ŀ													
F								F													
-								E													
-201.2								ŀ													
4.6	some gravel		6	SS	70 fo	r		È .						0							
201.0	END OF BOREHOLE	+	-		230mr	n 	201											+	+	├───	
7.0																					
	Notes: 1. Borehole caved to 1.6m and was																				
	wet at 1.6m upon completion																				
																		1			
																		1			
																		1			
																		1			
		1	<u> </u>	1	1	I	I	I		1	I	1	1	I	I	1	1	_	<u> </u>	<u> </u>	
GROUN	IDWATER ELEVATIONS					<u>GRAPH</u> NOTES	+ 3,	×3:	Number to Sensi	rs refer itivity	C	8 =3%	Strain	at Failu	re						

Measurement $\stackrel{1st}{\underline{\nabla}} \stackrel{2nd}{\underline{\Psi}} \stackrel{3rd}{\underline{\Psi}} \stackrel{4th}{\underline{\Psi}}$

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/11/2015

Method: Solid Stem Auger

DATUM: Geodetic BH LOCATION:

Measurement $\stackrel{1st}{\underline{\nabla}} \stackrel{2nd}{\underline{\Psi}} \stackrel{3rd}{\underline{\Psi}} \stackrel{4th}{\underline{\Psi}}$

DITEC								0.014				TION						-		
	SOIL PROFILE		5	SAMPL	ES	~		RESI	STANCE	DNE PEI E PLOT		HON				URAL	LIQUID		F	REMARKS
(m)		<u>-</u>				GROUND WATER CONDITIONS			20	40 6	3 O	30 1	00	LIMIT	C NATI MOIS CON	TURE	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND
ELEV		PLO			S E	NONS	Z	SHE	AR ST	RENG	TH (kl	Pa)		Wp	\	w 0	WL	KET F	AL U N/m ³	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	IND	ELEVATION	0 0	NCONF		+	FIELD V & Sensit	ANE ivity	10/0			T (%)	0 Q Q	ATUR *	(%)
		TR/	IUM	ТҮРЕ	"Z	NON NO	E			RIAXIAL 40 6		LAB V. 30 1	ANE 00				30		Ž	
205.8	TOPSOIL: 200mm	1,17			-	00		-	+	+0 0				<u> </u>		÷	+			GR SA SI CL
205.6								ŀ												
_ 0.2	SANDY SILT: trace clay, trace organics, brown to dark brown,		1	SS	8			╞									0			
	disturbed and inclusive of rootlets,		1					-												1
-	loose		<u> </u>					ŀ												1
<u>- 205.0</u> - 0.8	SANDY SILT: some clay, trace	++ -	-			1	205									<u> </u>				1
1 0.0	gravel, light brown, very moist,							ŀ												1
-	compact		2	SS	25			Ē							0					1
-								ŀ												1
								È.												1
_204.3		++	1			-		ŀ												1
- 1.5	grey							È.												1
-			3	SS	29		204	. -							0	<u> </u>				1
2								È.												1
-			1					ŀ												1
203.5		+						È.												
_ 2.3	very dense							-												
-			4	SS	99			-							o					
-								ŀ												
			-				203	-								<u> </u>		1		
3								ŀ												
			1		90 for			È.												
202.4			5	SS	280			┝							0	1				1
- 3.4	SILTY SAND: some gravel, trace							Ē.												1
-	clay, grey, wet, very dense	臣						ŀ												1
		招					202	-								<u> </u>				
		招	l.					1												
		間						Ē												
-			ľ.					ŀ												1
-		間	e D					-												1
-201.2			Ľ.					ŀ												1
4.6	CLAYEY SILT: some sand, stratified, grey, moist, hard		F]					-												1
-	stratilieu, grey, moist, naru		6	SS	37		201							-	0			1		1
5				00	57			-							Ĩ					1
-			1					ŀ												1
-			1					F												1
-			8					ŀ												1
-			4					F												1
2			1				200	ŀ												1
			1				200	-												1
5_199.7			1					t												1
сь	END OF BOREHOLE			<u>ss</u>	50 foi 25	1								T						
አ	Notes:				25															1
	1. Auger refusal at 6.1m below																			1
	grade. Sampler bouncing																			
	2. Borehole caved to 5.3m and was dry upon completion																			1
5	,							1						1					1	1
0																				
								1						1					1	1
š I								1						1					1	1
-								1						1					1	1
۵ ۲								1						1					1	1
ե								1						<u> </u>					1	L
CROUN						<u>GRAPH</u> NOTES	+ 3	× 3.	Numbe	rs refer	C	8 =3%	Strain	at Failur	۵					
GROUN	DWATER ELEVATIONS					NOTES	1° 4	· · ·	to Sens	itivity	C		Judin	arraiiur	9					

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

DRILLING DATA

Date: Mar/11/2015

Method: Solid Stem Auger

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm DATUM: Geodetic

BH LOCATION:

			1			1	1	DYNA		NE PEN	JETRA	TION						1	1		
	SOIL PROFILE		S	SAMPL	.ES	~		RESIS	TANCE	PLOT	\geq					URAL	LIQUID		E	RE	MARKS
(m)		⊢				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	30 1	00	LIMIT	CON	STURE	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)		AND
(m)		STRATA PLOT			S c	NS.	z					1	1	WP		w	WL	(KPa	L L L L		AIN SIZE
ELEV DEPTH	DESCRIPTION	ΑÞ	۲.		BLOWS 0.3 m	₽₽	ELEVATION		AR ONE	RENG [®] INED	і п (кі +	FIELD V	ANE	⊢		0		NO.	LRA NA	DIST	RIBUTION
DEPTH		RAT	ABE	щ		5 g	A		ICK TF		×	& Sensit LAB V/		WA	TER CO	ONTEN	T (%)	L _d	I F A		(%)
206.4		STF	NUMBER	ТҮРЕ	z	S GR				0 6			00	1	10 2	20 3	30			GR S	A SI CL
0.0	TOPSOIL: 250mm	1 1/2.					1														
- 206.2							1	[
- 0.3	SILTY SAND: trace clay, trace	11 h	1	SS	4			ŀ								0					
	organics, brown to dark brown,	민민				<u>×</u>	206 W. L.	L 206.0 r	n												
-	disturbed and inclusive of rootlets,	問						7, 2015													
205.6	loose	南京						ŀ													
0.8	SILTY SAND: trace clay, light	ΠŀΤ						ŀ													
1	brown, wet, compact	出出						F													
-		臣臣	2	SS	14			ŀ								0					
-		臣臣						-													
		티문	<u> </u>				205														
-		围					200	ŀ													
-		11 i						-													
		민리	3	SS	14			[0					
-		臣		33	14			-													
2		11 ji						ŀ													
		티뷰						[
-		民						ŀ													
_203.9		臣許					204	-													
- 2.5	SILT: some sand to sandy, trace	fff	4	SS	13			Ē.								0					
-	clay, grey, very moist, compact		·					ŀ													
-								-													
						日		Ē													
- 3.1	trace sand, grey, very dense	++ +						ŀ													
-								ŀ													
			5	SS	53		203	Ē							0					0	9838
-								-													
-								-													
								Ē.													
F.								-													
4								ŀ													
								[
-							-	ŀ													
							202														
201.8			6	22	50 for			[0						
4.7	END OF BOREHOLE	<u> </u>			80mm		1							İ –							
					20111																
	Notes: 1. Water level in well at 1.6m below																				
	ground upon completion																				
	2. 50 mm dia. monitoring well was																				
	installed upon completion,																				
	screened from 2.7m to 4.3m.																				
	 Water Level Measurements in Monitoring Well 		1				1							1							
	DateW.L. Depth (m)W.L. Elev. (m)		1											1					1		
	March 17, 2015 0.44 205.96																		1		
	April 16, 2015 0.67 205.73																		1		
	May 22, 2015 0.83 205.57																				
	June 30, 2015 0.65 205.75 July 31, 2015 1.00 205.40																				
	Aug. 27, 2015 1.38 205.40																				
	Oct. 1, 2015 1.36 205.02 Oct. 1, 2015 1.44 204.96		1											1					1		
	Oct. 31, 2015 1.13 205.27		1				1							1		1					
	Nov. 30, 2015 0.76 205.64		1											1					1		
			1											1					1		
																			1		
			1											1					1		
			1											1					1		
																			1		
																			1		
																			1		
																			1		
			1											1							

REF. NO.: 10001514

ENCL NO.: B13

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

DRILLING DATA

Method: Solid Stem Auger

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm DATUM: Geodetic Date: Mar/10/2015

.....

┢	BHL	JCATION:		-									TION						-	-	
L		SOIL PROFILE		5	SAMPL	.ES	<u>د</u>		RESIS	MIC CO TANCE	PLOT		HON		PLASTI LIMIT		URAL	LIQUID	,	ź	REMARKS
	(m)		5				GROUND WATER CONDITIONS			1		1	1	00		CON	TENT	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
1	ELEV	DESCRIPTION	STRATA PLOT	щ		BLOWS 0.3 m		ELEVATION	SHE/	AR STI	RENG	TH (kl	Pa) FIELD V	ANE	W _P		o	WL	CKET (K	(KN/m	DISTRIBUTION
	EPTH		RAT,	NUMBER	ТҮРЕ			-A	• Q	UICK TF	RIAXIAL	. ×	& Sensit LAB V/	ivity ANE	WA	TER CO	ONTEN	T (%)	PO S	JTAN	(%)
Ŀ	206.0			R	Σ	Ž	R C		2	20 4	0 6	3 0	30 1	00	1	0 2	20	30			GR SA SI CL
ŀ	0.0	TOPSOIL: 330mm	<u>×1 1/</u>						-												
Ľ	205.7		4 5	1	SS	8			-								0				
È	0.3	SANDY SILT: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets,							-												
ţ,	205.2	disturbed and inclusive of rootlets, loose																			
F	0.8	SANDY SILT: trace clay, light		1					-												
1		brown, very moist, compact		2	SS	19		205								0			-		
ŧ				2	55	19										0					
Ł									ŀ												
Ľ	204.5 1.5	some clay, grey, moist, dense	<u> </u> .	_			-		-												
F	1.0	some day, grey, molst, dense							-												
Ē,	204.0			3	SS	46										0					
É	2.0	SILT: some clay, trace sand, grey,		1				204											1		
ŀ		very moist, dense to very dense							-												
F									-												
F				4	SS	68			-							0					0 1 86 13
ŧ																					
- 3							-	000	-												
F								203	-										1		
Ę				5	SS	44										0					
Ł				5	55	44			-							0					
ŀ																					
ŀ									-												
4								202											-		
ŧ																					
Ł																					
Ŀ	2 <u>01.4</u>								-												
F	4.6	trace gravel, very moist, compact							-												
Ę				6	SS	22									0						
5	200.8							201											1		
f	<u>200.8</u> 5.2	END OF BOREHOLE		\vdash															\vdash	1	
		Notes:																			
		1. Borehole caved to 1.1m and was																			
2		wet at 1.1m upon completion																			
!																					
5																					
2																					
· –		1	1	1									1				1	1		1	

REF. NO.: 10001514

ENCL NO.: B14

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Date: Mar/11/2015

Method: Solid Stem Auger

REF. NO.: 10001514 ENCL NO.: B15

DATUM: Geodetic

BHTC	JCATION:																			
	SOIL PROFILE		s	SAMPL	ES			DYNA RESIS	MIC CO TANCE	NE PEI		TION				URAL	LIQUID		E	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR ST	RENG	TH (kF +	50 1 Pa) FIELD V & Sensiti LAB V	ANE	PLASTI LIMIT W _P WA		w 0	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
206.5	TOPSOIL: 200mm	ST ST		₽	"z	9 9 9 9	Ш	2	20 4	0 6	8 0	0 1	00	1	0 2	20 :	30			GR SA SI CL
- <u>208:3</u> - 0.2 - - - 2 <u>05</u> .7	SANDY SILT: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets, loose		1	SS	8		206	- - - - -								0		-		
- 0.8 - 0.8 			2	SS	28			- - - -							0					
<u>205.0</u> 1.5 - - -	trace clay, dense		3	SS	49		205	- - - - - -							0			-		
- 204.2 - 2.3 	SILT: some sand, trace clay, trace gravel, grey, moist, very dense		4	SS	100 for 1 <u>50mr</u>	'n	204	- - - - -						0				-		
<u>-3203.5</u> 3.1 - -	some gravel, dense		5	SS	46		203	 - - - -						0				-		
- - - - - - -201.9							202	- - - - - -												
4.6 	very dense		6	SS	87 for 280mn		202	-						c	þ					
- - - - - - 200.4							201	-										-		
- 6.1 - - - - -	SAND AND GRAVEL: some silt, trace clay, grey, wet, very dense		7	SS	95 foi <u>255mn</u>	n	200	- - - -							0			-		auger grinding
			8	SS	50 for		199	- - - -						0				_		
7.8	END OF BOREHOLE	<u>.</u>			130			-										\square		
SPL SOIL LOG 10001514 BH LOGS.GPJ SPL.GDT 12/3/15 8.66 8.68 8.98 8.98	Notes: 1. Borehole caved to 7.0m and was wet at 7.0m upon completion																			
້ວ																				L

1 OF 1

DRILLING DATA

Date: Mar/11/2015

Method: Solid Stem Auger

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DATUM: Geodetic

BH LC	CATION:																				
	SOIL PROFILE		s	AMPL	.ES	~		RESIS	TANCE	NE PEN E PLOT		TION		PLAST			LIQUID		Υ		MARKS
(m)		5				GROUND WATER	w			10 6		1	00	Linvin I	CON	ITENT W	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)		AND AIN SIZE
ELEV	DESCRIPTION	STRATA PLOT	~		BLOWS 0.3 m		ELEVATION	SHE/	AR ST		TH (kl	Pa) FIELD V	ANE	W _P		•• •	WL	CKET (k	RAL I (kN/m		RIBUTION
DEPTH		SAT/	NUMBER	Щ					NCONF UICK T	·INED RIAXIAL	+ ×	& Sensit LAB V	tivity ANE	WA	TER CO	ONTEN	IT (%)	Pd S	NATU		(%)
208.5				ТҮРЕ	ž	GR				40 6			00	1	0 2	20	30			GR S	A SI CL
- <u>209.0</u> 0.1	TOPSOIL: 125mm	<u></u>				¥.		E													
	SANDY SILT: trace clay, trace organics, brown to dark brown,		1	SS	4	Υ.		F													
207.7	disturbed and inclusive of rootlets,						208	i										1			
0.8								E													
-	SAND TO SANDY SILT: some clay, trace sand, some oxidation		2	SS	25			F							c	>					
E	stains, light brown, very moist,							Ē													
207.0	_ compact very moist, dense	: ·					207	' <u> </u>										1			
-			3	SS	49			F							c	>					
-2								F													
- 206.2	SILT: some clay, some sand, grey,	1						È.													
- 2.3	moist, very dense		4	SS	80	¥	204 W 1	206.0	 m						0			-			
				00				7, 2015													
<u>3</u>								Ē													
			5	SS	70			E							0						
E			5	33	70		205	; [-			
								E													
4								F													
								Ē													
-203.9							204	<u> </u>													
4.6	trace sand, dense							Ē													
5			6	SS	43			Ł							0						
								Ē													
							203	<u> </u>													
								Ē													
-6 202.4								F													
6.1	SAND AND SILT: trace gravel,					1 E		Ē													r grinding
-	trace clay, grey, very moist, dense		7	SS	38	LE	202	<u></u>							0					34	0 50 7
			_			ΙE		Ē													
7						LΕ		È													
						LE		Ē													
-						ΙE	201							<u> </u>							
200.8			8	. 88 /	50 for	-															
7.8	END OF BOREHOLE				80mm	á															
	Notes																				
ю.	 50 mm dia. monitoring well was installed upon completion , 																				
/3/1	screened from 6.1m to 7.6m.																				
12	 Water Level Measurements in Monitoring Well 																				
GD	DateW.L. Depth (m)W.L. Elev. (m)																				
SPL.	March 17, 2015 2.52 205.98 April 16, 2015 2.87 205.63																				
E I	May 22, 2015 3.08 205.42																				
5.0	June 30, 2015 2.85 205.65 July 31, 2015 3.61 204.89							1													
ő l	Aug. 27, 2015 3.66 204.84							1													
퓲	Oct. 1, 2015 3.78 204.72 Oct. 31, 2015 3.39 205.11																				
1514	Nov. 30, 2015 3.74 204.76																				
÷								1													
								1													
SPL SOIL LOG 10001514 BH LOGS.GPJ SPL.GDT 12/3/15																					
		-				GRAF	н. 3	×3. ∣	Numbe	rs refer		6 =3%		ot Epilur							

REF. NO.: 10001514 ENCL NO.: B16

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

DRILLING DATA

Method: Solid Stem Auger

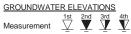
Diameter: 150mm Date: Mar/10/2015 REF. NO.: 10001514 ENCL NO.: B17

(m) ELEV DEPTH 209.1 208.9 0.2 - - 208.3 - 208.3 - - 208.3 - - - - - - - - - - - - -	SOIL PROFILE DESCRIPTION TOPSOIL: 200mm SILTY SAND: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets, loose SILTY SAND: trace clay, light brown, very moist, compact SANDY SILT: some clay, grey, very moist, dense	STRATA PLOT	NUMBER	SAMPL BdAL SS	ES 03 <u>m</u> 6	GROUND WATER CONDITIONS		2 SHEA O UN	MIC COL TANCE 0 4 AR STF NCONFI JICK TF 0 4	0 6 RENG INED RIAXIAL	0 8 TH (kF + ×	0 10 Pa) FIELD VA & Sensitiv LAB VA	ANE vity INE	PLASTIC LIMIT W _P WAT	v ER CC		LIQUID LIMIT W _L (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
ELEV DEPTH 209.1 208.9 - 0.2 - 0.2 - 0.2 - 0.8 - 0.8 - 1 - 0.8 - 1 - 0.8 - 1 - 0.8 - 1 - 0.8 - 1 - 0.8 - 1 - 0.9 - 0.2 - 0.9 - 0.2 - 0.9 - 0.2 - 0.9 - 0.2 - 0.8 - 0.2 - 0.8 - 0.2 - 0.8 - 0.2 - 0.8 - 0.8 - 0.2 - 0.8 -	TOPSOIL: 200mm SILTY SAND: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets, loose SILTY SAND: trace clay, light brown, very moist, compact SANDY SILT: some clay, grey,		1	SS	ž.	GROUND WATER CONDITIONS		SHEA O UN • QI	AR STF NCONFI JICK TF		TH (kF + ×	Pa) FIELD VA & Sensitiv LAB VA	ANE vity INE	W _P WAT	v ER CC		LIQUID LIMIT WL (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
DEPTH 209.1 0.0 208.9 - 0.2 - - - - - - - - - - - - -	TOPSOIL: 200mm SILTY SAND: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets, loose SILTY SAND: trace clay, light brown, very moist, compact SANDY SILT: some clay, grey,		1	SS	ž.	GROUND		• QI	JICK TF	RIAXIAL	×	LAB VA	NE	WAT			「(%) Ю	P00 00)	NATUR (k	(%) GR SA SI CL
0.0 208.9 0.2 - - - - 208.3 - - - - - - - - - - - - - - - - - - -	SILTY SAND: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets, loose SILTY SAND: trace clay, light brown, very moist, compact SANDY SILT: some clay, grey,		1	SS				-									-			GIN SA SI CL
- 0.2 - 208.3 - 0.8 - 1 - 207.6	organics, brown to dark brown, disturbed and inclusive of rootlets, loose SILTY SAND: trace clay, light brown, very moist, compact SANDY SILT: some clay, grey,				6		209	-												
0.8 1 2 207.6	brown, very moist, compact SANDY SILT: some clay, grey,		2					-							0					
			.1	SS	15		208	-								0				
		1111				1														
			3	SS	44		207	-							0					
206.8			1					-												
2.3	very dense		4	SS	59			-							0					
⁻³ 206.1								-												
- 3.1	SILT: some clay, some sand, grey, moist, very dense		5	SS	65	-	206	-							0					
- - - -							205	-												
<u>204.5</u> 4.6 5 203.9	trace clay, dense		6	SS	42	_	204								0					
5.2	END OF BOREHOLE																			
5.2	Notes: 1. Borehole caved to 3.9m and was wet at 3.9m upon completion																			

PROJECT: Geotechnical Investigation

CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm


DRILLING DATA

Date: Mar/10/2015

Method: Solid Stem Auger

REF. NO.: 10001514 ENCL NO.: B18 1 OF 1

BHLC	SOIL PROFILE		5	SAMPL	.ES			DYNA RESIS	MIC CO TANCE	NE PEN PLOT		TION			- NAT	URAI			F	REMARKS
(m)		-oT			<u>ଜ</u> ା –	GROUND WATER CONDITIONS		2	0 4	0 6	8 0	30 1	00	PLASTI LIMIT WP		STURE ITENT W	LIQUID LIMIT W _L	T PEN. <pa)< td=""><td>NATURAL UNIT WT (kN/m³)</td><td>AND GRAIN SIZE</td></pa)<>	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m		ELEVATION		AR STI		TH (kf +	Pa) FIELD V & Sensit	ANE		TER CO	0		POCKET PEN. (Cu) (kPa)	ATURAL (kN/r	DISTRIBUTION (%)
209.8			MUN	ТҮРЕ	ŗ	GRO CON	ELEV			RIAXIAL 0 6		LAB V/ 80 1	ANE 00				30		Ž	GR SA SI CL
0.0	TOPSOIL: 350mm	<u>1/</u>						-												
- 209.5 - 0.4 -	SILTY SAND: trace clay, trace			SS	7										0					
- - 2 <u>09</u> .0	organics, brown to dark brown, disturbed and inclusive of rootlets, _ loose							-												
- 0.8 - 1	SILTY SAND: trace clay, light brown, very moist, compact	臣					209	-												
-			2	SS	19			-								0				1 78 17 4
-		臣																		
<u>208.2</u> - 1.6	SANDY SILT: trace clay, grey, very moist, compact				10		208	-												
2	moisi, compact		3	SS	19		200	-								0				
207.5								-												
2.3	trace to some clay, dense							-												
-			4	SS	33		207									0				
- 	0117							-												
- 3.1 -	SILT: some clay, some sand, trace gravel, grey, very moist, dense to very dense		5	SS	44			-												
-			5	55	44										0					
-							206													
4																				
-								-												
-					75 for															
- - <u>205.0</u> 4.8	END OF BOREHOLE		6	SS	75 for 250mn	<u> </u>	205	-							0					
4.0	Notes:																			
	1. Borehole caved to 1.3m and was wet at 1.3m upon completion																			
		-		1		GRAPH	·		Jumber			E -3%	1		I		1			1

PROJECT: Geotechnical Investigation

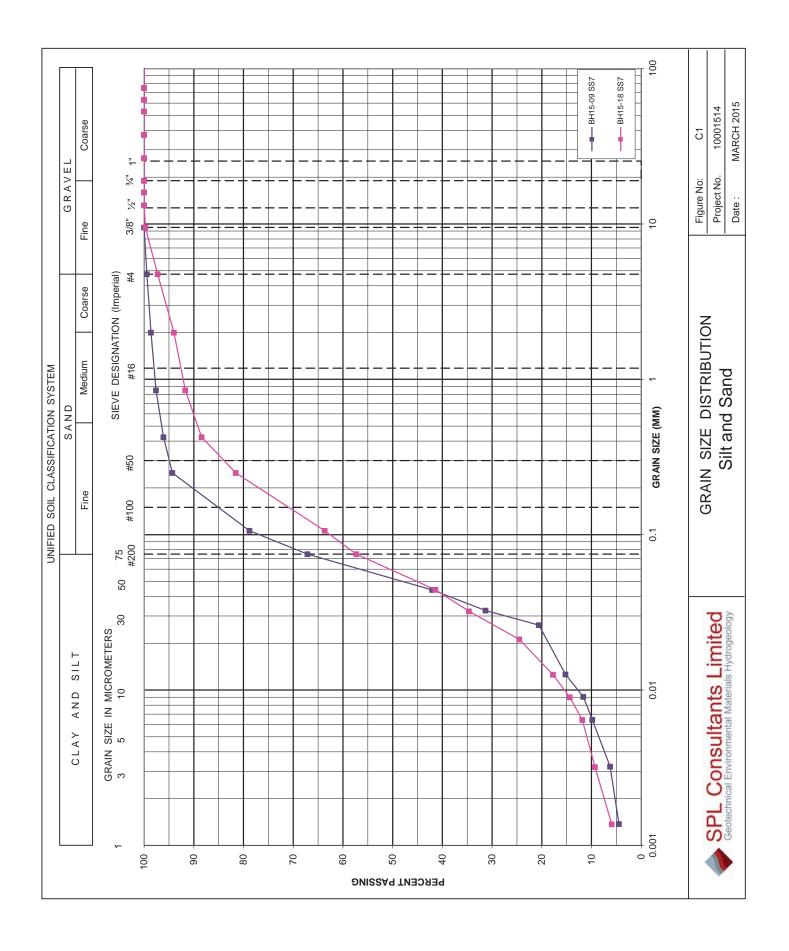
CLIENT: 1671745 Ontario Limited c/o C.C. Tatham & Associates Ltd.

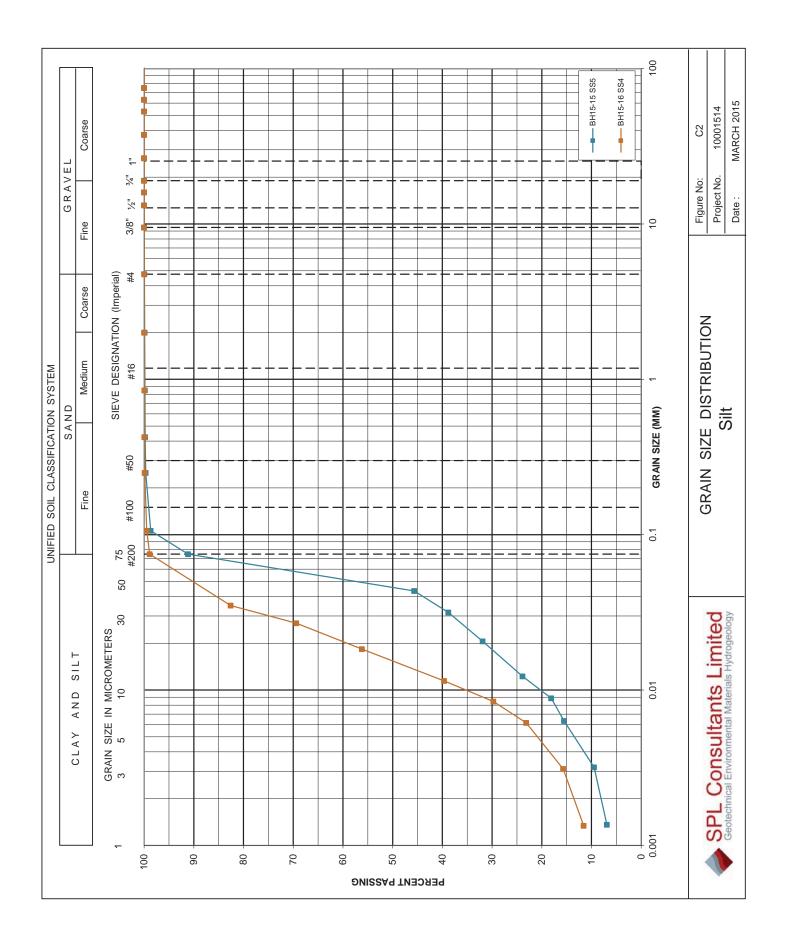
PROJECT LOCATION: Charleston Homes Residential Subdivision, Collingwood. Diameter: 150mm

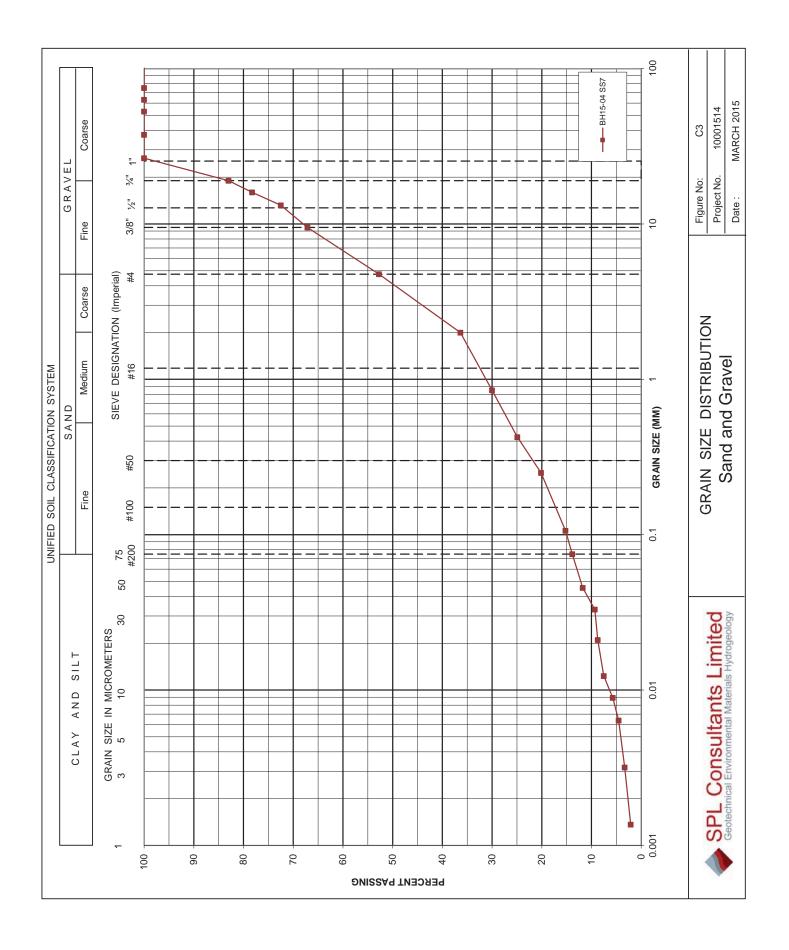
DRILLING DATA

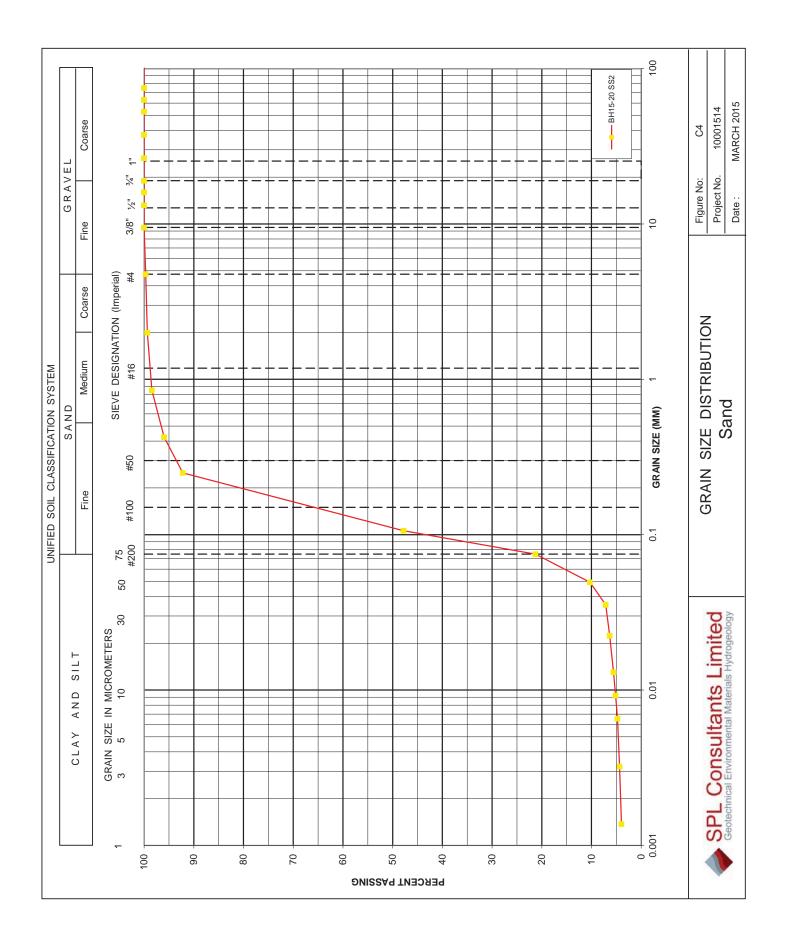
Date: Mar/10/2015

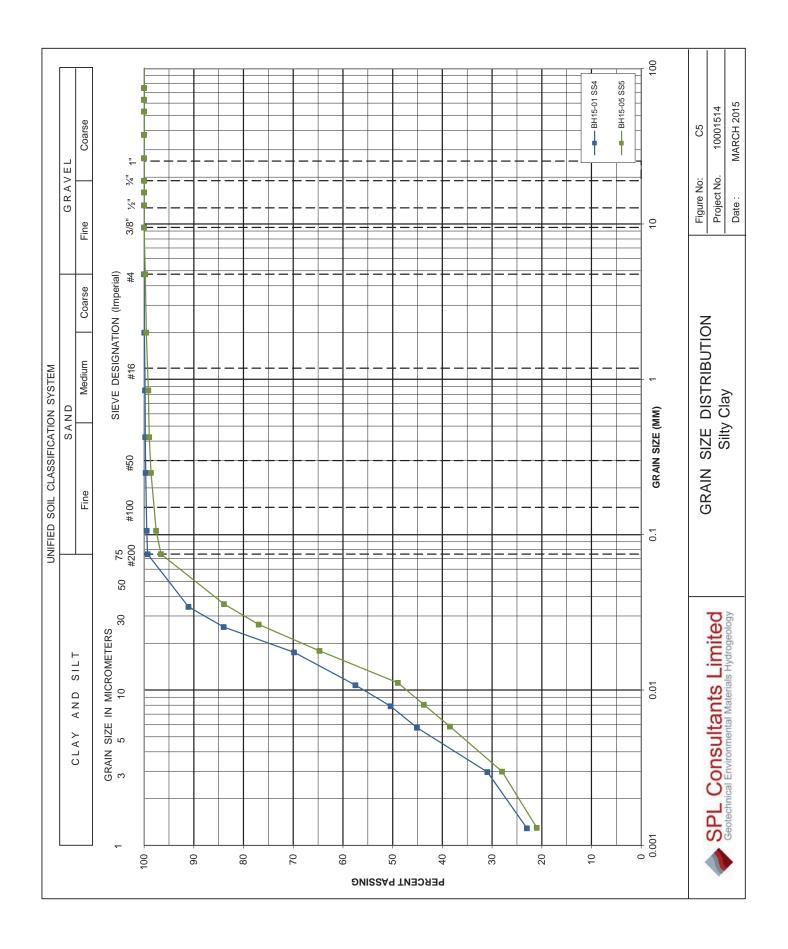
Method: Solid Stem Auger


REF. NO.: 10001514 ENCL NO.: B19


BHTC	JCATION:																			
	SOIL PROFILE		s	SAMPL	ES	Ω.		DYNAI RESIS	MIC CO TANCE	NE PEI PLOT		TION		PLAST	IC NATI MOIS CON		LIQUID		ΨT	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/ O UI • QI	AR STI NCONF JICK TF	RENG INED RIAXIAL	iTH (kl + - ×	FIELD V & Sensit LAB V	ANE	W _P				POCKET PEN (Cu) (kPa)	NATURAL UNIT (KN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
208.8	TOPSOIL: 225mm	0 1/2	z	í-	4	00		- 2	20 4	0 6	30 8 	30 1	00	1	0 2	:0 :	30	-		GR SA SI CL
- <u>208.6</u> - 0.2 - <u>208.0</u> - <u>0.8</u>	SILTY SAND: trace clay, trace organics, brown to dark brown, disturbed and inclusive of rootlets, loose SILTY SAND: trace clay, light		1	SS	5		208	-								0		-		
- - - - 207.3	brown, very moist, compact		2	SS	21			-							c					
- 1.5 - - - - -	SANDY SILT: trace clay, trace gravel, grey, very moist, dense		3	SS	46		207	-							0			-		
- 206.5 - 2.3 - -	SILT: some clay, some sand, grey, moist, very dense		4	SS	91 for 280mn	n	206	-							0					
- - - - -			5	SS ;	85 for 280mn	n	200	-							0					
 - - - <u>4</u>							205	-										-		
- <u>204.2</u> 4.6	some clay, dense							-												
- - 5 - - -			6	SS	44		204	- - - -							0					
- - - - -							203	-										-		
⁶ 202.7 - 6.1 - -	clay pockets		7	SS	40			-							0					
2/3/15							202	-										-		
J SPL.GDT 1			8	SS	39		201	-							0			-		
SPL SOIL LOG 10001514 BH LOGS.GPJ SPL.GDT 12/3/15 8 00 8 09 9 9	END OF BOREHOLE Notes: 1. Borehole caved to 7.1m and was wet at 7.1m upon completion							-												
SPL SC																				




APPENDIX C


• Grain Size Analyses (Encl. C1 to C5)

APPENDIX D

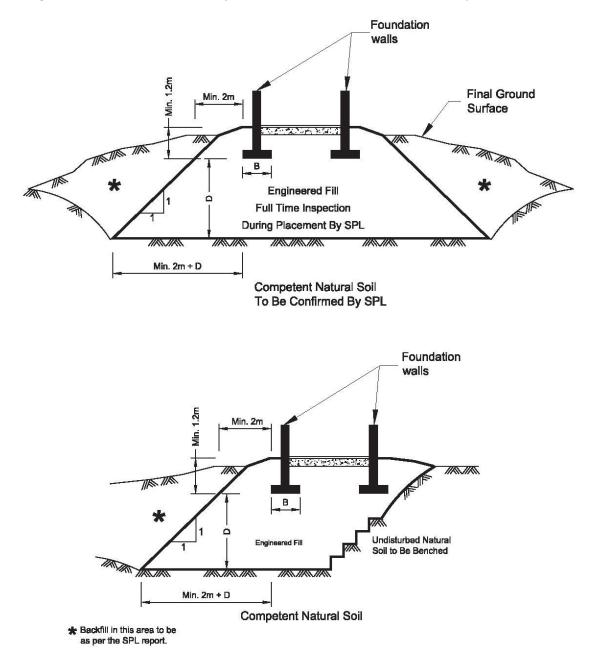
• General Requirements for Engineered Fill

GENERAL REQUIREMENTS FOR ENGINEERED FILL

Compacted imported soil that meets specific engineering requirements and is free of organics and debris and that has been continually monitored on a full-time basis by a qualified geotechnical representative is classified as engineered fill. Engineered fill that meets these requirements and is bearing on suitable native subsoil can be used for the support of foundations.

Imported soil used as engineered fill can be removed from other portions of a site or can be brought in from other sites. In general, most of Ontario soils are too wet to achieve the 100% Standard Proctor Maximum Dry Density (SPMDD) and will require drying and careful site management if they are to be considered for engineered fill. Imported non-cohesive granular soil is preferred for all engineered fill. For engineered fill, we recommend use of OPSS Granular 'B' sand and gravel fill material.

Adverse weather conditions such as rain make the placement of engineered fill to the required degree of density difficult or impossible; engineered fill cannot be placed during freezing conditions, i.e. normally not between December 15 and April 1 of each year.


The location of the foundations on the engineered fill pad is critical and certification by a qualified surveyor that the foundations are within the stipulated boundaries is mandatory. Since layout stakes are often damaged or removed during fill placement, offset stakes must be installed and maintained by the surveyors during the course of fill placement so that the contractor and engineering staff are continually aware of where the engineered fill limits lie. Excavations within the engineered fill pad must be backfilled with the same conditions and quality control as the original pad.

To perform satisfactorily, engineered fill requires the cooperation of the designers, engineers, contractors and all parties must be aware of the requirements. The minimum requirements are as follows, however, the geotechnical report must be reviewed for specific information and requirements.

- 1. Prior to site work involving engineered fill, a site meeting to discuss all aspects must be convened. The surveyor, contractor, design engineer and geotechnical engineer must attend the meeting. At this meeting, the limits of the engineered fill will be defined. The contractor must make known where all fill material will be obtained from and samples must be provided to the geotechnical engineer for review, and approval before filling begins.
- 2. Detailed drawings indicating the lower boundaries as well as the upper boundaries of the engineered fill must be available at the site meeting and be approved by the geotechnical engineer.
- 3. The building footprint and base of the pad, including basements, garages, etc. must be defined by offset stakes that remain in place until the footings and service connections are all constructed. Confirmation that the footings are within the pad, service lines are in place, and that the grade conforms to drawings, must be obtained by the owner in writing from the surveyor and SPL Consultants Limited. Without this confirmation no responsibility for the performance of the structure can be accepted by SPL Consultants Limited. Survey drawing of the pre and post fill location and elevations will also be required.

- 4. The area must be stripped of all topsoil and fill materials. Subgrade must be proof-rolled. Soft spots must be dug out. The stripped native subgrade must be examined and approved by a SPL Consultants Limited engineer prior to placement of fill.
- 5. The approved engineered fill material must be compacted to 100% Standard Proctor Maximum Dry Density throughout. Engineered fill should not be placed during the winter months. Engineered fill compacted to 100% SPMDD will settle under its own weight approximately 0.5% of the fill height and the structural engineer must be aware of this settlement. In addition to the settlement of the fill, additional settlement due to consolidation of the underlying soils from the structural and fill loads will occur and should be evaluated prior to placing the fill.
- 6. Full-time geotechnical inspection by SPL Consultants Limited during placement of engineered fill is required. Work cannot commence or continue without the presence of the SPL Consultants Limited representative.
- 7. The fill must be placed such that the specified geometry is achieved. Refer to the attached sketches for minimum requirements. Take careful note that the projection of the compacted pad beyond the footing at footing level is a minimum of 2 m. The base of the compacted pad extends 2 m plus the depth of excavation beyond the edge of the footing.
- 8. A bearing capacity of 150 kPa at SLS (225 kPa at ULS) can be used provided that all conditions outlined above are adhered to. A minimum footing width of 500 mm (20 inches) is suggested and footings must be provided with nominal steel reinforcement.
- 9. All excavations must be done in accordance with the Occupational Health and Safety Regulations of Ontario.
- 10. After completion of the engineered fill pad a second contractor may be selected to install footings. The prepared footing bases must be evaluated by engineering staff from SPL Consultants Limited prior to footing concrete placements. All excavations must be backfilled under full time supervision by SPL Consultants Limited to the same degree as the engineered fill pad. Surface water cannot be allowed to pond in excavations or to be trapped in clear stone backfill. Clear stone backfill can only be used with the approval of SPL Consultants Limited.
- 11. After completion of compaction, the surface of the engineered fill pad must be protected from disturbance from traffic, rain and frost. During the course of fill placement, the engineered fill must be smooth-graded, proof-rolled and sloped/crowned at the end of each day, prior to weekends and any stoppage in work in order to promote rapid runoff of rainwater and to avoid any ponding surface water. Any stockpiles of fill intended for use as engineered fill must also be smooth-bladed to promote runoff and/or protected from excessive moisture take up.
- 12. If there is a delay in construction, the engineered fill pad must be inspected and accepted by the geotechnical engineer. The location of the structure must be reconfirmed that it remains within the pad.

- 13. The geometry of the engineered fill as illustrated in these General Requirements is general in nature. Each project will have its own unique requirements. For example, if perimeter sidewalks are to be constructed around the building, then the projection of the engineered fill beyond the foundation wall may need to be greater.
- 14. These guidelines are to be read in conjunction with SPL Consultants Limited report attached.

APPENDIX E

• Photographs

Aerial Photo 1: An aerial view of the site. The tableland is relatively flat to gently sloping, and is currently used for agricultural purposes. Black Ash Creek meanders along the west side of the site in the wooded area.

Photo 1: A view of slope crest, looking north. The slope crest is vegetated with bushes and few trees.

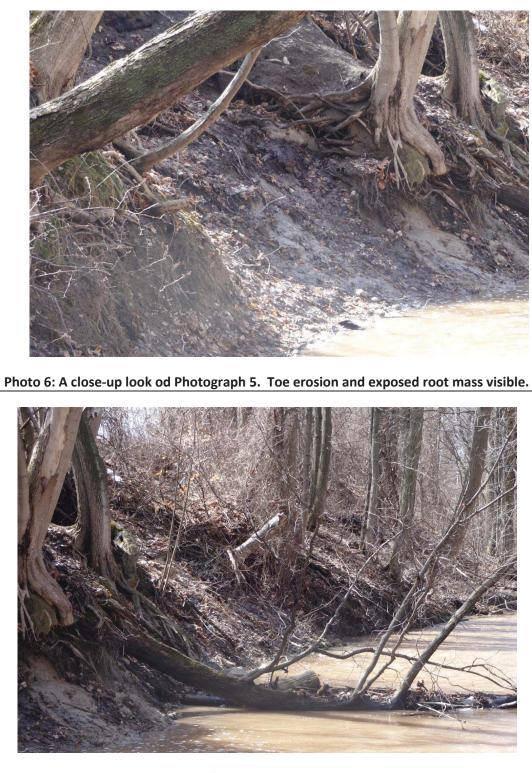

Photo 2: A view of slope surface, looking south, the trunk growth of trees is upright straight.

Photo 3: Another view of slope surface, looking west. Creek is visible.

Project: 10001514 Report on Geotechnical Investigation and Slope Stability Analysis Charleston Homes Residential Subdivision Development, High Street and Poplar Sideroad, Collingwood, Ontario.

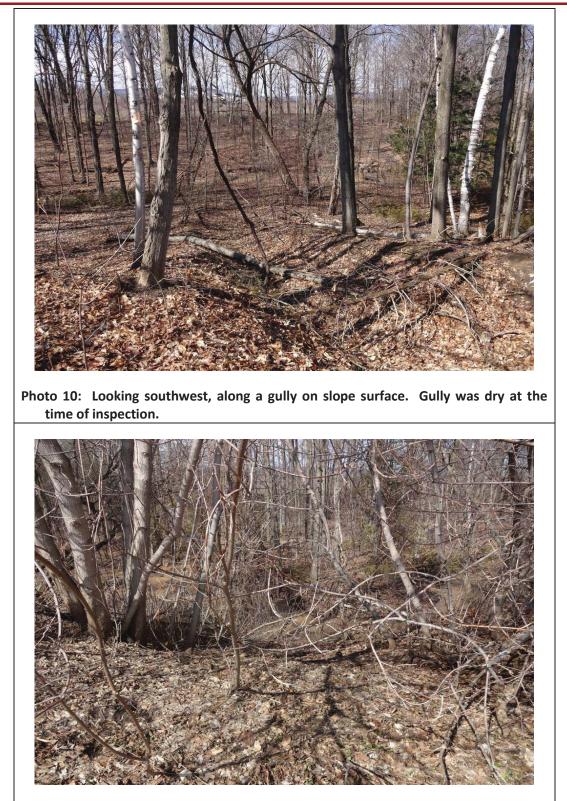


Photo 11: Looking down, south at the slope surface. The slope surface is overgrown with grass, weed, bushes, and young to mature tree growth. Creek is visible in the background.

SPL Consultants Limited

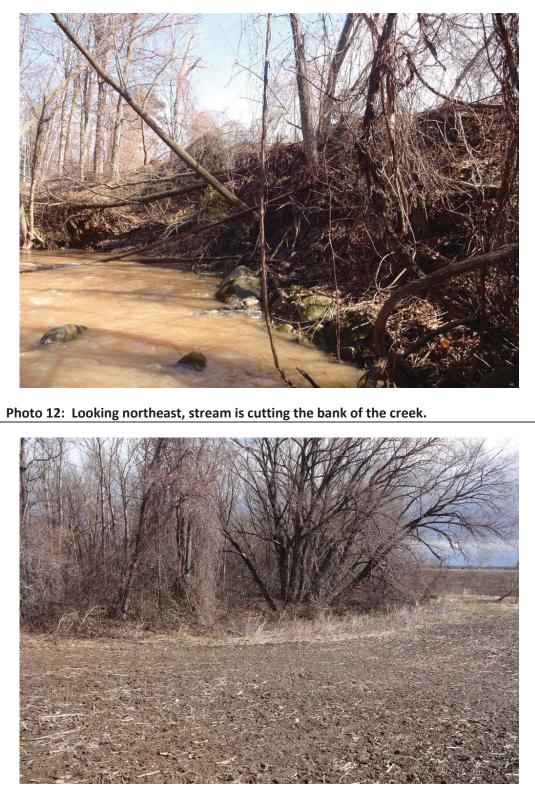


Photo 13: looking northwest, a view of the tableland and slope crest.

Photo 14: A view of the bank undercutting, looking northeast.

Photo 15: A view of the tableland, looking northwest.

Project: 10001514 Report on Geotechnical Investigation and Slope Stability Analysis Charleston Homes Residential Subdivision Development, High Street and Poplar Sideroad, Collingwood, Ontario.

Photo 16: A view of slope surface, looking northeast.

APPENDIX F

• Chemical Characterization of Soils

April 20, 2015

Project: 10001514-290

C.C. Tatham & Associates Ltd. 115 Sandford Fleming Drive Collingwood, Ontario L9Y 5A6

Attention: Mr. Jeff Akitt, P.Eng.

Re: Soil Characterization Letter

Charleston Homes Residential Subdivision-Poplar Sideroad & High Street, Collingwood, Ontario

SPL Consultants (SPL) was retained by C.C. Tatham & Associates Ltd. to provide chemical characterization of soils at the above noted site in Collingwood, Ontario.

In order to assess options for potential offsite soil disposal of soils at the above captioned site, a total of twelve (12) soil samples and two (2) duplicate samples (DUP 1 & DUP2) were collected from the geotechnical boreholes advanced on the property in March 2015. Samples were collected by SPL and submitted for analysis of metals and inorganics, and OC pesticides, as set out in O.Reg. 153/04 as amended, Section XV.1 of the Environmental Protection Act (EPA). The **Certificates of Analysis** are attached. Sample locations are provided in the following table.

Sample ID	Sample Date	Location	Depth (mbg)
BH1 TS	March 12, 2015	North East	0-0.6
		corner of the	Top soil overlying sandy silt soil
		site	with trace organics
BH1 SS2	March 12, 2015	North East	0.8-1.4
		corner of the	Sandy silt, trace clay.
		site	
BH21 TS	March 10, 2015	South west	0-0.6
		corner of the	Top soil overlying sandy silt soil
		site	with trace organics
BH21 SS2	March 10, 2015	South west	0.8-1.4
		corner of the	Silty sand to sandy silt
		site	
BH3 TS	March 12, 2015	North central	0-0.6
		portion of the	Top soil overlying silty sand with
		site	trace organics
BH3 SS2	March 12, 2015	North central	0.8-1.4
		portion of the	Silty sand
		site	

BH9 TS	March 12, 2015	North west	0-0.6
		portion of the	Top soil, silty sand trace
		site	organics
BH9 SS2	March 12, 2015	North west	0.8-1.4
(DUP 1)		portion of the	Silty sand
		site	
BH11 TS	March 13, 2015	Central	0-0.6
		portion of the	Top soil, silty sand trace
		site	organics
BH11 SS2	March 13, 2015	Central	0.8-1.4
(DUP 2)		portion of the	Silty sand
		site	
BH16 TS	March 10, 2015	South east	0-0.6
		portion of the	Top soil, sandy silt, trace
		site	organics
BH16 SS2	March 10, 2015	South east	0.8-1.4
		portion of the	Sandy silt
		site	

Sample locations are presented under **Drawing 1**.

Soil samples were collected and handled in accordance with generally accepted procedures used by the environmental consulting industry. Prior to each sampling event, new disposable gloves were used to transfer samples in plastic bags and glass jars supplied by the laboratory. All soil samples were kept under refrigerated conditions during field storage and transportation to the environmental analytical laboratory.

No visual or olfactory evidence of environmental impact (debris or staining) was noted in any of the soil samples collected.

The chemical analysis was conducted by ALS Environmental (ALS) located in Mississauga, Ontario. ALS is a member of the Canadian Association for Laboratory Accreditation (CALA) and meets the requirements of Section 47 of O.Reg. 153/04 certifying that the analytical laboratory be accredited in accordance with the International Standard ISO/IEC 17025 and with standards developed by the Standards Council of Canada.

For the purposes of soil disposal, the results of chemical analyses were compared to the Background Site Condition Standards for All Property Uses other than Agricultural as contained in Table 1 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," published by the Ministry of Environment (MOE) on April 15, 2011. Additionally the results were also compared to Residential/Parkland/Institutional (RPI) and Industrial/Commercial/Community (ICC) Property Use Standards for Potable Ground Water Condition and Non-Potable Ground Water Condition as contained in Tables 2 and 3, respectively of the aforementioned document. Based on the results of the chemical analysis, SPL provides the following conclusions/recommendations:

- When compared to MOE Table 1 property use standards all samples meet with the exception of cyanide from sample BH9 SS2; Dichlorodiphenyldichloroethane (DDD) and/or Dichlorodiphenyldichloroethylene (DDE) in sample BH3 TS, BH9 TS and BH21 TS.
- When compared to MOE Table 2 and 3 RPI property uses, all samples meet with the exception of cyanide that exceeded in sample BH9 SS2; and DDE in sample BH21 TS, BH3 TS and BH9 TS
- When compared to MOE Table 2 and 3 ICC property uses, all samples meet with the exception of cyanide that exceeded in sample BH9 SS2; and DDE in sample BH21 TS, BH3 TS and BH9 TS
- The vertical and lateral extents of the exceedances are unknown.
- Separation and re-testing may be an option to reduce disposal cost.
- The results of this testing evaluates the environmental quality of the soil and does not pertain to the geotechnical suitability of the material.
- Acceptance of any excavated soil will be at the discretion of the receiving site.

The purpose of this testing was to chemically characterize the soils analyzed and does not constitute a Phase Two Environmental Site Assessment as defined in O.Reg.153/04, as amended.

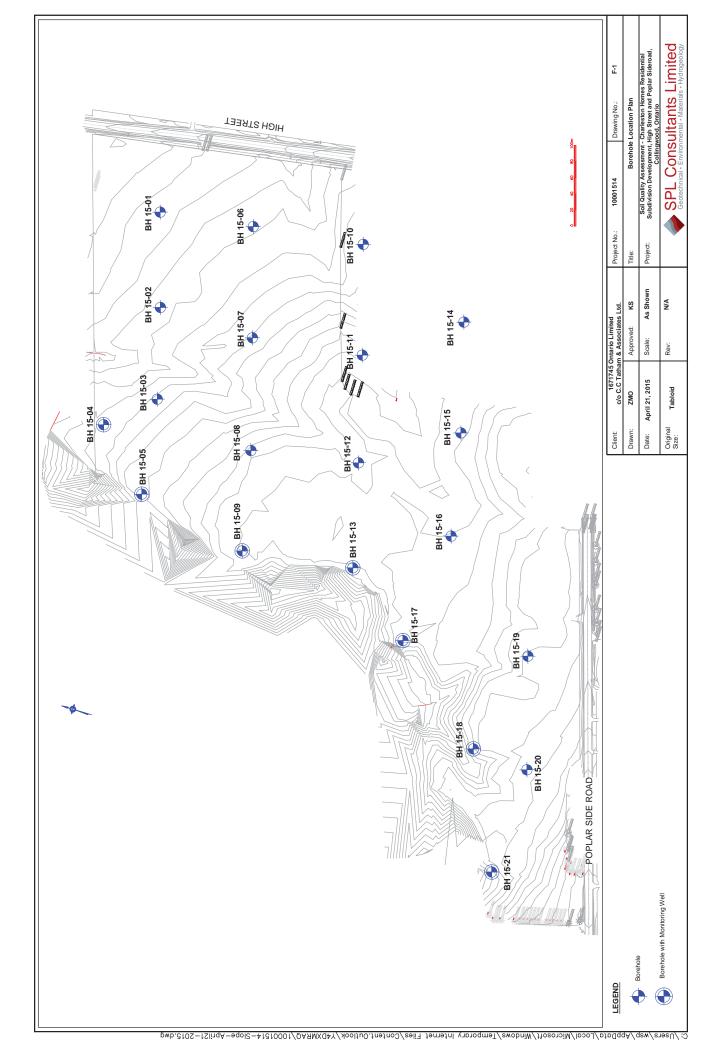
It should be noted that if any aesthetically impacted soils are identified during excavation it is recommended that SPL be notified in order to conduct further assessment and/or testing of the material in question.

This report was prepared for the account of C.C. Tatham & Associates Ltd. The material in this report reflects SPL's judgment in light of the information available to it at the time of preparation. Any use, which a Third Party not noted above makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. SPL Consultants Limited accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

Thank you for the opportunity to be of service on this project. Should you have any questions or wish to review the contents of this letter in more detail, please do not hesitate to contact the undersigned.

Yours Very Truly,

SPL Consultants Limited


Prepared By:

Joeline Chan, B.Sc. Project Manager – Environmental Services

Attachments

Drawing 1

Laboratory Certificates of Analysis

SPL CONSULTANTS LIMITED ATTN: Marco Visentin 14 Ronell Cresent Collingwood Ontario L9Y 4J7 Date Received:17-MAR-15Report Date:24-MAR-15 15:00 (MT)Version:FINAL

Client Phone: 705-445-0064

Certificate of Analysis

Lab Work Order #: L1588231

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 10001514 14-413128, 14-413129

man lene f menion

Emerson Perez Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1588231 CONTD.... PAGE 2 of 9 24-MAR-15 15:00 (MT) Version: FINAL

					Version: FINAL	
	Sample ID Description Sampled Date Sampled Time Client ID	L1588231-1 SOIL 12-MAR-15 DUP 1	L1588231-2 SOIL 13-MAR-15 DUP 2	L1588231-3 SOIL 12-MAR-15 BH1 TS	L1588231-4 SOIL 12-MAR-15 BH1 SS2	L1588231-5 SOIL 10-MAR-15 12:00 BH21 TS
Grouping	Analyte					
SOIL	, una y co					
Physical Tests	Conductivity (mS/cm)	0.404	0.0004	0.400	0.405	0.470
Thysical rests	% Moisture (%)	0.101	0.0921	0.128	0.125	0.179
	pH (pH units)	17.6	16.8	13.9	14.3	18.6
Cyanides	Cyanide, Weak Acid Diss (ug/g)	7.67	7.54	7.36	7.77	6.81
Saturated Paste Extractables	SAR (SAR)	<0.050 <0.10	<0.050 <0.10	<0.050 <0.10	<0.050 0.17	<0.050 <0.10
	Calcium (Ca) (mg/L)	8.37	15.6	23.8	15.6	24.4
	Magnesium (Mg) (mg/L)	0.48	0.53	0.71	4.02	3.02
	Sodium (Na) (mg/L)	0.98	0.88	0.56	2.92	0.73
Metals	Antimony (Sb) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0
	Arsenic (As) (ug/g)	2.1	2.8	2.8	2.9	6.3
	Barium (Ba) (ug/g)	17.5	21.7	25.1	36.0	28.6
	Beryllium (Be) (ug/g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Boron (B) (ug/g)	6.5	6.2	6.6	9.5	<5.0
	Boron (B), Hot Water Ext. (ug/g)	<0.10	<0.10	0.14	0.11	0.16
	Cadmium (Cd) (ug/g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Chromium (Cr) (ug/g)	10.0	12.0	11.3	14.1	13.7
	Cobalt (Co) (ug/g)	3.9	5.2	3.9	6.6	4.3
	Copper (Cu) (ug/g)	10.9	11.4	10.3	12.6	6.3
	Lead (Pb) (ug/g)	3.1	3.2	4.5	4.5	11.0
	Mercury (Hg) (ug/g)	<0.010	<0.010	0.131	<0.010	0.031
	Molybdenum (Mo) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0
	Nickel (Ni) (ug/g)	7.9	11.4	9.4	13.2	9.0
	Selenium (Se) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0
	Silver (Ag) (ug/g)	<0.20	<0.20	<0.20	<0.20	<0.20
	Thallium (TI) (ug/g)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0
	Vanadium (V) (ug/g)	18.0	20.0	18.2	24.0	24.5
	Zinc (Zn) (ug/g)	20.4	20.1	19.5	26.0	27.9
Speciated Metals	Chromium, Hexavalent (ug/g)	<0.20	<0.20	0.39	<0.20	0.62
Organochlorine Pesticides	Aldrin (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	gamma-hexachlorocyclohexane (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	a-chlordane (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Chlordane (Total) (ug/g)	<0.028	<0.028	<0.028	<0.028	<0.028
	g-chlordane (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	op-DDD (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	pp-DDD (ug/g)	<0.020	<0.020	<0.020	<0.020	0.048

L1588231 CONTD.... PAGE 3 of 9 24-MAR-15 15:00 (MT) Version: FINAL

					Version: FINAL		
	Sample ID Description Sampled Date Sampled Time Client ID	L1588231-6 SOIL 10-MAR-15 12:00 BH21 SS2	L1588231-7 SOIL 12-MAR-15 BH3 TS	L1588231-8 SOIL 12-MAR-15 BH3 SS2	L1588231-9 SOIL 12-MAR-15 12:00 BH9 TS	L1588231-10 SOIL 12-MAR-15 12:00 BH9 SS2	
Grouping	Analyte						
SOIL							
Physical Tests	Conductivity (mS/cm)	0.0880	0.128	0.101	0.131	0.0967	
	% Moisture (%)	18.8	20.7	19.4	9.83	17.1	
	pH (pH units)	7.80	6.71	7.44	6.94	7.75	
Cyanides	Cyanide, Weak Acid Diss (ug/g)	<0.050	<0.050	<0.050	<0.050	0.060	
Saturated Paste Extractables	SAR (SAR)	<0.10	<0.10	<0.10	<0.000 sar:Q <0.10	<0.10	
	Calcium (Ca) (mg/L)	15.4	20.4	18.3	19.4	14.7	
	Magnesium (Mg) (mg/L)	0.80	1.05	0.66	1.32	0.66	
	Sodium (Na) (mg/L)	0.72	0.50	0.76	<0.50	0.79	
Metals	Antimony (Sb) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0	
	Arsenic (As) (ug/g)	1.2	2.2	1.7	3.2	1.7	
	Barium (Ba) (ug/g)	10.2	14.6	13.9	14.6	10.7	
	Beryllium (Be) (ug/g)	<0.50	<0.50	<0.50	<0.50	<0.50	
	Boron (B) (ug/g)	<5.0	<5.0	<5.0	<5.0	<5.0	
	Boron (B), Hot Water Ext. (ug/g)	<0.10	<0.10	<0.10	0.12	<0.10	
	Cadmium (Cd) (ug/g)	<0.50	<0.50	<0.50	<0.50	<0.50	
	Chromium (Cr) (ug/g)	6.6	7.1	6.1	11.6	6.0	
	Cobalt (Co) (ug/g)	2.3	2.3	2.3	2.8	2.4	
	Copper (Cu) (ug/g)	5.5	4.4	6.1	4.4	9.7	
	Lead (Pb) (ug/g)	1.9	3.6	2.5	7.5	2.0	
	Mercury (Hg) (ug/g)	<0.010	0.026	<0.010	0.014	<0.010	
	Molybdenum (Mo) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0	
	Nickel (Ni) (ug/g)	4.5	4.9	5.7	5.1	5.0	
	Selenium (Se) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0	
	Silver (Ag) (ug/g)	<0.20	<0.20	<0.20	<0.20	<0.20	
	Thallium (TI) (ug/g)	<0.50	<0.50	<0.50	<0.50	<0.50	
	Uranium (U) (ug/g)	<1.0	<1.0	<1.0	<1.0	<1.0	
	Vanadium (V) (ug/g)	14.9	15.0	11.7	26.6	12.3	
	Zinc (Zn) (ug/g)	8.9	8.9	8.9	12.6	11.3	
Speciated Metals	Chromium, Hexavalent (ug/g)	<0.20	0.52	0.26	<0.20	<0.20	
Organochlorine Pesticides	Aldrin (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020	
	gamma-hexachlorocyclohexane (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010	
	a-chlordane (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020	
	Chlordane (Total) (ug/g)	<0.028	<0.028	<0.028	<0.028	<0.028	
	g-chlordane (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020	
	op-DDD (ug/g)	<0.020	<0.020	<0.020	0.030	<0.020	
	pp-DDD (ug/g)	<0.020	0.073	<0.020	0.073	<0.020	

L1588231 CONTD.... PAGE 4 of 9 24-MAR-15 15:00 (MT) Version: FINAL

					version	I: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1588231-11 SOIL 13-MAR-15 BH11 TS	L1588231-12 SOIL 13-MAR-15 BH11 SS2	L1588231-13 SOIL 10-MAR-15 12:00 BH16 TS	L1588231-14 SOIL 10-MAR-15 12:00 BH16 SS2	
Grouping	Analyte					
SOIL						
Physical Tests	Conductivity (mS/cm)	0.0935	0.164	0.160	0.141	
-	% Moisture (%)	21.4	16.0	24.2	14.2	
	pH (pH units)	5.96	7.22	7.08	7.80	
Cyanides	Cyanide, Weak Acid Diss (ug/g)	<0.050	<0.050	< 0.050	<0.050	
Saturated Paste Extractables	SAR (SAR)	<0.10	<0.10	<0.10	0.12	
	Calcium (Ca) (mg/L)	12.1	28.9	22.0	18.4	
	Magnesium (Mg) (mg/L)	0.96	0.83	1.43	2.87	
	Sodium (Na) (mg/L)	0.58	1.97	0.95	2.12	
Metals	Antimony (Sb) (ug/g)	<1.0	<1.0	<1.0	<1.0	
	Arsenic (As) (ug/g)	4.6	1.4	4.7	1.6	
	Barium (Ba) (ug/g)	20.5	10.3	22.1	18.5	
	Beryllium (Be) (ug/g)	<0.50	<0.50	<0.50	<0.50	
	Boron (B) (ug/g)	<5.0	<5.0	<5.0	6.0	
	Boron (B), Hot Water Ext. (ug/g)	0.19	<0.10	0.48	0.18	
	Cadmium (Cd) (ug/g)	<0.50	<0.50	<0.50	<0.50	
	Chromium (Cr) (ug/g)	10.8	6.0	10.5	8.9	
	Cobalt (Co) (ug/g)	2.5	1.9	2.7	3.4	
	Copper (Cu) (ug/g)	6.1	4.3	12.3	8.0	
	Lead (Pb) (ug/g)	12.4	2.1	7.3	2.6	
	Mercury (Hg) (ug/g)	0.018	<0.010	0.023	<0.010	
	Molybdenum (Mo) (ug/g)	<1.0	<1.0	<1.0	<1.0	
	Nickel (Ni) (ug/g)	5.9	4.3	5.6	6.9	
	Selenium (Se) (ug/g)	<1.0	<1.0	<1.0	<1.0	
	Silver (Ag) (ug/g)	<0.20	<0.20	<0.20	<0.20	
	Thallium (TI) (ug/g)	<0.50	<0.50	<0.50	<0.50	
	Uranium (U) (ug/g)	<1.0	<1.0	<1.0	<1.0	
	Vanadium (V) (ug/g)	25.0	12.0	20.5	16.8	
	Zinc (Zn) (ug/g)	21.3	9.1	25.7	14.4	
Speciated Metals	Chromium, Hexavalent (ug/g)	<0.20	<0.20	<0.20	<0.20	
Organochlorine Pesticides	Aldrin (ug/g)	<0.020	<0.020	<0.020	<0.020	
	gamma-hexachlorocyclohexane (ug/g)	<0.010	<0.010	<0.010	<0.010	
	a-chlordane (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Chlordane (Total) (ug/g)	<0.028	<0.028	<0.028	<0.028	
	g-chlordane (ug/g)	<0.020	<0.020	<0.020	<0.020	
	op-DDD (ug/g)	<0.020	<0.020	<0.020	<0.020	
	pp-DDD (ug/g)	<0.020	<0.020	<0.020	<0.020	

L1588231 CONTD.... PAGE 5 of 9 24-MAR-15 15:00 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1588231-1 SOIL 12-MAR-15 DUP 1	L1588231-2 SOIL 13-MAR-15 DUP 2	L1588231-3 SOIL 12-MAR-15 BH1 TS	L1588231-4 SOIL 12-MAR-15 BH1 SS2	L1588231-5 SOIL 10-MAR-15 12:00 BH21 TS
Grouping	Analyte					
SOIL						
Organochlorine Pesticides	Total DDD (ug/g)	<0.028	<0.028	<0.028	<0.028	0.048
	o,p-DDE (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	pp-DDE (ug/g)	<0.020	<0.020	0.027	<0.020	0.862
	Total DDE (ug/g)	<0.028	<0.028	<0.036	<0.028	0.862
	op-DDT (ug/g)	<0.020	<0.020	<0.020	<0.020	0.028
	pp-DDT (ug/g)	<0.020	<0.020	<0.020	<0.020	0.206
	Total DDT (ug/g)	<0.028	<0.028	<0.028	<0.028	0.234
	Dieldrin (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Endosulfan I (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Endosulfan II (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Endosulfan (Total) (ug/g)	<0.028	<0.028	<0.028	<0.028	<0.028
	Endrin (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Heptachlor (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Heptachlor Epoxide (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Hexachlorobenzene (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	Hexachlorobutadiene (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	Hexachloroethane (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	Methoxychlor (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Surrogate: 2-Fluorobiphenyl (%)	96.7	99.4	96.5	97.5	124.7
	Surrogate: d14-Terphenyl (%)	99.3	97.2	96.0	91.1	110.9

L1588231 CONTD.... PAGE 6 of 9 24-MAR-15 15:00 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	10-MAR-15 12:00	L1588231-7 SOIL 12-MAR-15 BH3 TS	L1588231-8 SOIL 12-MAR-15 BH3 SS2	L1588231-9 SOIL 12-MAR-15 12:00 BH9 TS	L1588231-10 SOIL 12-MAR-15 12:00 BH9 SS2
Grouping	Analyte					
SOIL						
Organochlorine Pesticides	Total DDD (ug/g)	<0.028	0.073	<0.028	0.103	<0.028
	o,p-DDE (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	pp-DDE (ug/g)	<0.020	0.608	0.020	0.640	<0.020
	Total DDE (ug/g)	<0.028	0.608	<0.028	0.640	<0.028
	op-DDT (ug/g)	<0.020	0.065	<0.020	0.136	<0.020
	pp-DDT (ug/g)	<0.020	0.441	<0.020	0.409	<0.020
	Total DDT (ug/g)	<0.028	0.506	<0.028	0.545	<0.028
	Dieldrin (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Endosulfan I (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Endosulfan II (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Endosulfan (Total) (ug/g)	<0.028	<0.028	<0.028	<0.028	<0.028
	Endrin (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Heptachlor (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Heptachlor Epoxide (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Hexachlorobenzene (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	Hexachlorobutadiene (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	Hexachloroethane (ug/g)	<0.010	<0.010	<0.010	<0.010	<0.010
	Methoxychlor (ug/g)	<0.020	<0.020	<0.020	<0.020	<0.020
	Surrogate: 2-Fluorobiphenyl (%)	98.4	99.6	96.7	98.2	95.4
	Surrogate: d14-Terphenyl (%)	90.5	93.6	88.5	92.8	99.1

L1588231 CONTD.... PAGE 7 of 9 24-MAR-15 15:00 (MT) Version: FINAL

					Version:	FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1588231-11 SOIL 13-MAR-15 BH11 TS	L1588231-12 SOIL 13-MAR-15 BH11 SS2	L1588231-13 SOIL 10-MAR-15 12:00 BH16 TS	L1588231-14 SOIL 10-MAR-15 12:00 BH16 SS2	
Grouping	Analyte					
SOIL						
Organochlorine Pesticides	Total DDD (ug/g)	<0.028	<0.028	<0.028	<0.028	
	o,p-DDE (ug/g)	<0.020	<0.020	<0.020	<0.020	
	pp-DDE (ug/g)	0.082	<0.020	0.185	<0.020	
	Total DDE (ug/g)	0.082	<0.028	0.185	<0.028	
	op-DDT (ug/g)	<0.020	<0.020	<0.020	<0.020	
	pp-DDT (ug/g)	0.038	<0.020	0.031	<0.020	
	Total DDT (ug/g)	0.038	<0.028	0.031	<0.028	
	Dieldrin (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Endosulfan I (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Endosulfan II (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Endosulfan (Total) (ug/g)	<0.028	<0.028	<0.028	<0.028	
	Endrin (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Heptachlor (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Heptachlor Epoxide (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Hexachlorobenzene (ug/g)	<0.010	<0.010	<0.010	<0.010	
	Hexachlorobutadiene (ug/g)	<0.010	<0.010	<0.010	<0.010	
	Hexachloroethane (ug/g)	<0.010	<0.010	<0.010	<0.010	
	Methoxychlor (ug/g)	<0.020	<0.020	<0.020	<0.020	
	Surrogate: 2-Fluorobiphenyl (%)	97.3	96.5	100.3	124.1	
	Surrogate: d14-Terphenyl (%)	87.2	86.6	82.8	100.9	

Reference Information

Qualifier	Description		
SAR:Q	Qualified SAR value:	actual SAR is lower but is incalculable due to N	a, Ca or Mg below detection limit.
est Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
B-HWS-R511-W	' T Soil	Boron-HWE-O.Reg 153/04 (July 2011)	HW EXTR, EPA 6010B
A dried solid sa ICP/OES.	ample is extracted with o	calcium chloride, the sample undergoes a heatir	ng process. After cooling the sample is filtered and analyzed by
	cted in accordance with Protection Act (July 1, 2		e Assessment of Properties under Part XV.1 of the
CHLORDANE-T	-CALC-WT Soil	Chlordane Total sums	CALCULATION
Aqueous samp depending on t	le is extracted by liquid/ he sample matrix and a	liquid extraction with a solvent mix. After extract nalyzed by GC/MS.	tion, a number of clean up techniques may be applied,
CN-WAD-R511-	WT Soil	Cyanide (WAD)-O.Reg 153/04 (July 2011)	MOE 3015/APHA 4500CN I-WAD
	cting with chloramine-T		is then distilled where the cyanide is converted to cyanogen ination of barbituric acid and isonicotinic acid to form a highly
	cted in accordance with Protection Act (July 1, 2		e Assessment of Properties under Part XV.1 of the
CR-CR6-IC-R51	1-WT Soil	Hex Chrom-O.Reg 153/04 (July 2011)	SW846 3060A/7199 R511
chromatograph Analysis condu	y.	the Protocol for Analytical Methods Used in the	derivatized with 1,5-diphenylcarbazide (DPC) using ion e Assessment of Properties under Part XV.1 of the
DDD-DDE-DDT-	CALC-WT Soil	DDD, DDE, DDT sums	CALCULATION
	le is extracted by liquid/ he sample matrix and a		tion, a number of clean up techniques may be applied,
EC-R511-WT	Soil	Conductivity-O.Reg 153/04 (July 2011)	MOEE E3138
A representativ conductivity me		d with de-ionized (DI) water. The ratio of water to	o soil is 2:1 v/w. After tumbling the sample is then analyzed by a
	cted in accordance with Protection Act (July 1, 2		e Assessment of Properties under Part XV.1 of the
ENDOSULFAN-	T-CALC-WT Soil	Endosulfan Total sums	CALCULATION
	le is extracted by liquid/ he sample matrix and a		tion, a number of clean up techniques may be applied,
HG-R511-WT	Soil	Mercury-O.Reg 153/04 (July 2011)	SW846 3050B/7471
		, strong, mixed acid solution to convert all forms d from solution and analyzed by CVAAS.	s of mercury to divalent mercury. The divalent mercury is then
	cted in accordance with Protection Act (July 1, 2		e Assessment of Properties under Part XV.1 of the
MET-200.2-CCN	IS-WT Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A
Soil samples a	re digested with nitric ar	nd hydrochloric acids, followed by analysis by C	RC ICPMS.
be environmen	tally available. This met		acid digestion that is intended to dissolve those metals that may may result in a partial extraction. depending on the sample
Environmental		2011), unless a subset of the Analytical Test Gro	e Assessment of Properties under Part XV.1 of the oup (ATG) has been requested (the Protocol states that all
analytes in an <i>i</i>	1 /		
MET-200.2-CCN	· · · ·	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may

Reference Information

be environmentally available. This method does not dissolve all silicate materials and may result in a partial extraction. depending on the sample matrix, for some metals, including, but not limited to Al, Ba, Be, Cr, Sr, Ti, Tl, and V. Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported). **MOISTURE-WT** Soil % Moisture Gravimetric: Oven Dried PEST-OC-511-WT Soil OC Pesticides-O.Reg 153/04 (July 2011) SW846 8270 (511) Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS. Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported). **PH-R511-WT** Soil pH-O.Reg 153/04 (July 2011) MOFF F3137A A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The agueous layer is separated from the soil and then analyzed using a pH meter and electrode. Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA **Chain of Custody Numbers:** 14-413128 14-413129 **GLOSSARY OF REPORT TERMS** Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For

applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

		Workorder:	L1588231	R	eport Date:	24-MAR-15		Page 1 of 8
Client:	SPL CONSULTANTS LI 14 Ronell Cresent Collingwood Ontario LS							
Contact:	Marco Visentin							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-W								
Batch WG2056497-3 Boron (B), Ho		L1588862-1 <0.10	<0.10	RPD-NA	ug/g	N/A	40	19-MAR-15
WG2056497-2 Boron (B), Ho		SALINITY_SO	L4 87.9		%		70-130	19-MAR-15
WG2056497- Boron (B), Ho			<0.10		ug/g		0.1	19-MAR-15
WG2056497- Boron (B), Ho		L1588862-1	124.3		%		60-140	19-MAR-15
CN-WAD-R511-V	VT Soil							
Batch WG2055956-3 Cyanide, We		L1588231-1 <0.050	<0.050	RPD-NA	ug/g	N/A	35	20-MAR-15
WG2055956- Cyanide, We			113.6		%		80-120	20-MAR-15
WG2055956- Cyanide, We			<0.050		ug/g		0.05	20-MAR-15
WG2055956-4 Cyanide, We		L1588231-1	103.0		%		70-130	20-MAR-15
CR-CR6-IC-R511	I-WT Soil							
Batch WG2055955-3 Chromium, H		WT-SQC012	96.2		%		70-130	19-MAR-15
WG2055955-4 Chromium, H	4 DUP	L1588231-1 <0.20	<0.20	RPD-NA	ug/g	N/A	35	19-MAR-15
WG2055955- Chromium, H			96.4		%		80-120	19-MAR-15
WG2055955- Chromium, H			<0.20		ug/g		0.2	19-MAR-15
EC-R511-WT	Soil							
Batch WG2056499-4 Conductivity	R3161600 4 DUP	WG2056499-3 0.927	0.978		mS/cm	5.4	20	19-MAR-15
WG2056700- Conductivity	I LCS		99.9		%		90-110	19-MAR-15
WG2056499- Conductivity	1 MB		<0.0040		mS/cm		0.004	19-MAR-15
HG-R511-WT	Soil							

Quality Control Report

			Workorder:	L1588231		Report Date:	24-MAR-15		Page 2 of 8
Client:	14 Ronell	ISULTANTS LIM Cresent od Ontario L9Y							
Contact:	Marco Vis	sentin							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-R511-WT		Soil							
Batch F WG2056501-2 Mercury (Hg)	R3162366 CRM		WT-SS-1	127.9		%		70-130	20-MAR-15
WG2056501-6 Mercury (Hg)	DUP		L1588231-1 <0.010	<0.010	RPD-NA	ug/g	N/A	30	20-MAR-15
WG2056501-4 Mercury (Hg)	LCS			109.5		%		80-120	20-MAR-15
WG2056501-1 Mercury (Hg)	MB			<0.010		ug/g		0.01	20-MAR-15
MET-200.2-CCMS	S-WT	Soil							
Batch F	R3162278								
WG2056501-6	-		L1588231-1	0.40					
Antimony (Sb))		<1.0	<0.10	RPD-NA	ug/g	N/A	30	19-MAR-15
Arsenic (As)			2.1 17.5	2.03 15.2		ug/g	4.7	30	19-MAR-15
Barium (Ba)				0.19		ug/g	14	40	19-MAR-15
Beryllium (Be))		<0.50			ug/g	9.7	30	19-MAR-15
Boron (B)	IN .		6.5	5.3		ug/g	20	30	19-MAR-15
Cadmium (Cd			<0.50	0.028		ug/g	12	30	19-MAR-15
Chromium (C	r)		10.0	8.37		ug/g	17	30	19-MAR-15
Cobalt (Co)			3.9	3.54		ug/g	9.7	30	19-MAR-15
Copper (Cu)			10.9	10.0		ug/g	8.0	30	19-MAR-15
Lead (Pb)	(8.4)		3.1	2.81		ug/g	11	40	19-MAR-15
Molybdenum	(IVIO)		<1.0	0.13		ug/g	17	40	19-MAR-15
Nickel (Ni)			7.9	7.17		ug/g	9.9	30	19-MAR-15
Selenium (Se))		<1.0	<0.20	RPD-NA	ug/g	N/A	30	19-MAR-15
Silver (Ag)			<0.20	<0.10	RPD-NA	ug/g	N/A	40	19-MAR-15
Thallium (TI)			<0.50	<0.050	RPD-NA	ug/g	N/A	30	19-MAR-15
Uranium (U)			<1.0	0.334		ug/g	16	30	19-MAR-15
Vanadium (V)			18.0	16.1		ug/g	11	30	19-MAR-15
Zinc (Zn)			20.4	16.9		ug/g	19	30	19-MAR-15
WG2056501-3 Antimony (Sb)				103.2		%		80-120	19-MAR-15
Arsenic (As)				103.9		%		80-120	19-MAR-15
Barium (Ba)				99.4		%		80-120	19-MAR-15
Beryllium (Be))			86.3		%		80-120	19-MAR-15
Boron (B)				88.3		%		80-120	19-MAR-15

Test

Selenium (Se)

Silver (Ag)

Thallium (TI)

Uranium (U)

Zinc (Zn)

MOISTURE-WT

Vanadium (V)

Soil

Quality Control Report

Workorder: L1588231 Report Date: 24-MAR-15 Page 3 of 8 SPL CONSULTANTS LIMITED Client: 14 Ronell Cresent Collingwood Ontario L9Y 4J7 Contact: Marco Visentin Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-WT Soil R3162278 Batch WG2056501-3 LCS Cadmium (Cd) 99.4 % 80-120 19-MAR-15 Chromium (Cr) 100.3 % 80-120 19-MAR-15 Cobalt (Co) 99.1 % 80-120 19-MAR-15 Copper (Cu) 97.8 % 80-120 19-MAR-15 Lead (Pb) 97.7 % 80-120 19-MAR-15 Molybdenum (Mo) 97.4 % 80-120 19-MAR-15 Nickel (Ni) % 99.4 80-120 19-MAR-15 Selenium (Se) 103.9 % 80-120 19-MAR-15 Silver (Ag) 98.8 % 80-120 19-MAR-15 Thallium (TI) 97.4 % 80-120 19-MAR-15 Uranium (U) 92.0 % 80-120 19-MAR-15 Vanadium (V) 101.9 % 80-120 19-MAR-15 Zinc (Zn) 94.9 % 80-120 19-MAR-15 WG2056501-1 MB Antimony (Sb) <0.10 0.1 mg/kg 19-MAR-15 Arsenic (As) <0.10 mg/kg 0.1 19-MAR-15 Barium (Ba) < 0.50 mg/kg 0.5 19-MAR-15 Beryllium (Be) 0.1 < 0.10 mg/kg 19-MAR-15 Boron (B) <5.0 mg/kg 5 19-MAR-15 Cadmium (Cd) < 0.020 mg/kg 0.02 19-MAR-15 Chromium (Cr) 0.5 < 0.50 mg/kg 19-MAR-15 Cobalt (Co) <0.10 0.1 mg/kg 19-MAR-15 Copper (Cu) < 0.50 mg/kg 0.5 19-MAR-15 Lead (Pb) < 0.50 mg/kg 0.5 19-MAR-15 Molybdenum (Mo) <0.10 mg/kg 0.1 19-MAR-15 Nickel (Ni) < 0.50 mg/kg 0.5 19-MAR-15

<0.20

< 0.10

< 0.050

< 0.050

<0.20

<2.0

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.2

0.1

0.05

0.05

0.2

2

19-MAR-15

19-MAR-15

19-MAR-15

19-MAR-15

19-MAR-15

19-MAR-15

Quality Control Report Workorder: L1588231 Report Date: 24-MAR-15 Page 24-MAR-15

		Workorder:	L158823	51	Report Date:	24-MAR-15		Page 4 of 8
Client:	SPL CONSULT 14 Ronell Crese Collingwood Or	ent						
Contact:	Marco Visentin							
Test	Matr	ix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT	Soil							
Batch I WG2055971-3 % Moisture	R3161474 5 DUP	L1588231-14 14.2	15.4		%	8.1	30	19-MAR-15
WG2055971-2 % Moisture	LCS		97.6		%		70-130	19-MAR-15
WG2055971-1 % Moisture	MB		<0.10		%		0.1	19-MAR-15
PEST-OC-511-W	T Soil							
Batch I	R3161517							
WG2056617-1	CVS		100.0		0/			
Aldrin			128.6 127.2		%		50-140	19-MAR-15
a-chlordane			127.2		%		50-140	19-MAR-15
g-chlordane op-DDD			134.9		%		50-140	19-MAR-15
pp-DDD			99.0		%		50-140	19-MAR-15
o,p-DDE			99.0 119.3		%		50-140	19-MAR-15
pp-DDE			119.2		%		50-140	19-MAR-15
op-DDT			95.5		%		50-140	19-MAR-15 19-MAR-15
pp-DDT			93.0		%		50-140 50-140	
Dieldrin			101.3		%		50-140 50-140	19-MAR-15 19-MAR-15
Endosulfan I			128.1		%			
Endosulfan II			102.0		%		50-140 50-140	19-MAR-15
Endrin			115.4		%		50-140 50-140	19-MAR-15 19-MAR-15
	chlorocyclohexar		98.6		%		50-140	19-MAR-15
Heptachlor	oniorooyolorioxar		92.5		%		50-140 50-140	19-MAR-15
Heptachlor E	ooxide		127.7		%		50-140	19-MAR-15
Hexachlorobe			97.0		%		70-130	19-MAR-15
Hexachlorobu			96.0		%		70-130	19-MAR-15
Hexachloroet			100.8		%		50-140	19-MAR-15
Methoxychlor			93.9		%		50-140	19-MAR-15
WG2055978-4		L1588231-1					00 110	
Aldrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
a-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
g-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
op-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
pp-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15

Quality Control Report

Workorder: L1588231

Report Date: 24-MAR-15

Page 5 of 8

Client: SPL CONSULTANTS LIMITED 14 Ronell Cresent Collingwood Ontario L9Y 4J7

Contact: Marco Visentin

T = -1	M-1	Defe	D	0	11-14		1.1.2.14	A
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT	Soil							
Batch R316151	17							
WG2055978-4 DUF	2	L1588231-1	-0.020		uala	N1/A	10	
o,p-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
pp-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
op-DDT		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
pp-DDT		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
Dieldrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
Endosulfan I		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
Endosulfan II		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
Endrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
gamma-hexachlorocy	clohexane	<0.010	<0.010	RPD-NA	ug/g	N/A	40	19-MAR-15
Heptachlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
Heptachlor Epoxide		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
Hexachlorobenzene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	19-MAR-15
Hexachlorobutadiene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	19-MAR-15
Hexachloroethane		<0.010	<0.010	RPD-NA	ug/g	N/A	40	19-MAR-15
Methoxychlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-MAR-15
WG2055978-2 LCS	;							
Aldrin			116.9		%		50-140	19-MAR-15
a-chlordane			107.7		%		50-140	19-MAR-15
g-chlordane			110.2		%		50-140	19-MAR-15
op-DDD			106.5		%		50-140	19-MAR-15
pp-DDD			97.0		%		50-140	19-MAR-15
o,p-DDE			96.8		%		50-140	19-MAR-15
pp-DDE			102.1		%		50-140	19-MAR-15
op-DDT			93.1		%		50-140	19-MAR-15
pp-DDT			87.2		%		50-140	19-MAR-15
Dieldrin			96.6		%		50-140	19-MAR-15
Endosulfan I			96.1		%		50-140	19-MAR-15
Endosulfan II			99.1		%		50-140	19-MAR-15
Endrin			109.8		%		50-140	19-MAR-15
gamma-hexachlorocy	clohexane		99.0		%		50-140	19-MAR-15
Heptachlor			93.1		%		50-140	19-MAR-15
Heptachlor Epoxide			102.9		%		50-140	19-MAR-15
Hexachlorobenzene			93.1		%		50-140	19-MAR-15

pp-DDE

Quality Control Report

Workorder: L1588231 Report Date: 24-MAR-15 Page 6 of 8 SPL CONSULTANTS LIMITED Client: 14 Ronell Cresent Collingwood Ontario L9Y 4J7 Contact: Marco Visentin Test Matrix Reference Result Qualifier Units RPD Limit Analyzed PEST-OC-511-WT Soil R3161517 Batch WG2055978-2 LCS Hexachlorobutadiene 91.4 % 50-140 19-MAR-15 Hexachloroethane 97.8 % 50-140 19-MAR-15 Methoxychlor 88.6 % 50-140 19-MAR-15 WG2055978-1 MB Aldrin < 0.020 0.02 ug/g 19-MAR-15 a-chlordane < 0.020 0.02 ug/g 19-MAR-15 < 0.020 0.02 g-chlordane ug/g 19-MAR-15 op-DDD < 0.020 0.02 ug/g 19-MAR-15 pp-DDD 0.02 < 0.020 ug/g 19-MAR-15 o,p-DDE < 0.020 0.02 ug/g 19-MAR-15 pp-DDE < 0.020 0.02 ug/g 19-MAR-15 op-DDT < 0.020 0.02 ug/g 19-MAR-15 pp-DDT < 0.020 ug/g 0.02 19-MAR-15 Dieldrin 0.02 < 0.020 ug/g 19-MAR-15 Endosulfan I < 0.020 0.02 ug/g 19-MAR-15 Endosulfan II < 0.020 0.02 ug/g 19-MAR-15 Endrin < 0.020 0.02 ug/g 19-MAR-15 0.01 gamma-hexachlorocyclohexane < 0.010 ug/g 19-MAR-15 Heptachlor 0.02 < 0.020 ug/g 19-MAR-15 Heptachlor Epoxide < 0.020 0.02 ug/g 19-MAR-15 Hexachlorobenzene 0.01 < 0.010 ug/g 19-MAR-15 Hexachlorobutadiene <0.010 0.01 ug/g 19-MAR-15 Hexachloroethane < 0.010 ug/g 0.01 19-MAR-15 Methoxychlor < 0.020 ug/g 0.02 19-MAR-15 Surrogate: 2-Fluorobiphenyl 100.5 % 50-140 19-MAR-15 Surrogate: d14-Terphenyl 50-140 91.1 % 19-MAR-15 WG2055978-5 MS L1588231-1 Aldrin 116.0 % 50-140 19-MAR-15 a-chlordane % 100.1 50-140 19-MAR-15 g-chlordane 106.5 % 50-140 19-MAR-15 op-DDD 102.7 % 50-140 19-MAR-15 pp-DDD 99.5 % 50-140 19-MAR-15 o,p-DDE 94.6 % 50-140 19-MAR-15

%

50-140

19-MAR-15

99.5

Calcium (Ca)

Sodium (Na)

Magnesium (Mg)

Quality Control Report

Workorder: L1588231 Report Date: 24-MAR-15 Page 7 of 8 SPL CONSULTANTS LIMITED Client: 14 Ronell Cresent Collingwood Ontario L9Y 4J7 Contact: Marco Visentin Test Matrix Reference Result Qualifier Units RPD Limit Analyzed PEST-OC-511-WT Soil R3161517 Batch WG2055978-5 MS L1588231-1 op-DDT 94.9 % 50-140 19-MAR-15 pp-DDT 91.9 % 50-140 19-MAR-15 94.9 Dieldrin % 50-140 19-MAR-15 Endosulfan I 96.8 % 50-140 19-MAR-15 Endosulfan II % 101.9 50-140 19-MAR-15 Endrin 111.6 % 50-150 19-MAR-15 gamma-hexachlorocyclohexane % 97.9 50-140 19-MAR-15 Heptachlor 93.0 % 50-140 19-MAR-15 Heptachlor Epoxide 104.3 % 50-140 19-MAR-15 Hexachlorobenzene 94.1 % 50-140 19-MAR-15 Hexachlorobutadiene 81.9 % 50-140 19-MAR-15 Hexachloroethane 88.1 % 50-140 19-MAR-15 Methoxychlor 94.2 % 50-140 19-MAR-15 PH-R511-WT Soil Batch R3161105 WG2055954-1 DUP L1588231-1 pН 7.67 7.70 J pH units 0.03 0.3 18-MAR-15 WG2056135-1 LCS 7.00 pH units pН 6.7-7.3 18-MAR-15 SAR-R511-WT Soil Batch R3161780 WG2056499-4 DUP WG2056499-3 Calcium (Ca) 16.4 17.0 mg/L 3.4 40 19-MAR-15 Sodium (Na) 177 167 mg/L 5.6 40 19-MAR-15 Magnesium (Mg) 1.39 1.30 mg/L 6.5 40 19-MAR-15 WG2056499-2 IRM WT SAR1 84.2 % Calcium (Ca) 70-130 19-MAR-15 Sodium (Na) 87.3 % 70-130 19-MAR-15 Magnesium (Mg) 82.8 % 70-130 19-MAR-15 WG2056499-1 MB

< 0.10

<0.50

<0.10

mg/L

mg/L

mg/L

0.1

0.5

0.1

19-MAR-15

19-MAR-15

19-MAR-15

Workorder: L1588231 Report Date: 24-MAR-15

Client:	SPL CONSULTANTS LIMITED
	14 Ronell Cresent
	Collingwood Ontario L9Y 4J7
Contact:	Marco Visentin

Legend:

-	
Limit DUP	ALS Control Limit (Data Quality Objectives) Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Data Data <thdata< th=""> Data Data <thd< th=""><th></th><th>hav</th><th>Kequest Form</th><th></th><th>Affix AI S ha</th><th>Affix Al S harcode label here</th><th></th><th></th></thd<></thdata<>		hav	Kequest Form		Affix AI S ha	Affix Al S harcode label here		
Rest Remark (mark mark mark mark mark mark mark mark			Free: 1 800 668 9878		(lat	use only)		đ
Linch if reck Boots and formers Ref Propriet Mittance And Control Control Contrecontrol Control Control Contre	Report To		Report	Format / Distribution		Select Sen	vice Level Below (Rush Turnaround Time (TAT) is not ava	liable for all tests)
			Select Report Format:	N EXCE	1.000	X	shdard TAT if received by 3pm)	
			Duality Control (QC) Report V	vith Report			business days if received by 3pm)	
Bits Status Effection Energial of the medical	RONEN CRESCENT	1	Select Distribution:	DECENTING DOX CINECKED			(1-2 outsides upper intercence of spirit is weekend emergency if received by 10am – contact ALS	for surcharge.
SD 442-000-11 Tenul 2 Size (NEC) Constraint Size (NEC) Size			Email 1 or Fax minise.	Ating Spices	-	Specify Date Required	100	
State of Reach First Filst Monte of entitiential Monte of ent	1200-5HH (30L)		Girects	V SOLCONSUL			Analysis Request	
Copy of finance and facet Tyse Section frame Secti	Same as Report To		Inv	oice Distribution		Indicate Filte	ared (F), Preserved (P) or Filtered and Preserved (F/P) be)	5
Image: First Array Sector Email of First Array Sector Email of First Array Sector Email of First Array Sector Free Coll Sill Frequent Email of Coll Sill Exact Coll Sill		L No	Select Invoice Distribution:	EMAIL				
Project information Tendo: Delocition De	Company:		or Fax	NO.				
Project information Color 151 L Color 4 (a) and Gas Regiment Findle (lient usu) Color 4 (b) and Gas Regiment Findle (lient usu) Color 4 (b) and Gas Regiment Findle (lient usu) Color 4 (b) and Gas Regiment Findle (lient usu) Color 4 (b) and Gas Regiment Findle (lient usu) Color 4 (b) and Gas Regiment Findle (lient usu) Color 4 (b) and Gas Regiment Findle (lient usu) Color 4 (b) and Cas Regiment Findle (lient usu) Color 4	Contact:		R	0 501005G	20			
Cold ISI4 Approve (D): Approve (D): Cold Content: (anny Content (b) the content (b)	Project Information			Required Fields (clien	(asn:	31		
ICCOLISI4 OLAcount Eacing Code Eacing Code <theacing code<="" th=""> <theacing code<="" th=""> <the< td=""><td>ALS Quote #:</td><td>4</td><td>Approver ID:</td><td>Cost Center:</td><td>West Contract</td><td>Pi ed</td><td></td><td></td></the<></theacing></theacing>	ALS Quote #:	4	Approver ID:	Cost Center:	West Contract	Pi ed		
Anton Contract (In the new off) List 2.5.3. Anton Contract (In the new off) List 2.5.3. All Sometic Sample Type 2 <th2< td="" th<=""><td>10001</td><td>5</td><td>3L Account:</td><td>Routing Code:</td><td></td><td>2:</td><td></td><td></td></th2<>	10001	5	3L Account:	Routing Code:		2:		
Condition: Condition: 15 Lab York Octor of (a) tase only, NC, NT-MOL-1S All 5 Contact: Sample transmission 15 Lab York Octor of (a) tase only, NC, NT-MOL-1S All 5 Contact: Sample transmission P 15 Lab York Octor of (a) tase only, NC, NT-MOL-1S All 5 Contact: Sample transmission P P 1 D-LP Imb description valuement the report) 0.23/12/15 PH X X P P 1 D-LP Imb description valuement the report) 0.23/12/15 PH X X P P 1 D-LP Imb description valuement the report) 0.23/12/15 PH X X P P 1 D-LP Imb description valuement the report) 0.23/12/15 PH X X P P 1 D-LP Imb description valuement the report) 0.23/12/15 PH X X P P 1 D-LP Imb description valuement the report 0.23/12/15 PH X X P P 1 D-LP Imb description valuement the report 0.23/12/15 PH X X P P 1	PO/AFE:		Activity Code:	A Construction of the		+< 11)		
LIST 2.3.1 As Contact: Sampler: 3mpler:			-ocation:	No. 201 State	Survey Charles	5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	ir-15	ALS Contact:	Sampler:		মন্দ্ মন		
Constraint Constra		ion and/or Coordinates vill appear on the report)	Date (dd-mmr		Sample Type	_		
(3) (3)	Duo 1				1:05	XX		_
C C3/4/2/15 PM X N	Dico		03/12	5	-	XX		
C → A → A → A → A → A → A → A → A →	RH 4		03/62			XX		
こ ○ 2/10/15 P.H ×	2HZ		02/1/20			XX		
2 03/10/15 PM X X N N 2 03/10/15 PM X X N N N 2 03/12/15 PM X X N N N 2 03/12/15 PM X X N N N 2 03/13/15 PM X N N N N 2 00/11 N N N N N N 2 00/11 N N N N N N 2 00/11 N N N N N N 2 00/11 N N <td>5 12421</td> <td></td> <td>N2/10</td> <td></td> <td></td> <td>XX</td> <td></td> <td></td>	5 12421		N2/10			XX		
C C3/b3/L5 RM X X N	1242		Sec. The	15		××		
2 03/12/15 PM X X N	BH3 -		20120			XX		
Construction C3/12/15 PM X X N C C3/12/15 PM X X N N Clent use) C3/13/15 PM X X N N Clent use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sife Observations. Yes No Clent use) Special Instructions / Specify Criteria to add on report (client Use) Frozen End No Custooy seat Instact Ves No Clent use) Instructions / Specify Criteria to add on report (client Use) Frozen End No Custooy seat Instact Ves No End Coning Installed Coning Installed Instructions / Specify Criteria to add on report (client Use) End No Custooy seat Instact Ves No End No Coning Installed Installed Instact Ves No No No No End No Coning Installed Installed Installed Installed Installed No <td>8 1343</td> <td></td> <td>03/62</td> <td>5</td> <td></td> <td>XX</td> <td></td> <td></td>	8 1343		03/62	5		XX		
Kale Kale Kale Kale Kale Kale Kale Client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SamPLE CONDITION AS RECEIVED (tab use only) Client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SamPLE CONDITION AS RECEIVED (tab use only) Effect use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SamPLE CONDITION AS RECEIVED (tab use only) Effect use) NITIAL SHPMENT RECEPTION (tab use only) Frozen Sife Observations Ves No. Date: ITIN: Received Dy NITIAL SHPMENT RECEPTION (tab use only) FINAL SHPMENT RECEPTION (tab use only)	BHS		03/12	115		XX		
Client use) C3/13/15 RM X X X Client use) 03/13/15 R/M X X X Client use) Special Instructions / Specify Criteria to add on report (client Use) Encaten Sife Observations Sife Observations tem? tem? Encaten Encaten Encaten Sife Observations Yes No tem? tem? tense Cooling Instructions / Specify Criteria to add on report (client Use) Encaten Sife Observations Yes No tem? tem? tense No Custody seal intact No Custody seal intact No tem? Imme. No No Custody seal intact No Custody seal intact No tense No Cooling Initiated Imme. No Custody seal intact No No Eclient use) NITML SHPMENT RECEPTION (tab use only) Encoded by FINAL SHPMENT RECEPTION (tab use only) Encoded by FINAL SHPMENT RECEPTION (tab use only)	RHG		-	7.53	-	XX		
C 03/13/15 Q:M Y X N Index client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SaMPLE CONDITION AS RECEIVED (tab use only) client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sife Observations Yes No client use) Indix Contraction (client Use) Indix Contraction (client Use) No Efficient use) Indix No Indix Custody seal tritact Yes No Date: Indix Indix Received Dy Indix Indix Indix	BHII		03/13			XX		
client use) Special Instructions / Specify Criteria to add on report (client Use) SAMPLE CONDITION AS RECEIVED (lab use only) cerm? Erozen SAMPLE CONDITION AS RECEIVED (lab use only) tem? Costing initialed Structures tem Costing initialed Costing initialed Date: Initial. SHIPMENT RECEPTION (lab use only) St. Costing initialed Date: Initial. SHIPMENT RECEPTION (lab use only) Recorred by	RHII		03/12	N151 AN	A	IXX I		_
Temp Frozen Frozen Dir Orbertandus Dir Orbertandus <thdit orbertandus<="" th=""> Dir Orberandus <thdi< td=""><td>Drinking Weter (DWI Samples' (client use)</td><td>Special In</td><td>istructions / Specify Criteria to</td><td>o add on report (client U</td><td>56)</td><td></td><td>SAMPLE CONDITION AS RECEIVED (lab us</td><td>14</td></thdi<></thdit>	Drinking Weter (DWI Samples' (client use)	Special In	istructions / Specify Criteria to	o add on report (client U	56)		SAMPLE CONDITION AS RECEIVED (lab us	14
E (client use) E (client use) Image: A client use) Image: A cli	Are samples taken from a positioned DW Suction Dec					Vie		2 2 3 C
EE (client use) wittin Dovice TEVPERATURES *C NITIAL SHIPMENT RECEPTION ((a) use only) 3. 6 FINAL SHIPMENT RECEPT Date: VL. 1, C. N. A.	NA Reserved and the second sec					0	THE LEVIS TO BUT THE PARTY IN ERPARTY	2
E (client use) 2. 0 Date: N. J. Time: Received by Different Received by Received by Date: M. J. Time, Received by	Are samples for human drinking water use?					STITAL COOLER 15	MPERATURES "C FINAL COOLER T	EMPERATURES *C
SHIPMENT RELEASE (client use) IIII II (Client use) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AND AND					00		
C. D. L. M. J. M. L. M. C. M. C. M. M. J. M.				RECEPTION (ab use o	(ju)	Darrained her	FINAL SHIPMENT RECEPTION (leb use o	nly)
	00		1/1/	17-Mm	K"17:00	- An newspraw		i i i i i i i i i i i i i i i i i i i

\$

Faure to complete all portions of the form may delay analysis. Please full this form LEGEUX: By the use of this form the fast and nonlinease with the Terms and Conditions as specified on the back page of the while + report copy. 1. If any water camples are taken from a Regulated Drinking Water (DW). System, please such tusing an Authorized DW COC form.

×	Unain of Custody (CUU) / Analytical Request Form	COC Number 14 - 4 L O L C O
		Affix ALS barcode tabel here
	Canada Toll Free: 1 800 668 9878	
Report To	Report Format / Distribution	Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)
company: SPL (casultants Limited	Select Report Format: DPF EXCEL EDD	R Regular (Standard TAT if received by 3pm)
Contact Marco Lisearia	Quality Control (QC) Report with Report Ves No Criteria on Bassot - models deals holow if how threed	P P Priority (2-4 business days if received by 3pm) E Entergency (1-2 business days if received by 3pm)
Contractorscort	Select	E2 Same day or weekend emergency if received by 10am – contact ALS for surcharge.
Prone: エインシン・ロフレンシュー	Email 1 or Fax Email 2	Specify Date Required for E2,E or P; Analysis Request
Invoice To Same as Report To TYes T No		Indicate Fittered (F), Preserved (P) or Fitzred and Preserved (FIP) below
Copy of Invoice with Report	Select Invoice Distribution	
	Email 1 or Fax	
Contact	Email 2	
Project Information	Oil and Gas Required Fields (client use)	5 S
ALS Quote #:		2)
Job 1000/SI4	GL Account: Rauting Code:	اً،. آند ۲۰۹۲
PO/AFE:	Activity Code:	P
LSD:	Location;	
ALS Lab Work Order # (lab use only) LIS 82	S231 17-Mart - 15 ALS Contact: Sampler:	iet S
ALS Sample # Sample Identification and/or Coordinates (tab use only) (This description will appear on the report)	dior Coordinates Date Time Sample Type (domm-yy) (hhmm)	DC DC
-13 RHIL TS	03/10/15 PH Soil	
31110	H	
2		
	*	
	Consid Lasteristics / Consider Princip to add on report (relient Use)	D (lab use only)
Drinking Water (DW) Samples' (client use)	Special instructions / Specify Ditteria to add off report (dirent dae	SIF Observations Yes
Are samples taken from a Regulated DW System?		Custody seal intact Yes 📙 No
Are samples for human drinking water use?		NITIAN COOLER TEMPERATURES TO FINAL COOLER TEMPERATURES TO
SHIPMENT RELEASE (client use)	-	FINAL SHIPMENT RECEPTION (lab us
Released by P. P. P. Date: Time	HTTME: Received by M / MM Date Date	Received by: Date: Time:
ACK PAGE FOR ALS LOCATIONS AND SAMPLING INF	WHITE - LABORATORY COPY	YELLOW - CLIENT COPY WARNESS OF A CLIENT COPY

Faiure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the uner advancedops and agrees with 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please solveit using an Authorized DW COC form.

112100 VI